典型小流域土地利用与气候变异的生态水文响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原区域长期气候干旱、区域水资源短缺、土壤侵蚀严重。在气候变暖以及区域退耕还林还草工程实施的背景下,有效揭示区域土地利用与植被变化以及气候变化的生态水文响应具有重要意义。通过MIKESHE模型的生态水文模拟,比较分析了生态水文条件不同的流域生态水文响应特性,目的旨在深刻区别认识不同流域生态-水文关系,为黄土高原区域生态环境恢复、以及最优水资源规划及管理等提供重要理论依据。
     在应用Zhang模型以及Budyko模型等经验模型探讨流域土地利用与气候变化生态水文响应的基础上,转而借助MIKESHE建立黄土高原吕二沟流域和奥地利Seitengraben流域模型对二者进行模拟和评价;通过设置极端土地利用情景、空间配置情景,以及降水减少20%、气温升高2℃的气候变化情景等模拟分析典型小流域土地利用与气候变化的生态水文响应;针对黄土高原吕二沟流域侵蚀严重等独特的生态水文现象,结合MIKESHE模型与MUSLE模型进行土壤侵蚀模拟评价及情景分析。
     采用Zhang模型经验模型水文响应分析表明,经验模型模型并未能有效揭示吕二沟流域土地利用变化水文响应;Zhang模型与Budyko模型虽然揭示了气候变化影响的水文响应灵敏度信息,但观测序列气候变异不能完全解释水文变化。定量确定土地利用与气候变化生态水文响应有待于基于物理过程的分布式模型的应用。
     MIKESHE模型在黄土高原吕二沟流域与奥地利Seitengraben流域的模拟应用中表现有一定差异:模型基本模拟反映吕二沟流域的降雨-产流过程,校正期与检验期相关系数R分别为0.833和0.630,但精度较低,流量偏差F_(Bal)分别为-40.0%和-17.9%;模型较好反映了Seitengraben流域蓄满产流过程,R分别为0.711和0.785,流量偏差F_(Bal)分别为-1.97%、-3.56%。吕二沟流域约23.5%、18.78%、24.91%、14.8%径流来自于梯田、草地、村庄及非生产用地、以及灌木林,径流过程涨水段主要由上述区域地表径流组成;Seitengraben流域总地表径流中61.7%和37.5%来自于冬作物区域和林地区域;林地较其余土地利用基流补给持续时间长,各各土地利用地表径流与基流季节分布特征基本一致。
     极端情景分析表明,Seitengraben流域极端土地利用转变可能引起生态水文响应灵敏度大于吕二沟流域:极端土地利用情景转变引起吕二沟流域和Seitengraben流域蒸发散(占降水量百分比)变化最大分别为2.97%和10.14%,地表径流变化最大分别为3.42%和6.88%,总径流变化最大分别为3.46%和12.6%。空间配置土地利用情景表明:吕二沟流域林地覆盖进一步逐级增加并无显著减少流域产水量;Seitengraben流域林地覆盖每增加10%,模拟径流减少9.5mm。流域二者对降水变化的生态水文响应均较大:降水减少引起吕二沟和Seitengraben流域总径流减少约66.59%~89.40%。吕二沟流域对气温升高水文响应较Seitengraben流域灵敏:气温升高使吕二沟和Seitengraben流域总径流分别减少41.69%~49.83%和3.69%~8.04%。
     土壤侵蚀空间动态分布特征表明:流域沟道和沟坡侵蚀产沙占全流域90%左右。流域村庄厂矿和居民用地侵蚀产沙占33%,坡耕地与草地分别占27%和24%。流域无明显侵蚀和轻度侵蚀面积占42%和31.87%。不同情景模拟中用材林较原土地利用的减少效益最显著,约70~1398t/km~2,其次为草地,果园和灌木林减沙效益相当约70~517t/km~2。
The Loess Plateau has experienced long time of drought and severe soil erosion. With the proceeding of afforestation and reforestation in the region and the trend of climate warming, it is important to explore the eco-hydrological response to land use change and climate variation. We aim to provide the water resource management, plannging, and eco-environment restoration with theoretical foundation by understanding the various eco-hydrological responses for different catchment system.
    On the basis of the understanding of the deficiency of empirical model applied in the research of effects of land use change and climatic fluctuation, we built the models of Lv'ergou watershed in the Loess plateau and Seitengraben catchment of Austria, respectively, with the MIKESHE model code. With the validated models, we discussed the potential effects of land use change and climate variation by the simulation of "extreme land use scenarion", "spatial deployment land use scenario" and climatic scenarios which decreased 20% of precipitation and raise the temperature of 2℃. Furthermore by couping MIKESHE modeling results and MUSLE equation we have performed evaluation of spatial distribution of soil erosion of Lv'ergou watershed and scenario simulation.
    Hydrological effect analysis by Zhang model has shown that the impact of land use change can not been detected with empirical model as much of model error occred with the prediction. With either Zhang model or Budyko model, hydrological response of both watersheds has displayed consistent sensitivity to climate change. However, the attempt of explaning the inter-annual runoff anomy with the climate variation was failed, which indicate the existence of the impact of land use change in the runoff observation to some degree.
    MIKESHE has generally represent the runoff process of Lv'ergou watershed with the correlation
    coefficient of 0.833 and 0.630, and F_(Bal) of -40% and -17.9%, respectively for calibration and validation period. And the performance of MIKESHE in the application of Seitengraben catchment was well, with R of 0.711 and 0.785, and F_(Bal) of-1.97% and -3.56%, respectivelly for calibration and
    validation period.
