波浪作用下黄河口海底滑坡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在波浪诱发黄河口海底滑坡的研究,满足滑坡预报预警服务的需要,期望减小滑坡对工程设施造成的危害,加深了解河口沉积物的运移过程和方式。本论文以黄河口埕岛海域为研究区,通过试验测试和理论计算,系统地研究了埕岛海域工程地质环境特征、滑坡破坏模式、沉积物在循环荷载作用下的破坏过程、研究区海底斜坡稳定状况、滑坡发生时间、滑坡规模与特征、滑坡发生概率等,
     主要开展的工作和取得的成果如下:
     (1)构建了黄河口埕岛海域海底滑坡的工程地质环境特征,为进一步滑坡形成分析研究准备基础参数资料。搜集各单位在埕岛海域的工程地质勘察报告,得出该区工程地质和水动力环境参数的特性及其区域变化规律;对埕岛海域工程地质环境分区,建立各亚区的典型土层结构组合。
     (2)研究了黄河口海底滑坡破坏模式,为滑坡试验研究和理论计算模型的建立提供指导。分析现场勘测中发现的滑坡模式,并结合前面建立的地层结构,建立了研究区极端海况下底坡破坏的四种模式,即平面剪切破坏、圆弧振荡破坏、液化流滑和塌陷破坏;进一步分析了这四种滑坡模式的形成机制,并依据现场调查资料和试验结果进行了验证。
     (3)研究了黄河口沉积物在循环荷载作用下的破坏过程,获取沉积物动力学参数变化特征,为本文后面的理论模型计算提供依据。基于现场观测试验和室内动三轴试验,测试循环荷载能量在土体中的传播、循环荷载导致土体强度的衰减、原状土体和重塑土体的孔压变化规律、不同强度粉土的抗液化性能,得出了研究区海床土现场液化判别标准和孔压比上下限值。
     (4)建立了海底斜坡剪切破坏理论计算模型,据此定量分析黄河口海底滑坡形成过程与研究区海床稳定性。基于极限平衡法和极限分析法,推导出波浪作用下海床圆弧振荡剪切破坏公式,并与水槽试验结果和其它计算结果比较。基于前面建立的研究区典型土层,分析不同波浪重现期下的海底斜坡抗剪切破坏安全系数和最危险滑动面所在的深度。研究得出,极端海况下埕岛海域亚区I的典型土层结构组合A和B可发生平面剪切破坏;典型土层结构组合A还可发生圆弧振荡剪切破坏,其它亚区不会发生剪切破坏。
     (5)建立了海床波致液化破坏理论计算模型,据此定量分析了黄河口海底液化滑坡形成过程与海床稳定性。利用建立的液化判别经验法,以及对累计孔压计算模型的改进法,对埕岛海域各亚区典型土层结构组合进行液化分析。发现黄河口海床液化不一定从海底面开始往下扩展,而是主要发生在淤泥质粉质粘土层内。研究得出了埕岛海域4个亚区的液化破坏土层和破坏深度,其中瞬时液化深度基本在2m以内,累计液化深度可达10m。
     (6)研究了黄河口海床破坏后的宿命。黄河口沉积物液化后受地形限制,可有三种宿命—悬浮运移、坡面流滑和原地残留。研究发现对于埕岛海域土体的坡面流滑,其方向有三种:北部向北、中部先向东再向东北、东南部可能向东南。这种滑动对上覆未液化层或未液化透镜体撕裂,可造成海底孤立网绳状塌块。
     (7)研究了黄河口海底滑坡发生经历的几个过程及其所需要的时间,为进一步滑坡预警提供支持。基于前面建立的理论和试验测试结果,得到不同深度处土体孔压增长和强度丧失随时间的变化过程,斜坡剪切破坏和液化破坏所需的时间下限值。
     (8)分析了黄河口海底滑坡发生的概率,基于一次二阶矩法计算埕岛海域海底斜坡在不同波浪重现期下的剪切破坏和液化破坏概率。研究得出了该海域4个亚区的破坏概率,其中亚区I的剪切破坏概率在25%以上;亚区II和III的平面剪切破坏概率位于5%-39%之间,圆弧振荡剪切破坏概率位于1%-14%之间;亚区IV的剪切破坏概率在0.5%以内。
     本论文主要创新点:(1)通过现场试验发现循环荷载作用下,原状土体孔压先后经历先上升、后减小、再上升和剧烈波动四个阶段,而重塑土只有上升和剧烈波动两个阶段;(2)概括了黄河口海底滑坡的四种主要破坏模式,即平面剪切破坏、圆弧振荡破坏、液化流滑和塌陷破坏,并建立了相应的理论计算模型,得到了埕岛海域不同区域的破坏程度和破坏时间;(3)基于概率分析方法,得到了埕岛海域四个亚区滑坡发生的概率。
This dissertation studies the mechanism of wave-induced submarine landslide at the Yellow River estuary, to satisfy the need of landslide forecast, to reduce the harm to submarine engineering facilities caused by landslide and better understanding the transport process of sediment. The Chengdao Sea at the Yellow River estuary is taken as the study area in this dissertation. Through the experiment measuring and theoretical calculation, several topics, including the landslide geological environmental characteristics, landslide failure modes and sediment failure process under dynamic load, submarine slope stability, landslide failure time, scale, characteristic and probability were studied. The mainly studies and results achieved are following:
     (1) The landslide geological environmental characteristics of the Chengdao Sea at the Yellow River estuary were established, for preparing the basic soil and hydrodynamic parameters in submarine landslide analysis. Through the collection of geotechnical reports at the Chengdao Sea from universities, academy agencies and enterprises, the soil properties, soil property regional variation regular pattern and hydrodynamic environmental characteristics of the Chengdao Sea were established. Then, four geological sub-areas of the Chengdao Sea were divided, and their typical stratum sections were established.
