油松、樟子松与白杄大树移植中光合与蒸腾变化及其移植保活技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的快速发展以及现代园林的审美需求,园林绿化、景观设计快速发展,“一次成园”、“短期成景”的设计理念,使得树木移栽成为必然。事实也证明,如果移栽后因时、因地、因树灵活运用科学养护管理办法,树木将很快恢复生机,大大提高绿地景观的时间和空间价值,促进城市生态建设的健康发展。
     本文从树木的光合和水分生理特性入手,选择移栽成活1年、2年及3年后的油松、白杆、樟子松为研究对象,采用Li-6400光合仪测定光合和水分等生理指标的变化。实验结果如下:
     1、油松在上午时间段保持较高的光合速率。移植成活3年后油松光合速率日变幅最大,为4.1814μmolm-2s-1,移植成活1年后油松日变幅最小,为1.8861μmolm-2s-1。气孔导度对油松光合速率和蒸腾速率的影响最为显著。移植1、2、3年后油松日平均水分利用效率分别为0.9356μmmolm-2s-1、1.7837μmmolm-2s-1和2.1308μmmolm-2s-1。移植成活2、3年后油松日平均水分利用效率显著高于移植成活1年后油松。
     2、移植1、2、3年后的白杆光合速率日变幅分别为1.7367μmolm-2s-1、3.3332μmolm-2s-1、4.644μmolm-2s-1.生态因子-光合有效辐射对白杆光合速率影响最显著;气孔导度和叶温是对蒸腾速率影响最显著的因子。移植1、2、3年后的白杆日平均水分利用效率分别为0.2798μmmolm-2s-1、0.0953μmmolm-2s-1和0.9136μmmolm-2s-1。移植成活3年后的白杆水分利用效率显著增大,移植成活2年后水分利用效率降低与树势恢复缓慢有关。
     3、移植后樟子松在上午时段保持较高的光合速率水平,移植成活1、2、3年后的樟子松光合速率日变幅分别为3.0981μmolm-2s-1、2.273μmolm-s-1、4.1364μmolm-2s-1。气孔导度、光合有效辐射对樟子松光合速率和蒸腾速率影响显著。移植1、2、3年后樟子松日平均水分利用效率分别为3.3506μmmolm-2s-1、3.3203μmmolm-2s-1和2.2976μmmolm-2s11,远大于移植成活后的油松、白杆。
     4、综上所述,3个研究树种中,水分利用效率大小依次为:樟子松>油松)白杆。水分利用效率越高,树种消耗相同的水所生产的物质越多。在干旱、多风地区,比较适合蒸腾速率低、水分利用效率较高的树种生长,因此樟子松与油松更适合作为呼和浩特市城市绿化树种进行移植。
     根据以上研究结果,分析得知大树移植成活2年后,树势恢复速度加快,基本能够保证成活,移植后的第一年是移植成活的关键。因此,本研究针对当年移植的三种大树,按照植物的观赏性及健康性评价标准,将大树分为三个等级,分别采用大树输液及新型菌根剂灌根技术对其进行保活处理,并从树体单位电容、叶绿素含量、树木自然含水量、当年生长枝萌发率和生长量及蒸腾速率、光合速率日进程和水分利用效率7个方面进行了比较研究。实验结果如下:
     1、经过大树移植保活技术处理后,当年移植油松处理组单位树体电容较对照组提高58%以上,其中Ⅱ级移植油松提高最快,达74.85%。叶绿素含量提高24%以上,Ⅱ级提高最快,达39.46%。移植油松各等级各部分自然含水量相互比较,结果为:Ⅲ级处理组>Ⅱ级处理组)Ⅲ级对照组)Ⅰ级处理组>Ⅱ级对照组)Ⅰ级对照组。通过保活技术处理,Ⅱ级和Ⅰ级处理组自然含水率均高于其上一级对照组。处理组当年新生小枝萌发率较同级对照组提高50%以上,生长量提高32%以上。
     经过大树移植保活技术处理后,Ⅲ级油松对照组日平均光合速率为0.5912μmolm-2s-1,处理组为1.3696μmolm-2s-1,较对照组提高131.67%;处理组日平均水分利用效率为2.9161μmmolm-2s-1,对照组为08674μmmolm-2s-1。通过保活技术处理,处理组树势有了明显的提高。
     2、当年移植白杆处理组单位树体电容较对照组提高63%以上,其中Ⅱ级移植白杆提高最快,达80.24%。叶绿素含量提高25%以上,Ⅲ级提高最快,达32.88%。各等级各部分自然含水量相互比较,结果为:Ⅲ级处理组)Ⅱ级处理组)Ⅰ级处理组>Ⅲ级对照组)Ⅱ级对照组>Ⅰ级对照组。通过保活技术处理,Ⅱ级和Ⅰ级处理组自然含水率均有很大提高。处理组当年新生小枝萌发率较同级对照组提高53%以上,生长量提高39%以上。
     经过大树移植保活技术处理后,Ⅲ级白杆对照组日平均光合速率为1.3208μmolm-2s-1,处理组为1.6083μmolm-2s-1,较对照组提高21.77%;处理组日平均水分利用效率为0.3668μmmolm-2s-1,对照组为0.2509μmmolm-2s-1。
     3、当年移植樟子松处理组单位树体电容较对照组提高64%以上,其中Ⅱ级提高最快,达8.0.60%。叶绿素含量提高17%以上,Ⅲ级提高最快,达27.62%。各等级各部分自然含水量相互比较,结果为:Ⅲ级处理组)Ⅱ级处理组>Ⅰ级处理组>Ⅲ级对照组)Ⅱ级对照组)Ⅰ级对照组。通过保活技术处理,Ⅱ级和Ⅰ级处理组自然含水率均有很大提高。处理组当年新生小枝萌发率较同级对照组提高50%以上,生长量提高23%以上。
     经过大树移植保活技术处理后,Ⅲ级樟子松对照组日平均光合速率为2.6697μmolm-2s-1,处理组为3.0679μmolm-2s-1,较对照组提高14.92%;处理组日平均水分利用效率为3.3506μmmolm-2s-1,对照组为3.3203μmmolm-2s-1。
     4、三个研究树种中,水分利用效率大小依次为:樟子松)油松>白杆。这与对不同移植成活时间的三个树种水分利用效率的调查结果是一致的。大树移植后,树木抵抗力减弱,适应外界环境变化的能力降低,容易受到病虫害的侵袭,从而导致植株树势衰退甚至死亡。因此,针对性的研究探讨大树移植保活技术,最大限度地提高树木生长势,提高其成活率,才能更有利地发挥大树在城市园林景观绿化中的资源优势。