    Scenario analysis has demonstrated that eco-hydrological response of Seitengraben catchment was more sensitive than that of Lv'ergou watershed. Conversion between various land uses for Lv'ergou watershed would cause the potential maximum change of 2.97% in evapotranspiration and 3.46% in total streamflow, and 10.14% for Seitengraben catchment in evapotranspiration and 12.6% in streamflow. The 20% of increase of forest cover for lv'ergou watershed has reduced the total water yield by 14mm (around 18%), but the conversion from either sloping filed or grass land to forest didn't shown significant impact. While for Seitengraben catchment it was found that every 10% of increase of forest cover would reduce the total water yiled by 9.5mm. Both lv'ergou watershed and Seitengraben catchment has shown similar response to precipitation change. With the decrease of 20% of precipitation, simulation of evapotranspiration, overland, as well as total streamflow was found decreased by 6.16% tol2.4%,74.69% to 95.16%, and 66.59% to 89.40%, respectively. Hydrological response of lv'ergou waterhed to temperature rise was more sensitive than that of Seitengraben catchment. With 2 degree of temperature rise, simulation of evapotranspiration for lv'ergou watershed was decreased by 6.4% to 8.7%, runoff by 42.82% to 51.82%, and total streamflow by 41.69% to 49.38%. On the contrary, for Seitengraben catchment, evapotranspiration was decreased by 0.84% to 1.04%, runoffby 4.78% to 10.53%, and total streamflow by 3.69% to 8.04%.
    The coupling of MIKESHE and MUSLE has displayed that the channel of lv'ergou watershed accounted for 90% of the total sediment yield. 33% of sediment yield was attributed to village and non-agricultural land use, and 27% and 24% to sloping field and grass land, respectively. Scenario simulations for various land use has indicated that the conversion to timber forest has most significant effect on controlling soil erosion with 70 to 1398t/km~2 of decrease in sediment yield, which was followed by the conversion to grassland. While the conversion to shrub or orchard has shown the least effect with 70 to 517t/km2 of decrease in sediment yield.
引文
[1] 卜兆宏,李全英.土壤可蚀性(K)值图编制方法的初步研究[J].农村生态环境,1995,11(1):5-9.
    [2] 蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRIS I预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
    [3] 陈军峰,李秀彬.森林植被变化对流域水文的影响--对森林水文学研究中一些争论的探讨[A].李文华.森林的水文气候效应研究进展(之一)[C].北京,中国科学院地理科学与资源研究所.2001.119~126.
    [4] 陈军峰,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,16(5):474-480.
    [5] 陈曦,夏军,钱静,等.三工河流域分布式水文模型研究[J].干旱区地理,2003,26(4):305-308.
    [6] 陈喜,陈永勤.水文过程中的尺度问题.见:刘昌明主编:21世纪中国水文科学研究的新问题、新技术和新方法[M].北京:科学出版社,2000:28-40.
    [7] 陈云浩,李晓兵,史培军.地表覆被格局优化对流域土壤侵蚀影响的模拟试验[J].自然科学进展,2004,14(11):1244-1248.
    [8] 仇亚琴,王水生,贾仰文,等.汾河流域水土保持措施水文水资源效应初析[J].自然资源学报.2006,26(1):24-30.
    [9] 邓惠平,吴正方,唐来华.气候变化对水文水资源影响研究综述[J].地理学报,1996,51(增刊):161-170.
    [10] 邓慧平,李秀彬,张明.气候与地表覆被变化对梭磨河流域水文影响的分析[J].地理科学,2001,21(6):491-497.
    [11] 傅伯杰,丘扬,王军,等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报,2002,57(6):717-722.
    [12] 郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-8.
    [13] 何福红,黄明斌,党廷辉.黄土高原沟壑区小流域综合治理的生态水文效应[J].水土保持研究,2003,10(2):33-37.
    [14] 何姗,夏军.岔巴沟流域数字水文模型研制与应用[J].人民黄河,2005,27(5):27-29
    [15] 侯喜禄,曹清玉.陕北黄土丘陵沟壑区植被减沙效益研究[J].水土保持通报,1990,10(2):19-25.
    [16] 黄明斌,郑世清,李玉山.流域尺度不同水保措施减水效益分割[J].水土保持通报,2001,21(2):4-7.
    [17] 黄明斌,刘贤赵.黄土高原森林植被对流域径流的调节作用[J].应用生态学 报,2002,13(9):1057-1060.
    [18] 黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展[J].生态学报,2003,23(3):580-587.
    [19] 季劲钧,刘青,李银鹏.半干旱地区地表水平衡的特征和模拟[J].地理学报,2004,59(6):64-971.
    [20] 季劲钧,余莉.陆地表面物理和生物地球化学过程反馈机理的模拟研究[J].大气科学,1999,23(4):439-448.
    [21] 贾松伟,韦方强,崔鹏.小流域土地利用变化及其趋势分析[J].水土保持学报,2006,20(5):154-157.
    [22] 贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    [23] 贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证[J].自然资源学报,2005,20(2):300-308.
    [24] 贾志军,王小平.黄土表面结皮对夏闲坡耕地土壤水分的影响研究[J].中国水土保持,2002,(9):18-19.
    [25] 江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报[J].1996,2(1):1-9.
    [26] 金国华,农业非点源污染环境影响评价及防治对策研究(D).东北师范大学.2005,10.
    [27] 康玲玲,鲍宏,刘立斌,等.黄土高原不同类型区梯田蓄水拦沙指标的分析与确定[J].中国水土保持科学.2005,3(2):51-56.
    [28] 李道峰,田英,刘昌明.黄河河源区变化环境下分布式水文模拟[J].地理学报.2004,59(4):565-573.
    [29] 李嘉峻,许有鹏,桑银江.GIS支持下的土壤侵蚀动态变化研究:浙江一例[J].南京大学学报,2005,41(3):297-303.
    [30] 李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资源学报,2001,16(5):427-432.
    [31] 李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,3(2):91-101.
    [32] 刘宝元,等.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
    [33] 刘昌明,李道峰,田英.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):438-445.
    [34] 刘昌明,曾燕.植被变化对产水量影响的研究[J].中国水利,2002,10:112-117.
    [35] 刘昌明,钟骏襄.黄土高原森林对年径流影响的初步研究[J].地理学报,1978,33(2):112~126.
    [36] 刘惠民,邓慧平.全球气候变化影响研究进展[J].安徽师范大学学报,1999,22(4):378-382.
    [37] 刘丽娟.岷江上游植被格局\动态及其生态水文功能研究[D].北京师范大学.2004.