     (2) The submarine landslide failure modes at the Yellow River estuary were studied, for guiding the implementation of the after-going test design and theoretical calculation model establishment. The landslide model investigated In-Situ were analyzed, and then combined with the established strata, some possible failure modes under extreme sea conditions were put forward. Four main failure modes, namely, liquefaction flow sliding, plane shear failure, arc oscillation failure and collapse failure were put forward, and their formation processes were analyzed, then failure modes were verified according to the information investigated In-Situ and from experiment.
     (3) The failure process of sediment under dynamic loads was measured through experiment, some data and conclusions taken as the parameters in the theoretical model latter. Based on the experiment In-Situ and cyclic tri-axial experiment indoor, some sediment dynamic parameter variation under dynamic loading including the dynamic loading energy dissipation in seabed, soil strength reduction, excess pore water variation pressure of undisturbed sediment and remolded sediment, the liquefaction characteristics of soil with different strength were measured. Some new insights, such as liquefaction standards, pore pressure ratio upper and lower limits were gotten.
     (4) The submarine slope shear failure theoretical models were established for analyzing the slope failure mechanism and slope stability. Based on the limit equivalence theory and limit analysis theory, the arc oscillatory shear failure models were established, and the results were compared with those of flume test and other theoretical methods. The anti-shear failure safety factor and slide depth were calculated based on the established typical stratum under waves with different return periods. The typical stratum A and B of sub-area I at the Chengdao Sea could fail in mode of plane shear failure under extreme sea conditions, typical stratum A could fail in mode of arc oscillation shear failure, however other sub-areas would not occur in shear failure mode .
     (5) The wave-induced seabed liquefaction models were established, for analyzing the liquefaction landslide formation process and slope stability. One liquefaction experience evaluation method was established, accumulated pore pressure calculation model was improved, and liquefaction degree of typical stratum was calculated based on those established models above. The liquefaction of stratum does not always start from the surface to expand down, but mainly occurs at the weak layers, such as silt clay mud layer. The liquefaction layers and depth of strata of four sub-areas at the Chengdao Sea were calculated, in which at the instantaneous liquefaction depth is within 2m, and accumulated liquefaction depth could reach 10m.
     (6) The failed sediment fate at the Yellow River estuary was also studied. Restricted by sub-terrain, the liquefied sediment has three kinds of fates, namely, suspend to migration, flow-slide along slope and residual In-Situ. As for the sediment flow-slide at the Chengdao Sea, its direction has three types: the northern part flows to north, central part firstly flows to east, and then to northeast, and the southeast part probably flows to southeast. The flow of liquefied layers could tear out the non-liquefied upper layer or non-liquefied lens to form collapsed blocks found in investigation In-Situ.
     (7) The submarine landslide processes and their time required were also studied, for early harm warning. Based on the established theoretical models and experiment results, the soil pore pressure building up and strength loss with time were calculated, and time of lower limit of the shear failure and liquefaction failure were also gotten.
     (8) The probability of submarine landslide at the Yellow River estuary was also studied. Based on the First Order Second Moment method, the probability of shear failure and liquefaction failure of the four sub-areas at the Chengdao Sea under waves with different return periods was calculated. The probability of shear failure at sub-area I is above 25%, and the probability of plane shear failure at sub-area II and III lies between 5%-39%, the probability of arc oscillation failure at sub-area II and III lies between 1%-14%, however, the probability of shear failure at sub-area IV is below 0.5%. The main innovations in this dissertation include: (1) The In-Situ experiment reveals the pore pressure of undisturbed soil include four stages, increase, decrease, re-increase and severe vibration under cyclic loading, however, the pore pressure of remolded soil just include two stages, increase and severe vibration. (2) The main four failure modes at the Chengdao Sea were put forward, and the calculation models of three of them were established. Based on the calculation models, the failure depth, stability safety factor, and failure time of different sub-areas at Chengdao Sea were gotten. (3) The probability of slope slide at the four sub-areas of Chengdao Sea was calculated based on the Fist Order Second Moment (FOSM).
引文
[1] Bardet, J.P., 1997, Experimental Soil Mechanics, Prentice Hall, Upper Saddle River, NJ, pp. 583
    [2] Bea, R.G., 1971, How sea floor slides affect offshore structures: Oil and Gas Journal, Vol. 69, No. 48, pp. 88-92
    [3] Bennett, R.H., Faris, J.R., 1979, Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi, Applied ocean research, Vol. 1, No. 3, pp. 115-123
    [4] Bennett, R. H., 1990, In situ porosity and permeability of selected carbonate sediment: Great Bahaman: Measurements, Marine Geotechnology, Vol. 9, pp. 1-28
    [5] Biot M.A., 1941, General theory of three-dimensional consolidation. Journal of Applied Physics, Vol. 12, No. 2, pp. 155-164
    [6] Bishop, A.W., 1955, The use of the slip circle in the stability analysis of slopes, Geotechnique, Vol. 5, No. 1, pp. 7-17
    [7] Booth, J.M., Silva, A.J., Jordan, S.A., 1984, Slope-stability analysis and creep susceptibility of Quaternary sediment on the Northwestern United States continental slope, Seabed Mechanics, pp.65-75.
    [8] Bryn,P., Berg, K., Forsberg, C.F., Solheim, A., Kvalstad, T.J., 2005, Explaining the Storegga Slide, Marine and Petroleum Geology, 22, 11-19.