With the rapid development of urban construction and aesthetic needs of the modern garden, landscaping, landscape design, rapid development,"one into the Garden","design concept of the short-term" into the scene, making the transplanting of trees become inevitable. Also it have proved that if after transplanting, as a result, the tree of flexibility in the use of science and conservation management approach, the trees will soon be back to life, greatly improving the time and space value of the green landscape, and promote the healthy development of urban ecological construction.
     This paper from the trees and the water physiological characteristics, select the transplant survival trees after1year,2years and3years of pine, spruce, pine as the object of study, use Li-6400photosynthesis to measured photosynthesis and water and other physiological indicators'change. The experimental results are as follows:
     1、In the morning time period Pine maintain a high photosynthetic rate. After3years those lived Pine's Photosynthetic rate of amplitude maximum for4.1814μmolm-2s-1, transplant survival, After3years those lived Pine's Photosynthetic rate of amplitude minimum for1.8861μmolm-2s-1, Stomata conductance of the most significant impact on the Photosynthetic rate and transpiration rate. Pine average daily water use efficiency0.9356μmmolm-2s-1, after transplanted2,3years, the data was1.7837μmmolm-2s-1and2.1308μmmolm-2s-1. Pine average daily water use was significantly higher after transplanted2、3years survived efficiency than the transplant survival1year.
     2、After Transplantation for first three years the rate of amplitude respectively is1.7367μmolm-2s-1,3.3332μmolm-2s-1, and4.644μmolm-2s-1. Ecological factors-light and effective radiation spruce photosynthetic rate have the most significant. After Transplantation for first three years the rate of daily use water respectively is0.2798μmolm-2s-1,0.0953μmolm-2s-1, and0.9136μmolm-2s-1. After spruce Transplanted3years, the water use efficiency increased significantly and transplantation survived water use efficiency with the relevant of recovery of trees after2years transplantation.
     3、After transplantation, Pinus maintain high level of photosynthetic rate in the morning; the first three yeas' data is3.0981μmolm-2s-1,2.273μmolm-2s-1, and4.1364 μmolm-2s-1. Stomata conductance, light and effective radiation significantly affected the photosynthetic rate and transpiration rate. Average water use efficiency of Pinus first three years after transplantation, the average daily water use efficiency respectively3.3506μmmolm-2s-1,3.3203μmmolm-2s-1and2.2976μmmolm-2s-1, much more than others.