    [38] 刘伦辉,刘文耀.滇中山地主要植物群落水土保持效益比较[J].水土保持学报,1990,4(1):36-42.
    [39] 刘世荣,等,主编.中国森林生态系统水文生态功能[M].1996.中国林业出版社.
    [40] 刘贤赵,宿庆,宋孝玉,等.黄土高原长武试区土地利用变化对产水量的影响[J].农业现代化研究,2004,25(1):59-63.
    [41] 罗格平,陈曦.三工河流域绿洲时空变异及其稳定性研究[J].中国科学(D辑),2002,(6):512-528.
    [42] 马雪华,森林水文学[M].北京:中国林业出版社,1993.
    [43] 马志尊.采用卫星图象估算通用土壤流失方程因子[J].中国水土保持,1989,6(3):24~27.
    [44] 莫兴国,刘苏峡,林忠辉.无定河流域水量平衡变化的模拟[J].地理学报,2004,59(3):341-348.
    [45] 聂艳,周勇,陈捷.基于GIS和GM的土地利用空间格局和动态预测情景分析--以宜都市为例[J].华中师范大学学报,2006,40(4):597-605.
    [46] 牛四平,王志坚,王晓斌.五种水土保持措施的保水保土效益观测[J].山西水土保持科技,2003,2(6):21-22.
    [47] 彭文英,张科利,李双才.黄土高原退耕还林(草)紧迫性地域分级论证[J].自然资源学报,2002,17(4):438-443.
    [48] 沈大军,刘昌明.水文水资源系统对气候变化的响应[J].地理研究,1998,17(4):435-443.
    [49] 沈玉芳,秦清军,吴永红.植被类型对黄土高原土壤侵蚀的影响研究[J].西北农业学报,2003,12(3):5-8.
    [50] 石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    [51] 史培军,宫鹏,李晓兵.土地利用覆盖变化研究的方法与应用[M].北京:科学出版社,2000:19~35.
    [52] 史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报,2002,18(4):172-175.
    [53] 苏人琼.黄土高原地区水资源合理利用[J].自然资源学报.1996,11(1):15-22.
    [54] 唐克丽,席道勤,孙清芳,等.杏子河流域坡耕地的水土流失及其防治[J].水土保持通报,1983,3(5):43~48.
    [55] 万荣荣,杨桂山.流域LUCC水文效应研究中的若干问题探讨[J].地理科学进展, 2005,24(3):25-33.
    [56] 万荣荣.太湖地区典型流域土地利用/植被变化的洪水响应研究--以西苕溪流域为例[D].中国科学院南京地理与湖泊研究所.2005
    [57] 王国庆,王云璋,康玲玲.黄河上中游径流对气候变化的敏感性分析[J].西北水资源与水工程,2000,11(3):1-5.
    [58] 王晗生,刘国彬.植被结构及其防止土壤侵蚀作用分析[j].干旱区资源与环境,1999,3(2):62-68.
    [59] 王浩,贾仰文,王建华,等.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报,2005,20(2):157-162
    [60] 王红闪,黄明斌,张橹.黄土高原植被重建对小流域水循环的影响[J].自然资源学报,2004,19(3):344-350.
    [6l] 王礼先,张志强.干旱地区森林对流域径流的影响[J].自然资源学报,2001,16(5):439-444.
    [62] 王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究.1998,6:14-23.
    [63] 王渺林,郭生练.基于月水量平衡模型的黄河中游径流变化分析[J].西北水资源与水工程,1999,10(2):1-7.
    [64] 王盛萍,张志强,孙阁,等.黄土高原流域土地利用变化水文动态响应[J].北京林业大学学报,2006,28(1):48-54.
    [65] 王学礼,等.吕二沟泥石流的形成及特性.见:黄土丘陵沟壑第三副区水土流失原型观测及规律研究[M].黄河水利委员会天水水土保持科学试验站(编).黄河水利出版社,2004.P77.
    [66] 王永兴,陈曦.GIS支持下的干旱区水资源及其利用的空间分异研究[J].干旱区地理,2003,26(2):100-114.
    [67] 王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [68] 王中根,刘昌明,左其亭,等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5):430-439.
    [69] 魏晓华,李文华,周国逸.等.森林与径流关系--一致性和复杂性[J].自然资源学报.2005,20(5):761-769.
    [70] 温汝俊,黄川,罗清泉,等.重庆主城区污水排放截留处理方案的比较[J].煤矿环境保护,2001,15(2):48-52.
    [71] 武强,董东林.试论生态水文学主要问题及研究方法[J].水文地质工程地质,2001,(2):69-72.
    [72] 席家治 主编,黄河水资源[M],郑州:黄河水利出版社,1996.
    [73] 夏军,王纲胜,吕爱峰.等.分布式时变增益流域水循环模拟[J].地理学报,2003,58(5):789-796
    [74] 夏军,叶爱中,王纲胜.黄河流域时变增益分布式水文模型(Ⅰ)--模型的原理与结构[J].武汉大学学报,2005,38(6):10-15.
    [75] 夏军.水文学科发展与思考.见:刘昌明主编:21世纪中国水文科学研究的新问题、新技术和新方法[M].北京:科学出版社,2000:18~27
    [76] 徐晋涛,曹轶瑛.退耕还林还草的可持续发展问题[J].国际经济评论,2002,3-4:56-60.
    [77] 徐勇,张同升,杨勤科.黄土高原安塞县生态退耕情景及农业影响[J].地理学报,2006,61(4):369-377.
    [78] 许炯心.黄河上中游产水产沙系统与下游河道沉积的耦合关系[J].地理学报,1997,52(5):421-429.
    [79] 严登华,何岩,邓伟,等.生态水文学研究进展[J].地理科学,2001,21(5):467-473.
    [80] 杨娟,葛剑平,屠强.近十年卧龙地区流域土地覆盖/利用变化分区对比研究[J].生态科学,2005,24(2):97-101.
    [81] 杨娟.卧龙地区流域土地覆盖变化及其对生态环境的影响[D].北京师范大学.2004.