    [9] Chen, Y.Y., Liu, D.B., Jia, Y.G., Liu, H.J., Liu, X.L., 2007, A Study of the Effects of Bioturbation on the Surface Sediments in the Yellow River Estuarine Intertidal Zone, Journal of Ocean University, Vol. 37, pp. 829-833
    [10] Cheng L., Sumer B.M., Fredsoe J., 2001, Solutions of pore pressure bulid up due to progressive waves, International Jounal for Numerical and Analytical Methods in Geomechanics, 25, pp. 885-907
    [11] Coleman, J.M. and Garrison, L.E., 1977, Geological aspects of marine slope stability, Northwestern Gulf of Mexico, Marine Geotechnology, Vol. 2, pp. 9-44
    [12] Demars, K.R., Vanover, E.A., 1985, Measurement of wave-induced pressures and stresses in a sand bed, Marine Geotechnology, Vol. 6, No. 1, pp. 29-59
    [13] Dingle, R.V., 1977, The anatomy of a large submarine slump on a sheared continental margin (SE Africa), Journal of Geotechnical Society of London, Vol. 134, pp. 293-310
    [14] Doyle, E.H., 1973, Soil-wave tank studies of marine soil instability, Fifth Annual offshore technology conference, Vol. 2, paper no. OTC 1901, pp. 753-766
    [15] Eric, W.H. Hutton, James, P.M. Syvitski, 2004, Advances in the numerical modeling of sediment failure during the development of a continental margin, Marine Geology, 203, pp. 367-380
    [16] Field, M.E., Edwards, B.D., 1980, Slopes of the southern California borderland: A regime of mass transport, in Field, M.E., Bouma, A.H., Colbourn, I.P., Douglas, R.G., and Ingle, J.C., eds., Pacific Section SEPM, Pacific Coast Paleogeography Symposium No. 4, Los Angeles, Calif., pp. 169-184
    [17] Finn, W., Lee, M., 1979, Seafloor stability under seismic and wave loading, Soil Dynamics in the marine environment
    [18] Finn, W.D.L., 1983, Response of Seafloor to Ocean Waves, Journal of GeotechnicalEngineering, Vol. 109, No. 4, pp. 556-572
    [19] Fisher, M.A., Normark, W.R., Greece, H.G., Lee, H.J., Sliter R.W., 2005, Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel, Southern California, Marine Geology, 224, pp. 1-22
    [20] Gibson R.E., 1958, The progress of consolidation in a clay layer increasing in thickness with time, Geotechnique 8, pp. 171-182
    [21] Griffiths, D. V., Lane, P. A., 1999, Slope stability analysis by finite elements, Geotechnique, Vol. 49, No. 3, pp. 387-403
    [22] Janbu, N., 1973, Slope stability computations, Embankment Dam Engineering, John Wiley and Sons, New York, pp. 47-86
    [23] James, R. H., 2005, Hurricane-induced seafloor failures in the Mississippi delta, Presented to the 2005 Offshore Hurricane Readiness and Recovery Conference American Petroleum Institute Houston, Texas, July, pp. 2627
    [24] James, P.M.S., Charles, T.S., 1996, Evidence for an earthquake-triggered basin collapse in Saguenay Fjord, Canada, Sedimentary Geology, 104, pp. 127-153
    [25] James, M.S., Tor, I.T., 2005, In situ pore pressures: What is their significance and how can they be reliably measured?, Marine and Petroleum Geology, Vol. 22, pp. 275-285
    [26] Jeng, D.S., Hsu, J.R.C., 1996, Wave-induced soil response in nearly saturated sea-bed of finite thickness, Geotechnique, Vol. 46, No. 3, pp. 427-440
    [27] Jeng, D.S., Seymour, B.R., 1997, Response in seabed of finite depth with variable permeability. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 10, pp. 902-911
    [28] Jeng, D.S., et al, 2007, Ocean waves propagating over a porous seabed: Residual and oscillatory mechanics, Science China Series E: Technological Sciences, Vol. 50, No. 2, pp. 81-89
    [29] Johns, M.W., Prior, B.D., Bornhold, J.M., Coleman and Bryant, W.R., 1986, Geotechnical aspects of a submarine slope failure, Kitimat Fjord, British Columbia, Mar. Geotechnol., Vol. 6, No. 3, pp. 243-279
    [30] Julien, P.Y., 1995, Erosion and Sedimentation, Cambridge University Press, Cambridge, pp. 280
    [31] Hance, B.S., 2003, Development of a database and assessment of seafloor slope stability based on published literature, project report prepared for the minerals management service under the MMS/OTRC cooperative research agreement 1435-01-99-CA-31003, the University of Texas at Austin
    [32] Hampton, M.A., Bouma, A.H., Carlson, P.R., Molnia, B.F., Clukey, E.C., Sangrey, D.A., 1978, Quantitative study of slope instability in the Gulf of Alaska: Offshore Technology Conference Proceedings, Vol. 4, No. 10, pp. 2307-2318
    [33] Heezen, B.C., 1964, Congo submarine canyon, Bulletin of American associate Petroleum geologists, 48, pp. 1126-1149
    [34] Henkel, D.J., 1970, The role of waves in causing submarine landslides, Geotechnique, Vol. 20, No. 1, pp. 75-80
    [35] Horikawa, K., 1978, Coastal Engineering, An Introduction to Ocean Engineering, University of Tokyo press
    [36] Hooper, J.R., Preslan, W.L., 1979, Pressurized shallow sands in the Mississippi Delta region,No. 3483, Proceedings of offshore Technology Conference, Houston
    [37] Hsu, J.R.C., Jeng, D.S., Tsai, C.P., 1993, Short-crested wave-induced soil response in a porous seabed of infinite thickness, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17, No, 8, pp. 553-576
    [38] Huang, L.H., Song, C.H., 1993, Dynamic response of poro-plastic bed to water waves, Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 9, pp. 1003-1020
    [39] Imran, J., Hark, P., Parker, G., 2001, A numerical model of submarine debris flow with graphical user interface, Computer Geosciences, Vol. 27, pp. 717-729.