     4、In summary, the three species, water use efficiency is:Pinus sylvestris> pine> spruce. The higher the water use efficiency, more substances produced by the species consume the same water. In the dry, windy areas, more suitable for low transpiration rate, Pinus sylvestris and Pinus are more suitable as Hohhot urban tree species in transplantation.
     Based on the above findings, the analysis of the these trees transplant survival2years after the recovery of trees faster, basically to ensure survival in the first year after transplantation is the key to transplant survival. There fore, this study then divide the three trees, according to plant ornamental and health evaluation criteria, they were used new technology to insurance live processing, and the unit capacitance of the tree, chlorophy11content, natural moisture content of trees, when the growth of branches of germination and growth and transpiration rate, photosynthetic rate process and the water use efficiency of seven aspects of a comparative study. The experimental results are as follows.
     1、After the processing technical of Pinus tabulaeformis' transplants and keep alive, compared with the control group the tree capacitance of the new transplants' Group increased by58%or more, the Chlorophyll content of the new transplants' Group increased by24%or more among those class Ⅱ improved fastest, the tree capacitance data is74.85%., and the Chlorophy ll content data is39.46%. Transplantation plant's each grade part of the natural moisture content compared with each other. The result is:Grade Ⅲ treated group> Grade Ⅱ treated group>Grade Ⅲcontrolled group> Grade Ⅰ treated group> Grade Ⅱ controlled group> Grade Ⅰ controlled group. Through processing technical of keeping the tree alive, Natural moisture content of the class Ⅱ and class Ⅰ processing group were higher than their superior control group. Treated when newborn sprig germination rate than comparable control group increased by more than50%, growth increased by more than32%.
     After the processing technical of trees transplanted to keep alive the average daily photosynthetic rate of control group grade Ⅲ spruce0.5912μmolm-2s-1treated1.3696μmolm-2s-1, compared with the control group increased by131.67%; dealing with group day average water use efficiency2.9161μmolm-2s-1,the control group for0.8674μmolm-2s-1.
     2、After the processing technical of Spruce'transplants and keep alive, compared with the control group the tree capacitance of the new transplants' Group increased by63%or more, the Chlorophy11content of the new transplants' Group increased by25%or more among those class Ⅱ improved fastest, the tree capacitance data is80.24%., and the Chlorophyll content data is32.88%. Transplantation plant's each grade part of the natural moisture content compared with each other. The result is:Grade Ⅲ treated group> Grade Ⅱ treated group> Grade Ⅰ treated group> Grade Ⅲcontrolled group> Grade Ⅱ controlled group> Grade Ⅰ controlled group. Through processing technical of keeping the tree alive, Natural moisture content of the class Ⅱ and class Ⅰ processing group were higher than their superior control group. Treated when newborn sprig germination rate than comparable control group increased by more than53%, growth increased by more than39%.
     After the processing technical of trees transplanted to keep alive the average daily photosynthetic rate of control group grade III spruce1.3208μmolm-2s-1treated1.6083μmolm-2s-1, compared with the control group increased by21.77%; dealing with group day average water use efficiency0.3668μmolm-2s-1, the control group for0.2509μmolm-2s-1.
     3、After the processing technical of Pinus sylvestris' transplants and keep alive, compared with the control group the tree capacitance of the new transplants'Group increased by64%or more, the Chlorophyll content of the new transplants'Group increased by17%or more among those class II improved fastest, the tree capacitance data is80.60%. And the Chlorophyll content data is27.62%. Transplantation plant's each grade part of the natural moisture content compared with each other. The result is:Grade III treated group> Grade Ⅱ treated group> Grade I treated group> Grade Ⅲcontrolled group> Grade II controlled group> Grade I controlled group. Through processing technical of keeping the tree alive, Natural moisture content of the class II and class I processing group were higher than their superior control group. Treated when newborn sprig germination rate than' comparable control group increased by more than50%, growth increased by more than23%.
     After the processing technical of trees transplanted to keep alive the average daily photosynthetic rate of control group grade III spruce2.6697μmolm-2s-1treated3.0679μmolm-2s-1, compared with the control group increased by14.92%; dealing with group day average water use efficiency3.3506μmolm-2s-1, the control group for3.3203μmolm-2s-1.
     4、Three species, the order of Water use efficiency is:Pinus sylvestris> P. tabulaeformis> Spruce. This species water use efficiency of three different transplant survival times of the survey results is consistent. the ability of trees resistance Lower, to adapt to environmental changes weakened, vulnerable to the invasion of pests and diseases, resulting in plant vigor recession or even death. Therefore, the targeted study trees transplanted to keep alive; to maximize tree growth potential and improve their survival rate can be play more resources of trees in the urban landscape green.