    [82] 杨丽娜,王永双,白毅.耕作措施对地表径流和产沙量的影响[J].水土保持应用技术,2006,3:15-16.
    [83] 叶爱中,夏军,王纲胜.黄河流域时变增益分布式水文模型(Ⅱ)--模型的校检与应用[J].武汉大学学报,2006,39(4):29-32.
    [84] 尹雄锐,夏军,张翔.等.水文模拟与预测中的不确定性研究现状与展望[J].水力发电.2006,32(10):27-31.
    [85] 余新晓,毕华兴,朱金兆,等.黄土地区森林植被水土保持作用研究[J].植物生态学报,1997,21(5):433-440
    [86] 张满良,张海强,黄贵香.吕二沟流域水土流失特征及水保措施效益分析.见:黄土丘陵沟壑第三副区水土流失原型观测及规律研究[M].黄河水利委员会天水水土保持科学试验站(编).黄河水利出版社,2004,P:120~124.
    [87] 张清春,刘宝元,翟刚.植被与水土流失研究综述[J].水土保持研究,2002,9(4):96-101.
    [88] 张宪奎,许靖华,卢秀琴.黑龙江省土壤流失方程的研究[J].水土保持通报,1992,12(4):1-9
    [89] 张岩,袁建平,刘宝元.土壤侵蚀预报模型中的植被覆盖与管理因子研究进展[J].应用生态学报,2002,13(8):1033-1036.
    [90] 张志强,王礼先,余新晓,等.森林植被影响径流形成机制研究进展[J].自然资源 学报,2001.16(1):79-84.
    [91] 张志强,王盛萍,Ge Sun等,黄土高原吕二沟流域侵蚀产沙对土地利用变化的响应[J].应用生态学报,2005,16(9):1607-1612.
    [92] 张志强,余新晓,赵玉涛.森林对水文过程影响研究进展[J].应用生态学报.2003,14(1):113-116.
    [93] 赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    [94] 赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J].自然资源学报,2006,21(3):441-448.
    [95] 中华人民共和国行业标准.土壤侵蚀分类分级标准[M].北京:中国水利水电出版社,1997:1-10.
    [96] Abott M.B., Refsqaard J.C..Terminology, modeling protocol and classification of hydrological model codes[M]. In: Distributed Hydrological Modelling. Water Science and technology Library, 1996, Pp: 321.
    [97] Alice B., Zhang L., McMahon T., et al.. A critical review of paired catchment studies with reference to seasonal flows and climatic variability. Report.2003.
    [98] Andersen J., Refsgaard J.C., Jensen K.H., Distributed hydrological modelling of the Senegal River Basin-model construction and validation[J]. Journal of Hydrology, 2001, (247): 200-214.
    [99] Andreassian. V.. Waters and forests: from historical controversy to scientific debate[J]. Journal of Hydrology, 2004,291:1-27.
    [100] Arnell N.W., Liu C., Compagnucci R., et al. Hydrology and water resources[M]. In:McCarthy J.J., et al. Eds. Climate change 2001: impacts, adaptation, and vulnerability. Contribution of working group Ⅱ to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge.2001, PP191-233.
    [101] Arnell N.W.. Factors controlling the effects of climate change on river flow regimes in a humid temperate environment[J]. J Hydrol., 1992,132:321-342.
    [102] Arnold J.G., Allen P.M., Muttiah R., et al.. Automated base flow separation and recession analysis techniques[J]. Ground Water, 1994, 33(6): 1010-1018.
    [103] Bari M.A., Smith N., Ruprecht J.K. et al.. Changes in streamflow components following logging and regeneration in the southern forest of Western Australia[J]. Hydrological Processes, 1996, 10: 447-461.
    [104] Bates C.G., Henry A.J.. Second phase of streamflow experiment at Wagon Wheel Gap, Colorado. Mon[J]. Weather Rev.. 1928, 56(3): 79-85.
    [105] Bathurst J. C. Sensitivity analysis of the Systeme Hydrologique Europ?een for an upland catchment[J], J. Hydrology, 1986, 37:103-123.
    [106] Becker H.A.. The role of gaming and simulation in scenario projects[M]. In: Operational gaming: An international approach, I.Stahl (eds.). International Institute for Applied Systems Analysis. Laxenburg, Austria. 1983. pp: 187-202
    [107] Bergkamp G.. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands[J]. Catena. 1998,33; 201-220.
    [108] Beven K. J.. Rainfall-Runoff modeling. John Wiley&Sons Ltd., 1999.
    [109] Bloschl G.. and Sivapalan M.. Scale issues in hydrological modeling: a review[J]. Hydrological Process, 1995, 9(3-4):251-290.
    [110] Bonell M., Balek J..Recent and scientific developments and research needs in hydrological processes of the humid tropics[M]. In: Bonell M., Hufschmidt M.M., Gladwell J.S.(Eds.). Hydrology and Water Management in the Humid Tropics. UNESCO, Paris, 1993, P: 167-260.
    
    [111] Boorman D B, Sefton C E M. Recognising the uncertainty in the quantification of the effects of climate change on hydrological response[J]. Clim. Change, 1997, 35:415-434.
    [112] Bormann H.. Evaluation of hydrological models for scenario analyses: signal-to-noise-ratio between scenario effects and model uncertainty [J]. Advances in Geosciences, 2005, 5:43-48.
    [113] Bosch J.M., Hewlett J.D.. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration[J]. Journal of hydrology, 1982,55:3-23.
    [114] Brinkmann W. L. F, Magnuszew ski A., Zober S.. The structure and function of the Vistula River flood plain near Plock, Poland[J].Ecol.Eng.,2000,16(l):159-166.
    [115] Brooks K. N., Folliott P. F. Gregersen H.M., et al.. Hydrology and the management of watersheds(2nd ed)[M]. Iowa State University Press, 1997.
    [116] Brown A. E., Zhang L, McMahon T. A., et al.. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation[J]. Journal of hydrology. 2005,310: 28-61.
    [117] Bruneau P., Gascuel-Odoux C, Robin P., et al.. Sensitivity to space and time resolution of a hydrological model using digital elevation data[J]. Hydrological Processes, 1995,9:69-81.