    [40] Ishihara, K. and Yamazaki, A., 1984, Wave-induced liquefaction in seabed deposits of sand, Seabed Mechanics, pp. 139-148.
    [41] Karlsvud, K. and Edgers, L., 1981, Some aspects of submarine slope. Stability, In: Saxov. S. and Nieuwenhuis, .J.K. (Eds.), Marine Slides and Other Mass Movements, pp. 61-81
    [42] Kessel, V.T., Kranenburg C., 1998, Wave-induced liquefaction and flow of subaqueous mud layers, Coastal Engineering, Vol. 34, pp. 109-127
    [43] Koppejan, et al., 1948, Koppejan, A.W., Van, W.B.M., Weinberg, L.J.H., Coastal flow slides in the Dutch province of Zeeland, In: Proceedings of the 2nd International Conference on Soil Mechanics, Rotterdam, Vol. 5, pp. 89-96
    [44] Kvenvolden, K.A., Ginsburg, G.D., Soloviev, V.A., 1993, Worldwide distribution of subaquatic gas hydrates, Geo-Marine Letters, Vol. 13, No. 1, pp. 32-40
    [45] Kraft, L.M, Helfrich, S.C., Suhayda, J.N., et al, 1985, Soil response to ocean waves, Marine Geotechnology, Vol. 6, pp.173-203
    [46] Leynaud, D., Mienert, J., Nadim, F., 2004, Slope stability assessment of the Helland Hansen area offshore the Mid-Norwegian margin, Marine Geology, Vol. 213, pp. 457-480
    [47] Lin, M., 2001, Analysis of silt behavior induced by water waves, Science in China (E), Vol. 44, pp. 239-250
    [48] Lindsay, J.F., Prior, D.B., Coleman, J.M., 1984, Distributary-mouth bar development and role of submarine landslides in delta growth, South Pass, Mississippi delta. Bulletin, American Association of Petroleum Geologists, Vol. 68, pp. 1732-1743
    [49] Liu, P.L.F., 1973, Damping of water waves over porous bed. Journal of the Hydraulics Division, ASCE, Vol. 99, No. 12, pp. 2263-2271
    [50] Liu, P.L.F., 1977, On gravity waves propagated over a layered permeable bed, Coastal Engineering 1, pp. 135–148
    [51] Locate, J., and Lee, H.J., 2002, Submarine landslides: advances and challenges, Canadian Geotechnical Journal, Vol. 39, pp. 193-212
    [52] Loaseth, T.M., 1999, Submarine Massflow Sediment: Computer Modeling and Basin Fill Stratigraphy, Springer Lecture Notes in Earth Science, 82, pp. 156
    [53] Madsen, O.S., 1978, Wave-induced pore pressure and effective stresses in a porous bed, Geotechnique, Vol. 28, pp. 377-393
    [54] Mathews, W.H., Sheppard, F.P., 1962, Sedimentation of the Fraser River delta, Bulletin of American associate Petroleum geologists, Vol. 46, pp. 1416-1437
    [55] McAdoo, B.G., Pratson, L.F., Orange, D.L., 2000, Submarine landslide geomorphology, US continental slope, Marine Geology, Vol. 169, pp. 103-136
    [56] McDougal, W.G., Tsai, Y.T., Liu, P. L., et al, 1989, Wave-induced pore pressure accumulation in marine soils, Journal of Offshore Mechanical Arctic Engineering, ASME,Vol. 111, pp. 1-11
    [57] McGregor, B.A., Rothwell, R.G., Kenyon, N.H., and Twichell, D.C., 1993, Salt tectonics and slope failure in an area of salt domes in northwestern Gulf of Mexico. U.S. Geological Survey Bulletin 2002, Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone, pp. 92-96
    [58] Medga, W., 1990, On one-dimensional model of pore pressure generation in a highly saturated sandbed due to cyclic loading acting on a sand surface. I: Theoretical description and numerical approach. Internal Report No. 5, SFB-205, TP A13, Kusteningenieurwesen, University of Hannover, pp. 1-42
    [59] Mei, C.C., Foda, M.A., 1981, Wave-induced response in a fluid-filled poro-elastic solid with a free surface-a boundary layer theory, Geophysical Journal of the Royal Astronomical Society, 66, pp. 597-631
    [60] Milkov, A.V., 2000, Worldwide distribution of submarine mud volcanoes and associated gas hydrates, Marine Geology, Vol. 167, No. 12, pp. 29-42
    [61] Morgenstern, N. R., Price, V. E., 1965, The analysis of the stability of general slip circles, Geotechnique, Vol. 15, No. 1, pp. 79-93
    [62] Morgenstern, N.R., 1967, Submarine slumping and the initiation of turbidity currents, Marine Geotechnique, pp. 189-220
    [63] Moore, D.G., 1977, Submarine slides: in Rock slides and Avalanches, VI, Natural Phenomena, Geotechnical Engineering, 14A, pp. 563-604
    [64] Moshagen, H., T?rum, A., 1975, Wave induced pressures in permeable seabeds. Journal of Waterways, Harbors and Coastal Engineering Division, ASCE, vol. 101, no. 1, pp. 49-57