引文
1 廖振翔.城市与园林绿化刍议[J].中国集体经济,2009, Vo1.01:199-200
    2 李洪芳.试论城市园林绿化的建设与作用[J].科技资讯,2009,Vo1.04:137
    3 刘刚.论大树移植的利与弊[J].科技创新导报,2011,Vo1.24:1 20
    4、甄凌.大树移植技术负面效应的分析与探讨[J].科技情报开发与经济,2011,Vo1.21(24):191-193
    5 李刚,李亚茹,翟明瑶.城镇绿化大树移植技术要点[J].内蒙古林业科技,2010,Vo1.36(4):97-98
    6 万红莲.浅谈园林绿化种植设计[J].江西化工,2011,Vo1.01:185-186
    7 夏征农,陈至立.辞海[M].上海辞书出版社.2009:200
    8 西北林学院主编.简明林业词典[M].北京:科学出版社,1998:65
    9 李佳乐.园林绿化小百科[M].中国建筑工业出版社,1999:94
    10孟兆祯,毛培琳,黄庆喜等.园林工程[M].北京:中国林业出版社,1996.
    11 南京市园林局,南京市园林科研所.大树移植法[M].北京:中国建筑工业出版社,2005:6
    12建设部.城市古树名木保护管理办法.建城[2000]192号
    13 中华人民共和国行业标准城市绿化工程施工及验收规范[s],CJJ/T82-99.北京:中国建筑工业出版社,1999
    14 北京市园林局城市园林绿化管理文件.北京市大树移植施工技术规程[Z].北京:北京市园林局,2001
    15 上海市园林局城市园林绿化管理文件.上海市大树移植技术规程[Z].上海:上海市园林局,1996
    16 天津市园林局城市园林绿化管理文件.天津市大树移植技术规程[Z].天津:天津市园林局,2004
    17 南京市园林局城市园林绿化管理文件.南京市大树移植技术规程[Z].南京:南京市园林局,2005
    18 中国大百科全书编委会.中国大百科全书建筑·园林·城市规划卷[M].北京:中国大百科全书出版社,1988:91
    19 张秀英主编.园林树木栽培养护学[M].北京:高等教育出版社,2005:105
    20郑力娟,温建铭,孙冰强,陈壮.关于大树移植中的若干问题[J].沈阳大学学报,2002,14(2):91-93
    21 兰晓燕.基于树势平衡的大树移植保活技术研究[D].西南大学,2007.06
    22 范善华.大树移植及保活技术措施初探[J].上海园林科技,2002(1):69-75
    23 陈俊愉,余树勋,李嘉乐等.关于“移植大树”的笔谈[J].中国园林,2001(1):9 0-92
    24 何丽芳.大树移植辅助决策系统的研究与开发[D].北京林业大学,2005
    25 周秋利.生长调节剂对园林用银杏断根后根系恢复及生长的作用[D].河北农业大学,2005
    26 田原.“大树进城”引发的问题及对策[J].中国园艺文摘,2012(1):63-65
    27叶振魁,闫海霞,刘九菊.“大树进城”的利弊[J].农技服务,2011,28(4):513-514
    28温志平,段凤蕊.园林工程中大树移植技术[J].中国园艺文摘,2012(1):23,45-46
    29 陈嘉龙.提交大树移植栽培成活率的对策[J].湖南林业科技,2008,(3):28-31
    30 崔汝光,郭磊.北方干旱地区大树移植技术[J].山西农业科学,2009,37(7):91-92
    31 李能,张涛.大树移植的生理分析与移栽技术探讨[J].内江科技,2008,(4):137-138
    32 蒋高明.植物生理生态学[M].高等教育出版社,2004:188
    33沈岳清,马永文编.植物生长调节剂与保鲜剂[M].北京:化工工业出版社,1990:137-209
    34 Pati PK, Sharma M, Sood A, etc.. Direct shoot regeneration from leaf explants of Rose damacena Mill[J]. In vitro cellular& developmental biology-plant,2004,40(2): 192-195
    35 Kizilova Natalya N. Long-distance liquid transport in plants [J]. Proceedings of the Estonian academy of sciences,2008,57 (3):179-203
    36 Xia Qinglan. The formation of a tree leaf [J]. Esaim-control optimization and calculus of variations,2007,13(2):359-377
    37 Alves A C & SetterT L. Response of cassava leaf area expansion to water deficit:cell Proliferation, cell expansion and delayed development [J]. Annals of Botany,2004, 94:605-613.