    [118] Burt T.P., Swank W.T . Flow Frequency Responses to Hardwood-To-Grass Conversion and Subsequent Succession[J]. Hydrological Processes. 1992, 6 (2): 179-188.
    [119] Calder I.R. Processes-Water use by forests at the plot and catchment scale[J]. Commonwealth Forestry Review. 1996,75: 19-30.
    [120] Calver A., Wood W L.. The institute of Hydrology distributed model[M]. In Singh V.P.(ed.) , Computer models of Watershed Hydrology. Water Resource Publications, Highlands Ranch, CO, 1995, pp,595-626.
    [121] Cammeraa L. H.. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain[J]. Agriculture, Ecosystems and Environment. 2004,104:317-332.
    [122] Chiew F. H. S., Whetton P.H., McMahon T.A., et al.. Simulation of the impact of climate change on runoff and soil moisture in Australian catchments[J]. Journal of Hydrology, 1995,167:121-147.
    [123] Chiew F.H.S., Stewardson M.J., McMahon T.A.. Comparison of six rainfall-runoff modeling approaches[J]. Journal of Hydrology, 1993, 147: 1-36.
    [124] Chow V.T., Maidment D. R, Mays L. W.. Applied Hydrology. McGraw-Hill: New York, 1988.
    [125] Christiansen J. S., Thorsen M., Clausen T. et al.. Modelling of macropore flow and transport processes at catchment scale[J]. Journal of Hydrology, 2004, 299: 136-158.
    [126] Crooks S, Davies H . Assessment of land use change in the Thames catchment and its effect on the flood regime of the river [J]. Physics and Chemistry of the Earth(B ), 2001, 26:583-591.
    [127] Dawes W.R.. Evaluation of a distributed parameter eco- hydrological model (TOPOG2IRM) on a small cropping rotation catchment[J], J. Hydrol., 1997.191:64-86.
    [128] Demetriou C, Punthakey J.F.. Evaluating sustainable groundwater management options using the MIKE SHE integrated hydrogeological modelling package[J]. Environmental Modelling & Software, 1999, 14: 129-140.
    [129] Dooge J. C. I..Hydrology in perspective[J], Hydrological Sciences Journal, 1995,33(2):61-85.
    [130] Douglas N.Graham, Michael B. Butts. Flexible integrated watershed modeling with MIKESHE[M]. In: V.P. Singh and D.K.Frevert (Eds.), Watershed Models. CRC Press, 2005.
    [131] Dunn S M , Mackay R. Spatial variation in evapotranspiration and the influence of land use on catchment hydrology[J ].Journal of H ydrology, 1995, 171:49-73.
    [132] Edwards K.A.. The water balance of the Mbeya experimental catchments[M]. In: Blackie, J.R., Edwards K.A., Clarke R.T.(Eds.), Hydrological Research in East Aferica, East Afr. Agric. For. 1979.43,231-247;
    [133] Farley K.A., Jobbagy E.G.,Jackson R.B.. Effects of afforestation on water yield: a global synthesis with implications for policy[J]. Global Change Biology. 2005,(11): 1565-1576.
    [134] Ferro V., Porto P., Yu B.. A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia [J ] .Hydrological Sciences Journal , 1999 , 44(1) :3-24.
    [135] Fread D.L. Channel Routing[M]. In: Anderson M, Burt TP (eds), Hydrological Forecasting. Wiley, Chichester, 1985.
    [136] Garbrecht J., Martz L. Grid size dependency of parameters extracted from digital elevation models[J]. Computers & Geoscience,1994, 20: 85-87.
    [137] Garcia N.F., Merino J.. Pattern and process in the dune system of the Donana National Park, Southwestern Spain[M]. In:van der Maarel,Ed. Dry Coastal Ecosystems, General aspects. Elsevier, Amsterdam, 1997.349-362.
    [138] Giertz S., Diekkr"uger B., Jaeger A., et al.. An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper u?em?e catchment in Benin[J]. Advances in Geosciences, 2006, (3):3-13.
    [139] Grayson R. B., Bloschl G, Moore I.D.. Distributed parameter hydrological modeling using vector elevation data: THALES and TAPES-c[M]. In Singh V.P.(ED.), Computer Models of Watershed Hydrology. Water Resource Publications, Highlands Ranch, CO, 1995,pp.669-696.
    [140] Hall J. W., Tarantola S., Bates P. D., et al.. Distributed sensitivity analysis of flood inundation model calibration[J]. J. Hydraulic Eng.-Asce, 2005,131: 117-126.
    [141] Hans J?rgen Henriksen, Lars Troldborg, Per Nyegaard, et al.. Methodology for construction, calibration and validation of a national hydrological model for Denmark[J]. Journal of Hydrology, 2003, 280: 52-71.
    [142] Henrik Madsen. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives[J]. Advances in Water Resources, 2003,26:205-216.
    [143] Hessel Rudi. Effects of grid cell size and time step length on simulation results of the Limburg soil erosion model (LISEM)[J]. Hydrological process, 2005,19: 3037-3049.
    [144] Hibbert A.R.. Water yield changes after converting a forested catchment to grass[J]. Water Resour. Res.. 1969,5: 634-640.
    [145] Hickel K.. The effect of pine afforestation on flow regiem in small upland catchments[D]. University of Stuttgart, Stuttgart, 2001.
    [146] Holmes J.W., Sinclair J.A.. Water Yield from some afforested catchments in Victoria[R]. Hydrology and Water Resources Symposium. National Conference Publication 86/13, Institution of Engineers, Australia, Canberra, 1986,PP:214-218.
    [147] Hutjes R. W. A., Kabat P., Running S .W., et al.. Biospheric aspects of the hydrological cycle[J]. Journal of Hydrology, 1998, 213~214(1~4):1-21.
    [148] IGBP.IGBP report 1996. 43, 7-30.
    
    [149] Janauer G. A.. Ecohydrology: fusing concepts and scales[J]. Ecol.Eng., 2000,16(1):9-16.