    [65] Nakamura, H., Onishi, R., Minamide, H., 1973, On the seepage in the seabed due to waves, In: Proceedings of 20th Coastal Engineering Conference, JSCE, pp. 421-428
    [66] Nash, D., 1987, A comparative review of limit equilibrium methods of stability analysis In: M.G. Anderson and K.S. Richards, Editors, Slope Stability, John Wiley and Sons, pp. 11-75
    [67] Nataraja, M.S., Gill, H.S., 1983, Ocean Wave-Induced Liquefaction Analysis, Journal of Geotechnical Engineering, ASCE, Vol. 109, No.4, pp.573-590
    [68] Newton, R.S., Cunningham, R.C., Schubert, C.E., 1980, Mud volcanoes and pockmarks: Seafloor engineering hazards or geologic curiosities, Proceedings-Annual Offshore Technology Conference, Vol. 1, May 5-8, 1980, Houston, TX, USA, pp. 425-435
    [69] Notle, K.G., Hsu, F.H., 1972, Statistics of ocean wave groups, Dellas, Texas: Forth Annual Offshore Technology Conference, pp. 637-644
    [70] Okusa, S., Uchida, A., 1980, Pore-water pressure change in submarine sediments due to waves, Marine Geotechnology, Vol. 4, No. 2, pp. 145-161
    [71] Okusa, S., Nakamura, T., Fukue, M., 1983, Measurements of wave-induced pore pressure and coefficients of permeability of submarine sediments during revising flow, Seabed Mechanics, pp. 113-122
    [72] Poulos, H.G., 1988, Marine geotechnics, Unwin Hyman, London, Boston, Sydney, Wellington
    [73] Pratson, L., Imran, J., Parker, G., et al, 2000, Debris flow versus turbidity currents: A modeling comparison of their dynamics and deposits. In: Bouma, A.H., Stone, C.G. (Eds.), Fine-Grained Turbidite Systems, AAPG Memoir 72 and SEPM Special Publication 68, pp. 57-71
    [74] Prior, D.B., Coleman J.M., Suhayda J.N., et al, 1979, Subaqueous landslides as they affect bottom structures, International Conference on Ocean Engineering under Arctic Conditions, Vol. 2
    [75] Prior, D.B., Bornhold, B. D., Coleman, J. M., Bryant, W.R., 1982, Morphology of a submarine slide, Kitimat Arm, British Columbia, Geology, Vol.10, pp. 588-592
    [76] Prior, D.B., Coleman, J.M., 1982, Results of a known seafloor instability event, Geo-Marine Letters, Vol.2, pp. 117-122
    [77] Prior, D.B., Coleman, J.M., 1984, Submarine slope instability. Slope Instability, Chapter 10, John Wiley & Sons, Inc., New York, NY, pp. 419-455.
    [78] Prior, D.B., Yang, Z.S., Bornhold, B.D., Keller, G.H., Lin, Z.H., Wiseman, W.J., Wright, L.D., Lin, T.C., 1986, The subaqueous delta of the modern Huanghe (Yellow River). Geo-Marine Letters, Vol. 6, No. 2, pp. 67
    [79] Prior, D.B., Suhayda, J.N., 1979, Submarine mudslide morphology and development mechanisms, Proceedings of Offshore Technology Conference, Houston, Texas, 3482, pp. 1055-1061
    [80] Prior, D.B., Suhayda, J.N., Lu, N.Z., et al, 1989, Storm wave reactivation of a submarine landslide, Nature, Vol. 341, No. 7, pp. 47-50
    [81] Putnam, J.A., 1949, Loss of wave energy due to percolation in a permeable sea bottom, Transactions, American Geophysical Union, Vol. 30, No. 3, pp. 349-356
    [82] Qin, Y. S. 1963, Preliminary study on topography and sediment types of China shelf seas, Oceanologia et Limnologia Sinica. 5, 71-86
    [83] Qui, Q., 1978, On the background and seismic activity of the M=7.8 Tangshan earthquake, Hopei Province of July 28, Chinese Geophysics, pp. 67-78
    [84] Rahman, M.S., Jaber, W.Y., 1986, A Simplified Drained Analysis for Wave-Induced Liquefaction in Ocean Floor Sands, Soils and Foundations, Vol. 26, No. 3, pp. 57-68
    [85] Reid, R.O., Kajiura, K., 1957, On the damping of gravity waves over a permeable sea bed, Transactions of American Geophysics Union, 38, pp. 662-666
    [86] Reimnitz, E., 1972, Effects in the Copper River delta: the great Alaska earthquake of 1964, Oceanography and Coastal engineering, National Academic Sciences, Washington, DC, 290-302
    [87] Rhodes, D., 1974, Organism sediment relations on the muddy sea floor, Marine Biology Annual Review, Vol. 12, pp. 263-300
    [88] Richard, R., Bright, T.J., 1981, Seafloor instability at East Flower Garden Bank, northwest Gulf of Mexico, Geo-Marine Letters, Vol. 1, pp. 97-103
    [89] Roberts, H.H., Cratsley, D., Whelan, T., 1976, Stability of Mississippi delta sediments as evaluated by analysis of structural features in sediment borings, Proceedings 8th Annual Offshore Technology Conference, Houston, TX, pp. 9-28.
