乌里雅斯太凹陷砂砾岩油藏储层改造理论与应用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二连盆地乌里雅斯太凹陷储集层岩性为砾岩、砂砾岩、中粗砂岩、粉细砂岩等多种类型,但以砾岩、砂砾岩为主,是典型的砂砾岩油藏。其构造类型复杂,具有相变快,岩性、渗透性变化大,孔隙不发育,渗透率低,物性较差,分选和连通性较差,非均质性和各向异性严重,属低孔低渗砂砾岩储层,绝大部分油井没有自然产能需经改造后才能投产。因而油层改造技术对于乌里雅斯太凹陷低孔低渗砾岩、砂砾岩油藏的开发十分重要,但是针对砂砾岩地层增产措施方面的研究却相对较少。因此,开展针对砂砾岩油藏的水力压裂技术研究就很有必要。
     本文旨在通过前期压裂评估与分析、整体压裂开发适应性研究、砂砾岩油藏压裂液滤失特性研究、压裂改造工艺技术优化研究等,形成乌里雅斯太凹陷油层增产的综合改造技术,为二连盆地乌里雅斯太凹陷的勘探开发提供有力的技术支撑和技术手段。根据乌里雅斯太凹陷砂砾岩油层改造技术的需要,重点对压裂选井选层、压裂开发方案设计、应力剖面和压裂液体系等进行了较为系统和深入的研究,取得了以下主要成果:
     (1)建立了乌里雅斯太凹陷油藏压裂改造效果预测的定量分析模型,获得了影响压裂效果的主要因素和影响规律。
     (2)建立了油藏整体压裂数值模拟模型,通过对试采井组大量压裂开发方案的数值计算和优化,确定了该井组整体压裂开发的压裂规模和裂缝参数。
     (3)实验分析了砂砾岩油藏压裂液动态滤失特性,引入与时间相关的滤失系数来对模型进行改进,充分利用实验数据,建立了基于动滤失实验的考虑多种因素的滤失速度计算新模型。
     (4)建立了利用模糊数学和神经网络理论等人工智能方法实现定量选井选层模型,形成了一套运用模糊识别理论来优选压裂井层、优化施工参数和优选施工方案的新方法。
     (5)基于室内岩石力学实验,结合动、静态力学参数,确定了储层纵向力学参数剖面,提出了综合运用测井资料和前期压裂施工资料反演压裂井储层的地应力参数。
     (6)研制开发了低残渣、低摩阻、低滤失和易返排的低聚合物压裂液体系。
     本文针对以上内容进行了较为系统深入的研究,相关内容为乌里雅斯太凹陷砂砾岩油藏提高储层改造效果的关键技术,为砂砾岩油藏储层改造理论与应用技术急需解决的问题。通过论文系统的研究,初步形成了乌里雅斯太凹陷油层改造理论与配套技术,也获得了一些有益的结论:
     (1)砂砾岩油藏压裂在流体滤失、应力剖面等方面与一般砂岩油藏具有明显区别,砂砾岩油藏压裂设计不能照搬普通砂岩油藏的设计理论。
     (2)砂砾岩油藏的纵向和横向非均质强,压裂时在物性条件较好的井层常表现出塑性变形特征,压裂过程中压裂液的滤失较大,压裂后裂缝形态复杂。
Consisting of gravell, sand gravell, medium-coarse-grained sandstone and clay etc., Wuliyastai Depression in Erlian basin is a typical grit frame reservoir, where gravell and sand gravell are dominating. Being characteristic of rapid changes of fades, great variability of lithology and permeability, low porosity and permeability, poor separation and connectivity as well as serious heterogeneity and anisotropy, it belongs to low porosity and low permeability sand-gravell reservoir and the majority of the oil wells can be brought into production only after the stimulation. Formation stimulation techniques, therefore, are especially important for the exploitation of Wuliyastai Depression and further study is necessarily to be conducted, as it is relatively fewer.