    [150] Jetten V., Govers G., Hessel R. Erosion models: quality of spatial predictions[J]. Hydrological Processes, 2003, 17: 887-900.
    [151] Ji J.M.. A climate vegetation interaction model-simulating the physical and biological processes at land surface[J]. Journal of Biogeography, 1995,(22):445-451.
    [152] Juan B Gallego Fernandez, M. Rosario Garcia Mora, Francisco Garcia Novo. Vegetation dynamics of Mediterranean shrublands in former cultural landscale at Grazalema Mountains, South Spain[J]. Plant Ecology, 2004,172: 83-94.
    [153] Jun k. W. J., Bayley P. B., Sparks R. E.. The flood pulse concept in river flood plain system[J]. Can. Spec. Publ. Fish Aquat Sci., 1989,106:110-127.
    [154] Karl T.R., Riebsame W.R.. The impact of decadal mean fluctuations in mean precipitation and temperature on runoff: a sensitivity study over the United States[J]. Climatic Change, 1989,15:423-447.
    [155] Kiersch B.. land-use impacts on water resources: a literature review[M]. In: Proceedings Electronic Workshop: Land-water linkages in rural watersheds,FAO land and Water Bulletin 9, FAO,Rome. 2000.
    [156] Kinnell P. I. A. Risse L. M.. USLE-M: Empirical modeling rainfall erosion through runoff and sediment concentration[J]. Soil Science Society of America Journal, 1998, 62,(6): 1667-1671.
    [157] Kirkby M. J., Imeson A. C, Bergkamp G. Scaling up processes and models from the field plot to the watershed and regional areas[J]. Journal of Soil and Water Conservation, 1996,51(5): 391-396.
    [158] Klijn F.,Witte J-PM. Eco-hydrology:Groundwater flow and site factors in plant ecology[J]. Hydrogeology Journal, 1999,7:65-77.
    [159] Klocking B, Haberlandt U .Impact of land use changes on water dynamics-a case study in Temperate meso and macroscale river basins[J ].Physics and Chemistry of the Earth, 2002,27:619-629.
    [160] Koster R.D., Suarez M.J., A simple framework for examining the interannual variability of land surface moisture fluxes[J]. J. Clim., 1999.12:1911-1917.
    [161] Kundzewiez Z. W., Robson A.J.. Change detection in hydrological records- a review of the methodology [J]. Hydrol. Sci., 2004, 49(1):7-19.
    [162] Kundzewiez Z. W., Somlyody L.. Climatic change impact on water resources in a systems perspective[J]. Water Resources Management. 1997, 11.407-435
    [163] Leavesly G.H.. Modeling the effects of climate change on water resources-a review[J]. Clim. Change, 1994, 28:159-77.
    [164] Likens G.E., Bormann F.H., et al. Biogeochemistry of a forested ecosystem. New York, Springer-verlag, 1996.1-54.
    [165] Liu B. Y., Nearing M. A. , Shi P. J. , et al. Slope length effects on soil loss for steep slopes[J]. Soil Science Society of America Journal,2000,64:1759-1763.
    [166] Liu B. Y., Nearing M. A., Risse L. M.. Slope gradient effects on soil loss for steep slopes[J]. Trans, of the ASA E, 1994, 37: 1835-1840.
    [167] Liu Y.B., Smedt F.De., Hoffmann L.. Assessing land use impacts on flodd processes in complex terrain by using GIS and modeling approach[J]. Environmental Modeling and Assessment. 2004, 9:227-235.
    [168] Lorup J. K., Jens Christian Refsgaard, Dominic Mazvimavi. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modeling: case studies from Zimbabwe[J]. Journal of Hydrology. 1998,205:147-163.
    [169] Lorup J.K., Hansen E.. Effect of land use on the streamflow in the southwestern highlands of Tanzania[M]. In: Rosbjerg D., Boutayeb N., Gustard A., et al.(Eds.). Sustainability of water resources under increasing uncertainty(Proceedings of the Rabat Symposium SI, 1997), IAHS Publication, 1997,240:227-236.
    [170] Lu J.B., Sun G., Mcnulty S.G., et al.. Modeling actual evapotranspiration from forested watersheds across the southeastern United States[J]. Journal of the American Water Resources Association. 2003,8:887-896.
    
    [171] Ludwig J. A., Tongway D. J., Marsden S. G.. Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia[J]. Catena, 1999, 37,257-273.
    [172] Matheussen B., Kirschbaum R. L., Goodman Iris A, et al.. Effects of land cover change on stream flow in the interior Columbia River Basin (USA and Canada)[J] .Hydrological Processes, 2000,14(5):867-885.
    [173] McCool D. K., Foster G. R., Murchler C. K., et al. Revised slope length facto r fo r the Universal Soil Loss Equation[J]. Trans of the ASAE, 1989, 32: 1571-1576.
    [174] Mclean S., Baseflow response to vegetation change, Gleendnu State Forest, Otago, New Zealand[D]. Department of Geography. University of Otago, Dunedin, 2001.
    [175] Michael B. Butts, Jeffrey T. Payne, Michael Kristensen, et al.. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation[J]. Journal of hydrology, 2004,298:242-266.
    [176] Miller N. L.,Bashford K.E., Strem E.. Potential impacts of climate change on California hydrology[J]. Journal of the American Water Resources Association. 2003, 39(4): 771-784.
    [177] Milly P.C.D., Dunne K.A., Vecchia A.V.. Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature. 2005,438(17): 347-350.
    [178] Milly P.C.D., Dunne K.A.. Macroscale water fluxes2: water and energey supply control of their interannual variability[J]. Water Resource Research, 2002, 38(10):
    [179] Milly P.C.D.. Climate, soil water storage, and the average annual water balance[J]. Water Resource Research, 1994, 30:2143-2156.
    
    [180] NESCO. Eco-hydrology processes in small basins. IHP-V, theme2, Paris. 1997.
    [181] Pappenberger F., Iorgulescu I., Beven K. J.. Sensitivity Analysis based on regional splits and regression trees (SARS-RT)[J]. Environmental Modelling and Software, 2006a, 21(7):976-990.