    [90] Sakai, T., Hattori, A., Hatanaka, K., 1991, Wave-induced pore water pressure and seabed instability in surf zone. In: Proceedings of the International Conference on Geotechnical Engineering for Coastal Development-Theory and Practice on Soft Ground (Geot-Coastal 91), Yokohama, Japan 1, pp. 627-637
    [91] Sassa, S., Sekiguchi, H., 1999, Wave-induced liquefaction of beds of sand in a centrifuge, Geotechnique, Vol. 49, No. 5, pp. 621-638
    [92] Seed, H.B., Rahman, M.S., 1978, Wave-induced pore pressure in relation to ocean floorstability of cohesionless soils, Marine Geotechnology, Vol. 3, No. 2, pp. 123-150
    [93] Sekiguchi, H., Kita, K., Okamoto, O., 1995, Response of poro-elastoplastic beds to standing waves, Soils and Foundations, Vol. 35, No. 3, pp. 31-42
    [94] Seymour, B.R., Jeng, D.S., Hsu, J.R.C., 1996, Transient soil response in a porous seabed with variable permeability, Ocean Engineering, Vol. 23, No. 1, pp. 27-46
    [95] Sleath, J.F.A., 1970, Wave-induced pressures in bed of sand, Journal of the Hydraulics Division, ASCE, Vol. 96, No. 2, pp. 367-378
    [96] Shepard, F.P., 1932, Landslide modification of submarine valleys, Transactions of American Geophysics Union, 13, pp. 226-230
    [97] Silva, A.J., Baxter,C.D.P., LaRosa, P.T., Bryant,W.R., 2004, Investigation of mass wasting on the continental slope and rise, Marine Geology, 203, 355-366
    [98] Suhayda, J.N., 1977, Surface waves and bottom sediment response: in Richards, A. F., (ed.), Marine slope stability, Marine Geotechnology, No. 2, pp. 135-146
    [99] Sultan, N., Voisset, M., Marsset, B., Marsset, T., Cauquil, E., Colliat, J.L., 2007, Potential role of compressional structures in generating submarine slope failures in the Niger Delta, Marine Geology, 237, 169-190
    [100] Sumer, B.M., Fredsoe, J., 2002, The mechanics of scour in the marine environment, New Jersey: World Scientific, Chapter 10, pp. 445-520
    [101] Thomas, S.D., 1989, A finite element model for the analysis of wave induced stresses, displacements and pore pressures in an unsaturated seabed. I: Theory. Computer and Geotechnics, Vol. 8, No. 1, pp. 1-38
    [102] Thomas, S.D., 1995, A finite element model for the analysis of wave induced stresses, displacements and pore pressures in an unsaturated seabed. II: Model verification. Computer and Geotechnics, Vol. 17, No. 1, pp. 107-132
    [103] Tsai, C.P., Lee T.L., 1995, Standing wave induced pore pressures in a porous seabed, Ocean Engineering, Vol. 22, No. 6, pp. 505-517
    [104] Tsui, Y., Helfrich, S.C., 1983, Wave-induced pore pressures in submerged sand layer, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 4, pp. 603-618
    [105] Urgeles, R., Leynaud, D., Galderic, L., et al, 2006, Back-analysis and failure mechanisms of a large submarine slide on the ebro slope, NW Mediterranean, Marine Geology, 226, 185-206.
    [106] Vanmarcke, E. H., 1977, Probability modeling of soil profiles, Journal of the geotechnical engineering division, ASCE, 103, pp. 1227-1246
    [107] Vanneste, M., Jürgen, M., Stefan, B., 2006, The Hinlopen Slide: A giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean, Earth and Planetary Science Letters, Vol. 245, pp. 373-388
    [108] Varnes, D.J., 1975, Slope movement in the western United States. In: Mass Wasting, 4th Guelph Symposium on Geomorphology (E.Yatsu, A.D. Ward and F. Adams, Eds.), Geo Abstracts Ltd., Univ. of East Anglia, England, 1-18.