    38 Knorre Anastasia A.,Siegwolf Rolf T. W.,Saurer Matthias, etc.. Twentieth century trends in tree ring stable isotopes (delta(13)C and delta (18)0) of Larix sibirica under dry conditions in the forest steppe in Siberia [J]. Journal of geophysical research-biogeosciences,2010,115 (G03002):308-339
    39 Kozlowski TT.Pallardy SG. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Boyanical review,2002,68(2):270-334
    40孟庆杰,王光全,董邵峰,等.桃叶片组织结构与其抗旱性关系的研究[J].西北林学院学报,2005,20(1):65-67
    41 Yang Tao; Wang Li; Gong Huili. A study on eco-physiological characters of two Calamagrostis angustifolia water ecotypes in the Sanjiang Plain [J]-2008 International Workshop on Education Technology and Training/International Workshop on Geoscience and Remote Sensing,2009,2:536-540
    42 Shatil-Cohen Arava,Attia Ziv,Moshelion Menachem. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress:a target of xylem-borne ABA? Plant cell and environment,2011,34(7):1079-1087
    43 Maherali Hafiz; Sherrard Mark E.; Clifford Megan H.; etc..Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass [J].New phytologist,180(1):240-247
    44 陈平安,蒋小军.大树移植存在的问题及对策[J].中国园艺文摘,2009,(6):64-65.
    45 阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2562
    46 Lev-Yadun Simcha. Why should trees have natural root grafts? [M]. Tree physiology, 2011,31 (6):575-578
    47 冷平生.城市植物生态学[M].北京:中国建筑工业出版社,1995.
    48 Baquedano FJ, Castilo F J. Comparative ecophysiogical effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spender Quercus coccifera and Quercus ilex [J].Trees,2006,20(6):689-700
    49 刘巧红,范秀琴,刘小平,等.环境因子对油松组成抗性与生长发育的影响[J].河北林果研究,2011,26(3):275-279
    50 乐林,余伟莅,胡小龙,等.3种锦鸡儿属植物呼吸代谢和生长对环境温度变化的响应[J].内蒙古林业科技,201 0,36(3):32-35
    51 程金水主编.园林植物遗传育种学[M],北京:中国林业出版社,2000.
    52 刘遵春,陈荣江,包东娥:干旱胁迫对金光杏梅叶片渗透调节物质和光合作用的影响[J].华北农学报,2008,23(1):119-122
    53 李红星.西北地区城市园林绿化大树移植的技术研究[M].西北农林科技大学,2008
    54 尹伯仁,周丕生,方海兰,等.上海大树移植的本底土质量调查与评价[J].上海交通大学学报,2004,22(4):373-377
    55 陈有民,园林树木学[M].中国林业出版社,2009,1:216-220.
    56李吉跃,高丽洪.内聚力-张力学说的新证据[J].北京林业大学学报,2002,24(4):135-138
    57 Sehneider H, Wistuba N, Reich R, et al. Minimal- and noninvasive characterization of the flow-force pattern of higher plants [M]. In:Terazawa M., ed. Tree sap II. Sapporo, JaPan:Hokkaido University Press,2000,77-91
    58 West G B, Brown J H, Enquist B J. A general model for the structure and allometry of Plant vascular systems[J].Nature,1999,400:664-667
    59 Woodruff D R Mccul loh K A, Warren J M, et al.. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir[J]. Plant, Cell and Environment, 2007,30:559-569
    6 0何春霞,李吉跃,郭明.树木树液上升机理研究进展[J].生态学报,2007,27(1):329-336
    61 Sell in Arne,Sack Lawren, Ounapuu Eele; etc.. Impact of light quality on leaf and shoot hydraulic properties:a case study in silver birch (Betula pendula) [J]. Plant cell and environment,2011,34 (7):1079-1087