    [182] Pappenberger F., Matgen P., Beven, K. J., et al.. Influence of uncertain boundary conditions and model structure on flood inundation predictions[J]. Adv. Water Resour., 2006,29(10): 1430-1449.
    [183] Pierson F. B., Carlson D. H., Spaeth K. E.. A process-based hydrology submodel dynamically linked to the plant component of the simulation of production and utilization on rangelands SPUR model[J]. Ecological modeling, 2001,141: 241-260.
    [184] Post D.A., Grant G.E., Jones J.A.. New developments in ecological hydrology expand research opportunities[J]. EOS., 1998,79(43):517-526.
    [185] Quinn P.F, Beven K.J., Lamb R. The ln(α/tanβ) index: how to calculate it and how to use it within the TOPMODEL framework[J]. Hydrological Processes, 1995,9: 161 -182.
    [186] Refsgaard J. C. Parameterization, calibration, and validation of distributed hydrological models[J]. Journal of Hydrology, 1997, 198: 69-97.
    [187] Refsgaard J.C., Storm B. MIKE SHE[M]. In: Singh VP.editor. Computer models of watershed hydrology. Water Resources Publications, Colorado, 1995, PP 809-846.
    [188] Renard K. G., Foster G. R., et al. RUSLE , revised : Status, question , answers , and the future[J]. Soil and Water Conservation, 1994 , 49(3): 213 220.
    [189] Renard K. G., Freimund J.R.. Using monthly precipitation data to estimate the r-factor in the revised USLE[J]. Journal of Hydrology, 1994 , 157 : 287-306.
    [190] Renard K.G., Foster G.R., Weesies G.A., et al. RUSLE - Revised universal soil loss equation[J]. Journal of Soil and Water Conservation, 1991, (11-12): 30-33.
    [191] RichardsonC. W., Foster G. R , Wright D. A.. Estimation of erosion index from daily rainfall amount[J]. Transactions of the ASAE , 1983 ,26(1) :153-156.
    [192] Roger N. Jones, Francis H.S. Chiew, Walter C. Boughton, et al.. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models[J]. Advances in Water Resources, 2006, 29:1419-1429.
    [193] Ruprecht J.K., Schofield N.J. Analysis of Streamflow Generation Following Deforestation in Southwest Western Australia[J]. Journal of Hydrology, 1989, 105 (1-2), 1-17.
    [194] Sánchez G., Puigdefábregas J.. Interactions of plant growth and sediment movement on slopes in a semi-arid environment[J]. Geomorphology. 1994, 9: 243-260.
    [195] Sandstrom K., Forests and water--Friends of foes. Hydrological implications of deforestation and land degradation in semi-arid Tanzania[D]. University of Linkoping, LinkOping, Sweden, 1995.
    [196] Sandstrom.森林能提供水分:广泛流传的神话还是科学事实?[J].AMBIO(中文版),1998,27(2):132-138.
    [197] Schofield N.J.. Forest management impacts on water values[J]. Recent Research Developments in Hydrology. 1996,1:1-20.
    [198] Schuller D., Brunken-Winkler H., Busch P, et al.. Sustainable land use in an agriculturally misused landscape in northwest Germany through ecotechnical restoration by a "Patch-Network-Concept"[J]. Ecol. Eng., 2000,16(1):99-118.
    [199] Scott D.F., Lesch W.. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa[J]. Journal of Hydrology, 1997 (3-4), 360-377.
    [200] Sharma K.P., Vorosmarty C.J., Moore B.. Sensitivity of the Himalayan hydrology to land-use and climatic changes[J]. Climatic Change. 2000,47:117-139.
    [201] Sharply A. N., Williams J. R.. EPIC-Erosion-Productivity Impact Calculator: 1 Modet Documentation[J]. USDA Technical Bulletin, 1990, No:1768.
    [202] Singh R., Refsgaard J.C., Y de L., et al.. Hydraulic-hydrological simulations of canal-command for irrigation water management[J]. Irrigation and Drainage Systems. 1997, (11);185-213.
    [203] Singh R., Subramanian K., Refsgaard J.C.. Hydrological modelling of a small watershed using MIKESHE for irrigation planning[J]. Agricultural Water Management, 1999,41: 149-166.
    [204] Smakhtin V.U.. Estimation continuous monthly baseflow time series and their possible applications in the context of the ecological reserve[J]. Water SA., 2001,27(2): 213-217
    [205] Smith R.E., Scott D.F.. Effects of afforestation on low flows in various regions of South Aferica[J]. Water SA. 1992, 18(3).185-194.
    [206] Stednick J.D.. Monitoring the effects of timber water yield harvest on annual water yield[J]. Journal of hydrology, 1996, 176:79-95.
    [207] Stephen G. R., Freeze R. A.. Mathematical simulation of subsurface flow contribution to snow runoff, Reynold Creek,Idaho[J]. Water Resource Research. 1974,10(2):284-298.
    [208] Sun G, Lu J., Mcnulty S. G, et al.. Using the hydrologic model MIKE SHE to assess disturbance impacts on watershed processes and Responses across the Southeastern U.S [R]. In Proceedings of the Second Interagency Conference on Watershed Research, 2006,May 16-18, Otto, NC.
    [209] Sun G, Mcnulty S.G., Amatya D.M., et al. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US[J]. Journal of Hydrology, 2002,263: 92-104.
    [210] Sun G, Zhou G. Y., Zhang Z.Q., et al.. Potential Water Yield Reduction due to Forestation across China[J]. Journal of hydrology, 2006(accepted)
    [211] Sylvia Prieler, Andr?es P. Lesk?o, Stefan Anderberg. Three Scenarios for Land-Use Change:A Case Study in Central Europe[R]..Austria.1998.
    [212] Teklehaimanot Z , et al . Rainfall interception and boundary conductance in relation to tree spacing[J]. J of Hydrol.. 1991,123 :261-278.
    [213] Terpstra J., Van A. Mazijk.. Computer aided evaluation of planning scenarios to assess the impact of land-use changes of water balance[J]. Phys. Chem. Earth (B), 2001,26(7~8):523-527.