    [109] Watkins, D.J. and K.M., 1976, Stability of continental shelf and slope off Louisiana and Texas-geotechnical aspects, In: Beyond the shelf break (A.H. Bouma, G.T. Moore and J.M. Coleman, Eds), American Association Petroleum Geologists Course, New Orleans, II: B1-B34
    [110] Wells, J.T., Coleman, J.M., Prior, D.B., 1980, Flowslides in muds on extremely low angletidal flats, northeastern South America, geology
    [111] Wiegel, R.L., 1964, Oceanographical engineering, New Jersey: Prentice Hall.
    [112] Wit, D.P.J., Kranenburg C., 1997, The Wave-induced liquefaction of cohesive sediment beds, Estuarine, Coastal and Shelf Science, Vol. 45, No 2, pp. 261-271
    [113] Wright, S.G., 1976, Analysis for wave induced seafloor movement, 8th OTC, Vol. 1
    [114] Tzang, S.Y., 1998, Unfluidized soil responses of a silty seabed to monochromatic waves, Coastal Engineering, Vol. 35, No. 4, pp. 283-301
    [115] Tzang, S.Y., Ou, S.H., 2006, Laboratory flume studies on monochromatic wave-fine sandy bed interactions: Part 1. Soil fluidization, Coastal Engineering, Vol. 53, No. 11, pp. 965-982
    [116] Terzaghi, K., 1956, Varieties of submarine slope failures, Texas Conference on Soil Mechanics and Foundation Engineering, 8 Austin, Proceedings 41
    [117] Tsui, Y., and Helfrich, S.C., 1983, Wave-Induced Pore Pressures in Submerged Sand Layer, Journal of Geotechnical Engineering. Divisions, American Society of Civil Engineering, Vol. 109, No. 4, pp. 603-618
    [118] Yamamoto, T., 1977, Wave induced instability seabeds, In: Proceedings ASCE Special Conference, Coastal Sediments 77, Charleston, SC, pp. 898-913
    [119] Yamamoto, T., Koning, H.L., Sellmeiher, H., Hijum, E.V., 1978, On the response of a poro-elastic bed to water waves, Journal of Fluid Mechanics, Vol. 87, pp. 193-206
    [120] Zen, K., Yamazaki H., Sato Y., 1990, Oscillatory pore pressure and liquefaction in seabed induced by ocean waves, Soil and Foundations, Vol. 30, No. 4, pp. 147-161
    [121] Zen, K., Yamazaki H., 1991, Field observation and analysis of wave-induced liquefaction in seabed, Soil and Foundations, vol. 31, no. 4, pp. 161-179
    [122]包承纲,张庆华,对土性相关距离问题的研究,长江科学院。
    [123]包承纲,关于岩土工程的可靠度问题,见:地基工程可靠度分析方法研究,武汉测绘科技大学出版社,1997:19-29
    [124]曹成效,刘乐军,李培英等,循环荷载作用下粉土的动力学特性,海洋科学进展,2007,25(1):54-62
    [125]常方强,贾永刚,孟祥梅等,波浪引起埕岛海域不同区域土体的液化程度,海洋地质与第四纪,2008.28(2):37-43
    [126]常方强,涂帆,加筋土挡墙的可靠性分析,工业建筑,2005,35(1): 53-55
    [127]常瑞芳,陈樟榕,陈为民等,老黄河口水下三角洲前缘底坡不稳定地形近期演化与控制,青岛海洋大学学报,2000.30(1):159-164
    [128]陈景文,杨朝景,1996,高雄附近沿海砂质海床之液化潜能评估,中国土木水利工程学刊,Vol. 8, No. 1, pp. 1-12
    [129]陈卫民,杨作升,Prior, D.B.等.老黄河口水下底坡不稳定性研究,黄河口水下底坡不稳定性,青岛:青岛海洋大学出版社,1991:43-56
    [130]陈耀光,马骥,张东刚,地基承载力土性参数的概率统计分析,建筑科学,2000,16(2):10-13
    [131]成国栋,薛春亭,黄河三角洲沉积地质学,地质出版社,1997:36-50
    [132]程强,罗书学,相关函数法计算相关距离的分析探讨,岩土力学,2000.21(3):281-283
    [133]丰鉴章,李元智等,海岸工程中的海浪推算方法,海洋出版社,1987
    [134]冯秀丽,沈渭全,杨荣民等,现代黄河水下三角洲软土沉积物工程地质特性,青岛海洋大学学报,1994.12:132-137
    [135]冯秀丽、叶银灿,马艳霞等,动荷载作用下海底粉土的孔压响应及其动强度,青岛海洋大学学报,2002.32(3):431-435
    [136]傅旭东,相关变量下失效概率的计算机模拟,西南交通大学学报,1997,6:319-323
    [137]高善明,李元芳,安凤桐等,黄河三角洲形成和沉积环境,科学出版社,1989
    [138]顾小芸,海洋工程地质的回顾与展望,工程地质学报,2000.8(1):40-45.
    [139] Keller, G.H.,郑继民,杨作升等,中国黄河三角洲和渤海南部近表层沉积物质的物理性质,黄河口水下底坡不稳定性,河口沉积动力学研究文集(一),青岛海洋大学出版社,1991,8:1-19
    [140]柯瀚,陈云敏,周燕国等,动态三轴试验确定砂土抗液化强度,土木工程学报,2004,37(9):48-54
    [141]李安龙,杨荣民,林霖等,波浪加载下海底土质特性变化的研究,青岛海洋大学学报,2003.33(1):101-106
    [142]李广雪,刘守全,姜玉池等,黄河三角洲北部海底刺穿初步研究,中国科学(D辑),1999.29(4):379-384