    62 李吉跃,张建国.北方主要造林树种耐旱机理及其分类模型研究(Ⅱ)-苗木叶水势与土壤含水量的关系及分类.北林业大学学报,1993,15 (3):1-11
    63 李吉跃,张建国,姜金璞.京西山区人工林水分参数的研究(Ⅰ-Ⅲ).北京林业大学学报,1994,16(1):1-12:16(2):1-9;16(4):35-40
    64 Holbrook NM, BurnsMJ, Field C B. Negative xylem pressure in pla-nts:a test of the balancing pressure technique. Science,1995,270(17):1193-1194
    65 Moore P H, Cosgrove D J. Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane [J]. Plant Physiology,1991,96:794-801
    66 Zimmermann U, Setineider H, Lars H, et al.Water ascent in tall trees:does evolution of land plants rely on a highly metastable state[J]. New Phytologist,2004, 10(1111):1469-8137
    67 Taiz L, Zeiger E. Plant Physiology 4thedn [M]. Massachusetts:Sinauer Assoeiates, 2006
    68 Dawson T E,Mambelli S,Plamboeck A H, er al.. Stable isotopes in plant ecology [J]. Annuual Revition Ecological System,2002,33:507-59
    69 Zhu Z, Zheng H L. Plant Aquaporins [J]. Chinese Journal of cell biology,2005,27:539-544
    70 Hill A E, shachar-Aill B, Shachar-Hill Y.What are aquaporins For[J]. Journal of Membrane Biology,2004,197:1-32
    71 Schneider H, Wegner L H, Haase A, et al.. Long-distance water transport under controlled transpirational conditions:minimal invasive investigations by means of pressure probes and NMR imaging[M]. Dordrecht, The Netherlands:Kluwer Academic Publishers, submitted.2004
    72董平慧.大树移植的保活技术措施初探[J].黔东南民族师范高等专科学校报,2006,3:44-45
    73蔡卫兵.林木菌根生物技术研究与应用现状简述.安徽林业科[J],1998,28(3):201-208
    74栾庆书.外生菌根真菌应用技术研究.辽宁林业科技[J].1994(3,4):67-69
    75 蒋家淡,林延生,詹正宜,鲍晓红,刘亨平.菌根生物技术应用现状与研究进展[J].甘肃农业大学学报,2001,2:48-50
    76蔡卫兵.林木菌根生物技术研究与应用现状简述.安徽林业科[J],1998,28(3):201-208
    77 Blum JD, Klaue A, Nezat CA, et al.. Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems[J]. Nature,2002,417:729-31
    78 Bidartondo MI, Redecker D, Hijri I, et al..Epiparasitic plants specialized on arbuscular mycorrhizal ungi. Nature,2002,419:389-92
    79 Smith MD, Hartnett DC, Wilson CWT. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass rairie[J]. Oecologia, 1999,121:574-82
    80 Wilson GWT, Hartnett DC, Smith,MD, et al. Effects of mycorrhizae on growth and demography of tallgrass prairie forbs[J].Am J Bot,2001,88 (8):1452-1457
    81 Van der Heijden MGA, Wiemken A, Sanders IR. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant[J]. New Phytol,2003,157:569-578
    82赵文智,程国栋.菌根在土地沙漠化修复中的应用.应用生态学报,2001,12(6):947-950
    83 白淑兰,闫伟,马荣华等.大青山、蛮汗山外生菌根真菌资源调查[J].山地学报,2001,19(1):44-47.
    84 吕全,雷增普.外生菌根提高板栗苗木抗旱性能及其机理的研究[J].林业科学研究,2003,13(3):249-256
    85 梁军,屈智巍.外生菌根菌和植物生长物质复合制剂对杨树扦插苗生长及抗逆性的效应[J].林业科学研究,2005,15(6):717-721
    86 SENGUPTA A, CHAUDHURI S.Vesicula arbuscular mycorrhiza (VAM)in pioneer saline marsh plants of the Ganges River Delta in vest Bengal (India) [J]. Plant Soil,1990, 122:111-113
    87郑华,欧阳志云,王效科.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,2004,15(11):2019-2024
    88 郭秀珍,毕国昌.林木菌根及应用技术[M].北京:中国林业出版社,1989,1-305
    89谭方河,王云璋.四川松树、按树外生菌根菌种类调查[J].四川林业科技,2000,21(3):65-69