    [214] Thompson J.R., Refstrup S?renson H., Gavin H.. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England[J]. Journal of Hydrology, 2004, 293: 151-179.
    [215] Thurow T. L., Blackburn W. H.,Taylor C. A.. Infiltration and interrill erosion responses to selected livestock grazing strategies, Edwards Plateau, Texas[J]. Journal of Range Management. 1988,41:296-302.
    [216] Thurow.T. L.. Hydrology and erosion[M]. In: Heitschmidt R K and Stuth J W ed. Grazing management: an ecological perspective. Timber Press Inc., Portland, OR, 1991, 141-160.
    [217] Toy T.J., et al. The applicability of RUSLE to geomorphic studies[J]. Soil and Water Conservation, 1995 , 50(5): 498-503
    [218] Trimble Stanley W., Weirich Frank H.. Reforestation and the reduction of water yield on the southern predmont Since Circa 1940[J]. Water Resources Research. 1987,23(3):425-437.
    [219] Tsykin E.N., Multiple nonlinear statistical models for runoff simulation and prediction[J]. Journal of Hydrology, 1985, 77: 209-226.
    [220] Turner K.M.. Annual evapotranspiration of native vegetation in a Mediterranean-type climate. Water Resources Bulletin[J]. 1991, 27 (1):l-6.
    [221] Van Genuchten M.Th.. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci. Am. J., 1980,44:892-898.
    [222] Vannote R. L., Minshall G. W.,Cummins K. W., et al.. The river continuum concept[J]. Can. J. Fish Aquat Sci., 1980, 37:130-137.
    [223] Vanoni V.A. (ed.). Sedimentation Engineering. American Society of Civil Engineers(ASCE). Manual and Reports Practice. New York. No.54. 1975
    [224] Vazquez R. F., Feyen L., Feyen J., et al.. Effect of grid size on effective parameters and model performance of the MIKE-SHE code[J]. Hydrological Process, 2002,16:355-372.
    [225] Vazquez R.F., Feyen J.. Assessment of the effects of DEM gridding on the predictions of basin runoff using MIKE SHE and a modelling resolution of 600 m[J]. Journal of Hydrology. 2007.334:73-87
    
    [226] Ven Te Chow, Handbook of Applied Hydrology[M], McGraw-Hill, New York, 1964.
    [227] Vertessy R A., Hatton T. J., O'Shaughnessy P J., et al.. Predicting water yield from a mountain ash forest using a terrain analysis based catchment model[J]. Journal of Hydrology. 1993, 150: 665-700.
    [228] Viville D., et al. Interception on a mountainous declining spruce stand in the Strengbach catchment (Voges ,France)[J]. J of Hydrol., 1993,144 :273-282.
    [229] Watson F.G.R., Vertessy R.A., McMahon T.A., et al.. The hydrologic impacts of forestry on the Maroondah catchments[R]. Cooperative Research Centre for Catchment Hydrology, Melbourne, 1999,1.
    [230] Wei H. L., et al. Study of the sensitivity of a regional model in response to land cover Northern China[J]. Hydrological Proesses, 1998 , 12 : 2249.
    [231] Wen L. K., Tammo S. Steenhuis, Charles E. McCulloch, et al.. Effect of grid size on runoff and soil moisture for a variable-source-area[J]. Hydrology model, 1999, 35(11): 3419-3428.
    [232] Wigley T.M.L., Jones P.D.. Influences of precipitation changes and direct CO2 effects on streamflow[J]. Nature ,1985, 314:149-52.
    [233] Williams J. R., Renard. EPIC- A new method fo r assessing erosion's effect on soil productivity[J]. Journal of Soil and Water Conservation, 1983, 38: 381-383.
    [234] Williams J.R., Berndt H.D.. Sediment yield prediction based on watershed hydrology[J]. Trans. Of the ASAE, 1977.20(6):1100-1104.
    [235] Wischmeier W.H.,Smith D.D.. Predicting rainfall erosion losses-A guide to conservation planning. Agriculture Handbook 537., U. S. Department of Agriculture, Washington D.C.1978.
    [236] Wood E.F., Sivapalan ML, Beven K.et al.. Effects of spatial variability and scale with implications to hydrologic modeling[J]. J. Hydrol., 1988,102:29-47.
    [237] Xevi E., Christiaens K., Espino A.. Calibration, Validation and Sensitivity Analysis of the MIKE-SHE Model Using the Neuenkirchen Catchment as Case Study[J]. Water Resources Management, 1997, 11:219-242.
    [238] Xu X.Y., Singh V.P. Review on regional water resources assessment models under stationary and changing climate[J]. Water Resour Manag., 2004, 18:591-612.
    [239] Yin Z.Y., Wang X.. A cross-scale comparison of drainage basin characteristics derived from digital elevation models[J]. Earth Surface Processes and Landforms,1999, 24: 557-562.
    [240] Yu B., Rosewell C. J. A robust estimator of the r-factor for the universal soil loss equation [J]. Transactions of the ASAE , 1996 ,39 (2) :559-561.
    [241] Zalewski M., Janauer G. A., et al.. Ecohydrology: A new paradigm for the sustainable use of aquatic resources[M]. Paris.UNESCO,1997.PP:1-56.
    [242] Zalewski M.. Eco-hydrology-the scientific background to use ecosystem properties as management tools toward sustainability of water resources[J].Ecol.Eng.,2000,16 (1):1-8.
    [243] Zhang L., Dawes W.R., Walker G.R.. Predicting the effect of vegetation changes on catchment average water balance. Cooperative Research Centre for Catchment Hydrology, Melbourne. 1999,12.
    [244] Zhang L., Dawes W.R., Walker G.R.. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research. 2001, 37 (3): 701-708.
    [245] Zhang W, Montgomery D.R. Digital elevation model grid size, landscape representation, and hydrologic simulations[J]. Water Resources Research, 1994, 30(4): 1019-1028.
    [246] Zhang Z. Q., Wang L X. and Yu X. X.. Impacts of forest vegetation on runoff generation mechanisms: a review[J]. Journal of Natural Resources, 2001, 16(1): 79-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700