    [143]李广雪,庄克琳,姜玉池,黄河三角洲沉积体的工程不稳定性,海洋地质与第四纪地质,2000.20(2):21-26
    [144]刘涛,冯秀丽,林霖,海底孔压对波浪响应试验研究及数值模拟,海洋学报,2006.28(3):173-176
    [145]刘高焕,叶庆华,刘庆生等,黄河三角洲生态环境动态监测与数字模拟,北京:科学出版社,2003:1-15
    [146]贾永刚,单红仙,黄河口海底斜坡不稳定性调查研究,中国地质灾害与防治学报,2000.11(1):1-5
    [147]贾永刚,史文君,单红仙等,黄河口粉土强度丧失与恢复过程现场振动试验研究,岩土力学,2006.26(3):351-358
    [148]蒋德才,刘百桥,韩树宗,工程环境海洋学,海洋出版社,2005.8:84
    [149]李广雪,庄克琳,姜玉池,黄河三角洲沉积体的工程不稳定性,海洋地质与第四纪地质,2000.20(6):21-26
    [150]李镜培,舒翔,丁士君,土性指标的自相关特征参数及其确定原则,同济大学学报(自然科学版),2003.31(3):287-290
    [151]李海东,杨作升,王厚杰等,现代黄河水下三角洲地质灾害现象的空间分布,海洋地质与第四纪地质,2006.26(4):37-43
    [152]李小勇,谢康和,白晓红,太原粉质粘土强度指标的空间概率特征研究,岩土工程学报,2000.22(6):668-672
    [153]李小勇,谢康和,虞颜,土性指标相关距离性状的研究,土木工程学报,2003.36(8):91-96
    [154]刘则毅等,科学计算技术与Matlab,科学出版社,2001
    [155]刘乐军,李培英,李萍等,加拿大COSTA计划简介,海洋科学进展,2004.22(2):233-239
    [156]刘红军,王小花,贾永刚等,黄河三角洲饱和粉土液化特性及孔压模型试验研究,岩土力学,2005.26增2:93-97
    [157]刘红军,张民生,贾永刚等,波浪导致的海床边坡稳定性分析,岩土力学,2006.27(6):986-990
    [158]刘玉彬,王光远,工程结构广义可靠性理论,科学出版社,2004.12:19
    [159]冷伍明,基础工程可靠度分析与设计理论,中南大学出版社,2000.9:19-20
    [160]陆舟,复合桩基可靠度研究,南京工业大学硕士学位论文,2004.5:34
    [161]马德翠,黄河口粉质土体的动力响应特性及机理研究,中国海洋大学硕士学位论文,2005.6:24-35
    [162]门玉明,土坡稳定性的极限分析方法,西安地质学院学报,1996.18(2):58-63。
    [163]牛世奎,殷丽,盖明礼,渤海南部海区风浪推算与分析,海岸工程,1999.18(3):13-16
    [164] Prior D.B.,杨作升,Bornhold D.B.等,现代黄河水下三角洲上的活动斜坡破坏、沉积物塌陷和粉砂流,海岸河口区重力再沉积和底破的不稳定性,林振宏,杨作升编,海洋出版社,1990:16-25
    [165]单红仙,刘媛媛,贾永刚,水动力作用对黄河水下三角洲粉质土微结构改造研究,岩土工程学报,2004.26(5):654-658
    [166]单红仙,段兆臣,刘正银等,粉质土重复振动液化与效果研究,水利学报,2006.37(1):75-81
    [167]松尾稔著,万国朝,李杨海,周海涛译,地基工程学可靠性设计的理论与实际,1990.2
    [168]孙晶,埕岛海域海底滑动稳定性分区,中国海洋大学硕士学位论文,2007
    [169]孙永福等,埕岛油田灾害地质研究成果报告,国家海洋局第一海洋研究所,2006
    [170]孙永福,董立峰,蒲高军等,风暴潮作用下黄河水下三角洲斜坡稳定性研究,工程地质学报,2006.14(5):582-587
    [171]涂帆,对计算土性相关距离的讨论,工程结构可靠性全国第三届学术交流会议论文集,中国土木工程学会桥梁及结构工程学会结构可靠度委员会编,1992
    [172]涂帆,常方强,地基稳定的可靠性分析,华侨大学学报,2005.26(3):271-274
    [173]涂帆,常方强,土性参数的互相关性对加筋土挡墙可靠度的影响,岩石力学与工程学报,2005.24(15):2654-2658
    [174]王琦等,黄河水下三角洲动力沉积特征,中国科学B辑,1991.6:559-665
    [175]王有志等,桥梁的可靠性评估与加固,中国水利水电出版社,2002.9
    [176]文圣常,余宙文,海浪理论与计算原理,科学出版社,1984
    [177]吴梦军,极限分析上限法在公路边坡稳定分析中的应用,重庆交通学院学报,2002.21(3):52-55。
    [178]肖智旺,闫澍旺,刘润,海洋地基土的随机场特性,海洋技术,2005.24(4):73-79
    [179]许国辉,单红仙,贾永刚,黄河水下三角洲没积物在循环荷载作用下土体中孔压变化实验研究,青岛海洋大学学报(自然科学版),2003.33(1):80-86
    [180]许国辉,贾永刚,郑建国等,黄河水下三角洲塌陷凹坑构造形成的水槽试验研究,海洋地质与第四纪地质,2004.24(3):37-40
    [181]许国辉,尹晓慧,王秀海等,浅表土体强度对黄河水下三角洲微地貌形成的控制作用,中国海洋大学学报,2007.37(4):657-662。
    [182]许国辉,波浪导致粉质土缓坡海底滑动的研究—以黄河水下三角洲为例,中国海洋大学博士学位论文,2006:56-58
    [183]许国辉,卫聪聪,孙永福等,黄河水下三角洲浅表局部扰动地层工程特性与成因,海洋地质与第四纪,2008.28(6):19-25
    [184]杨伯源,工程弹塑性力学,机械工业出版社,2003.9:231-234
    [185]杨少丽,沈渭铨,杨作升等,波浪作用下海底粉砂液化的机理分析,岩土工程学报,1995.17(4):28-37
    [186]杨秀娟,贾永刚,黄河三角洲沉积物固结特征与成因研究,第七届全国土动力学学术会议论文集,2006.10:657-663
    [187]杨作升,陈卫民,D.B. Prior等,黄河口水下滑坡体系,海洋与湖沼,1994.25(6):573-580
    [188]杨作升,王涛,埕岛油田勘探开发海洋环境,青岛海洋大学出版社,1993
    [189]杨占宝,黄河三角洲地震地质特征研究,中国海洋大学硕士学位论文,2002
    [190]尹晓慧,波浪导致黄河水下三角洲粉砂流形成及运动研究,中国海洋大学硕士学位论文,2009
    [191]臧启运,黄河三角洲近岸泥沙,北京海洋出版社,1996:65
    [192]赵维霞,埕岛海区地质灾害及基于GEO-SLOPE的滑坡定量分析,中国海洋大学硕士学位论文,2005
    [193]赵维霞,杨作升,冯秀丽,埕岛海区浅地层地质灾害因素分析,海洋科学,2006.30(10):20-24
    [194]章根德,顾小芸,波浪引起的海底土层中的应力场和位移场,力学与实践,1990.12(6):29-34。
    [195]张珂,刘正银,单红仙等,黄河三角洲细粒土微振液化分析,岩石力学与工程学报,2006.25,增1:3144-3151
    [196]张卫明,梁瑞才,牟晓东等,埕岛油田海域海底沉积特征与工程地质特性,海洋科学进展,2005.23(3):305-312
    [197]郑颖人,赵尚毅,孔位学等,极限分析有限元法讲座—Ⅰ岩土工程极限分析有限元法,岩土力学,2005.26(1):163-168
    [198]周良勇,刘健,刘锡清等,现代黄河三角洲滨浅海区的灾害地质,海洋地质与第四纪地质,2004.24(3):19-27
    [199]周其健,贾永刚,马德翠等,黄河口潮滩粉土体固结非均匀性研究,岩土力学,2006.27(7):1147-1152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700