    90 臧穆.中国牛肝菌目分类,外生菌根群落组合的研究[J].菌物系统,1997,16(3):87-90
    91 SENGUPTA A, CHAUDHURI S. Vesicula arbuscular mycorrhiza (VAM) in pioneer salinemarsh plants of the Ganges River Delta in vest Bengal (India) [J]. PlantSoil, 1990,122:111-113
    92 Lee K, Koo C. Enhancement of growt h and survival of Populus alba× P. glandulosa cutting with ectomycorrhizal fumigatednurserycondition[J]. Journal of Korean Forestry Society,1985 (70):72-76
    93 Burgess TI,Malajczuk N. The abil ity of 16 ectomycorrhizal fungi to increase growthand phosphorus uptake of Eucalyptus globulus Labill. and E. diversicolor F.Muell [J]. Plant Soil,1993,153:155-164
    94 HoPkins N A. Mycorrhizae in a Cal ifornia serpentine grassland community [J]. Can. j. Bot, 1987,65:484-487
    95孙民琴,吴小芹,叶建仁.外生菌根真菌对不同松树出苗和生长的影响[J].南京林业大学学报(自然科学版),2007,31(5):39-43
    96赵昕,阎秀峰.丛枝菌根真菌对植物次生代谢的影响.植物生态学报,2006,30:514-521
    97 Sousa Nadine R, Franco Albina R, Oliveira Rui S, etc. Ectomycorrhizal fungi as an alternative to the use of chemical fertilisers in nursery production of Pinus pinaster[J]. Journal of environmental management,2012,95 (s):s269-s274
    98郑翔,郑瑞杰,高荣海,园林绿化中的大树移栽及养护管理技术[J].农业科技与装备,2010(04):18-20
    99林春玉,论园林绿化工程中的大树移栽[J].热带农业科学,2009,29(9):41-45
    100 Snyder M, How to transplant wild-grown trees [J]. JOURNAL OF FORESTRY,2002,100 (05):6
    101郑翔,郑瑞杰,高荣海,园林绿化中的大树移栽及养护管理技术[J].农业科技与装备,2010(04)):18-20
    102王庭友.大树移植管理技术[J].现代农业科技,2009,(3):52-55
    103金华友,李维.园林绿化大树移植及其成活期的养护管理[J].林业建设,2009,(4):26-28
    104李云蛇.园林绿化中大树移植的技术要点[J].内蒙古林业,2009,(1):20-21
    105刘海波,郭晓雷.城市绿化中大树移植与养护[J].中国高新技术企业,2008(23):214,218
    106王秀峰,白丽,阳永清.浅谈大树移植方法[J].内蒙古林业调查设计,2010,33(6):15-21
    1 07王建梅.新移植大树促活技术[J].河北林业,2009,(3):41-42
    108王春芳.提高大树移植成活率的技术措施[J].黑龙江生态工程职业学院学报,2007,20(6):17-18
    109郭学望,包满珠.园林树木栽植养护学[M].北京:中国林业出版社,2004.
    110王涛,陈广庭,赵哈林等.中国北方沙漠化过程及其防治研究的新进展[J].中国沙漠,2006,26(4):507-516
    111吴征锰,王荷生,1983.中国自然地理,植物地理,上册[M],北京:科学出版社,29-89,104-120
    112吴征锰(主编),1980.中国植被[M].北京:科学出版社,143-726,956-960
    113张文辉,康永祥,李红,等.西北地区生物多样性特点及其研究思路[J].生物多样性,2000,8(4):422-428
    114李景侠.西北主要乔灌木[M].杨凌:西北农林科技大学出版社.2002.
    115国家统计局城市社会经济调查司.中国城市统计年鉴2006[M].北京:中国统计出版社,2007
    116王利.我国西部干早区的新移植大树的养护管理技术[J].中国西部科技,2007,(5):36-37
    117王献昌.园林大树移植方法探讨[J].现代农业空间,2009(13):219
    118王娜.大树移植管理技术[J].现代农业科技,2009(2): 55-56, 68.
    119杨彬彬.绿化施工中大树的移植及后期管护[J].现代农业科技,2008,(2):55,57
    120杨经洪,赵欣.园林绿化中大树移植的主要技术环节[J].农业科技与信息,2008,(10):31-32
    121 Baltrenaite E; Butkus D. Investigation of heavy metals transportation from soil to the pine tree[M]. Water science and technology,2004,50 (3):239-244
    122王巍,李永晶.大树移植浅谈[J].林区教学,2008,(4):105-107
    123陈吕兵.大树的移植技术[J].现代农业科技,2008,(4):53
    124张怀宇.周二峰.大树夏季移植关键技术[J].现代农业科技,2008,(3):51,55
    125王春芳.提高大树移植成活率的技术措施[J].黑龙江生态工程职业学院学报,2007,20(6):17-18
    126国家统计局.内蒙古统计年鉴2011[M].中国统计局出版社,2011,7
    127韩淑梅,李妮亚,何平,等.引种红树与中国乡土红树幼苗光合特性研究[J].西北植物学报,2010,30(8):1667-1674.
    128 Siegert Courtney'M.,Levia Delphis F.. Stomatal conductance and transpiration of co-occurring seedlings with varying shade tolerance[J]. Trees-structure and function,2011,25(06):1091-1102
    129 Wolken Jane M., Landhaeusser Simon M., Lieffers Victor J., etc.. Seedling growth and water use of boreal conifers across different temperatures and near-flooded soil conditions[J]. Canadian journal of forest research-revue canadienne de recherch e forestiere,2011,41 (12):2292-2300
    130翁殊斐,黎彩敏,庞瑞君.用层次分析法构建园林树木健康评价体系[J].西北林学院学报,2009,24(1):177-181
    131 Boone R, Westwood R. An assessment of tree health and trace element accumulation near a coal-fired generating station,Manitoba, Canada [J]. Environmental Monitor ing and As-sessment,2006,121:151-172
    132闫李杰,蒋海燕.移栽大树输液促活[J].河北林业,2007(1):42
    133李兴伟,周章义,张俊楼,等.探测树势的电测技术-电容法[J].广东林业科技,2002,18(1):19-24
    134 Dalton F N.In situ root extent measurements by electrical capacitance methods [J].Pant Soil,1995,173:157-165
    135屈智巍,梁军,贾秀贞,等.干早及种内竞争胁迫对树体电指标影响的研究[J].林业科学研究,2006,19(5):76-81
    136梁军,屈智巍,贾秀贞,等。树体电容的生理学研究[J].林业科学,2006,42(1):90-95
    137张怀斌.叶绿素的光学性质及其应用[D].山东师范大学学报,2008:32-46
    138林会民.不同沙丘部位沙柳叶片含水量及与土壤水分关系的初步研究[J].内蒙古林业科技,2008,34(3):17-19,27
    139红雨,王林和.臭柏群落在不同演替阶段叶片含水量、叶绿素含量变化的研究[J].内蒙古师范大学学报(自然科学版),2008,37(1):94-97
    140曹生奎,冯起,司建华,等.胡杨光合蒸腾与影响因子间关系的研究[J].干旱区资源与环境,2012,26(4):155-159
    141徐佳佳,张建军,王清玉,等.油松和侧柏的光合蒸腾特性及其与环境因子的关系[J].东北林业大学学报,2011,39(7):15-18
    142 This Dominique; Comstock Jonathan; Courtois Brigitte; etc.. Genetic Analysis of Water Use Efficiency in Rice (Oryza sativa L.) at the Leaf Level[J].Rice,2010,3 (1):72-86
    143靳甜甜,刘国华,胡婵娟,等.黄土高原常见造林树种光合蒸腾特征[J].生态学报,2008,28(11):5758-5765
    144王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14(10):1632-1636
    145张卫强,贺康宁,王正宁,等.光辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响[J].中国水土保持科学,2006,4(2):108-113
    146池喜梅.不同油松种源光合作用、蒸腾作用和耐旱性的研究[D].太原:山西大学,2006:33
    147何平,高荣孚,汪振儒.光状况对油松生长和光合特性的影响[J].生态学报,1993,13(1):92-95
    148郭连生,田有亮.4种针叶幼树的光合生理特性与大气湿度关系的研究[J].生态学报,1994,14(2):136-141
    149吴夏明,马骥.不同种源侧柏的光合特性和种子发芽对水分胁迫的反应[J].林业科学,1988,24(4):448-453
    150李家龙,译.快速测算松树叶面积的方法[J].林业科技通讯,1985(10):9
    151 Farquhar G D, Sharkey T D. Stomatal conductance and photosyn-thesis[J]. Annual Review of Plant Physiology,1982,33:317-345
    152于贵瑞,王秋凤.植物光合、蒸腾与水分利用的生理生态学[M].北京:科学出版社,2010
    153曹军胜,刘广全.刺槐光合特性的研究[J].西北农业学报,2005,14(3):118-122, 136
    154 Yu Qiang, Wang Tianduo. Simulation of the physiological respon-ses of C3 plant leaves to environmental factors by a mondel which combines stomatal conductance photosynthesis and anspiration [J]. Acta Botanica Sinica,1998,40(8):740-754
    155刘玉华,贾志宽,史纪安,等.旱作条件下不同苜蓿品种光合作用的日变化[J].生态学报,2006,26(5):1468-1477
    1 56吴瑞云.欧美杨杂交种‘中嘉8’净光合速率与若干生态因子的相关分析[J].亚热带植物科学,2007,36(4):16-19
    157刘巧红,范秀琴,刘小平.环境因子对油松组成抗性与生长发育的影响[J].河北林果研究,2011,26(3):275-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700