    Based on the fracturing pre-assessment and pre-analysis, study on adaptability of systematic fracturing, filtration characteristics research of fracturing fluid and optimization of fracturing etc., an integrated stimulation technology for Wuliyastai Depression is determined in this paper and it provides a technology support as well as a technical means for the exploration of Wuliyastai Depression in Erlian basin. To meet the demand of reservoir stimulation and focused on the systematical and deep researches on the selecting wells and formations for fracturing, fracturing design, stress profiles and fracturing fluid system, the main achievements obtained in this paper are as follows:
    (1) A quantitative analysis model of post-fracturing response prediction is established and the major influencing factors as well as the effects are discussed.
    (2) A numerical simulation model of systematic fracturing is present and corresponding reasonable scale of fracturing as well as fracture parameters are determined through abundant numerical calculations and optimizations of different systematic-fracturing project for the pre-production well group.
    (3) Considering various factors, a dynamic filtration experiments are conducted and the dynamic filtration characteristics of the fluid is experimentally analyzed. Based on the experiment results, a new mode for calculating fluid-loss velocity, with a leakoff coefficient related to the time, is put forward.
    (4) With fuzzy mathematics and neural network theory, a quantitative model of selecting well and layer is developed as well as a new method to optimize operational wells and layers, parameters and program.
    (5) Based on the laboratory experiments of rock mechanics and integrated static mechanical parameters with the dynamic, the stress profile is determined a new computing method for in-situ stress by reversion with log information and primary fracturing information.
    (6) Low polymer fracturing fluid system, with characteristics of little residue, low friction and filtrate loss, being easy to flow back, is developed.
    The above contents are deeply studied in this paper, where some are the key techniques for improving the fracturing effects and some are the problems for solve urgently during sand-gravell reservoir stimulation. With the researches in this paper, a reasonable stimulation technology for Wuliyastai Depression is primarily formed and following conclusions are obtained:
引文
[1] 胡复唐,著.砂砾岩油藏开发模式.石油工业出版社:北京,1997
    [2] 朱水桥.提高砾岩油藏中高含水期开发水平.石油工业出版社:北京,2003
    [3] 董科武.产液结构调整改善砂砾岩油藏特高含水期开发.西部探矿工程,2004,12:83-84
    [4] 于国庆,王铭学,杨彬.埕东油田913断块河三段砂砾岩油藏储层特征研究.特种油气藏,2003,10(3):6-10
    [5] 董春梅,林承焰,等.储集层砂砾岩成因,分布规律及形成条件探讨—以辽河西部凹陷高升油田高二三区为例.石油试验地质,1996,18(3)
    [6] 谢风猛,武法东,陈建渝,等.渤海湾盆地滨南海油田砂砾岩扇体空间展布与成藏规律.石油试验地质,2002,24(4):334-339
    [7] 过梁,王传忠,王金亮.埕东凸起南部断裂带砂砾岩体精细描述.胜利油田职工大学学报,2004,18(2):1-3
    [8] 王绍光.埕南断裂带埕913砂砾岩体成藏地质条件及勘探开发实践.2003.7
    [9] 宋子齐,李亚玲,杨金林,等.非均质砂岩储层有利沉积相带与油气分布及生产动态的关系.特种油气藏,2005,12(4):15-19
    [10] 陈程,孙义梅.厚油层内部夹层分布模式对开发效果的影响.大庆油田地质开发,2003,22(2):24-28
    [11] 许宁.巨厚块状砂砾岩底水油藏合理注采井网研究.特种油气藏,2004,11(6):52-54
    [12] 刘顺生,周惠泽,杨玉珍,等.砂岩油藏地质综合描述技术.石油学报,2000,21(5):109-116
    [13] 张艳丽,王磊,孙建孟.罗家地区砂砾岩体岩相特征及其分析技术.石油大学学报,2004,28(3)
    [14] 张政威,武楗堂,赖升华,等.扇体砂砾岩储层非均质性与产能研究.断块油气田,2005,12(4):25-29
    [15] 杨晓蓓,冯毅,肖波,等.砂砾岩油田上倾尖灭带开发技术对策探讨.河南石油,2000,14(6):17-22
    [16] 王建群,姜东波.永北地区砂砾岩油藏富集规律及勘探开发实践.特种油气藏,2001,8(2):11-15
    [17] 吴亚红,李健萍,刘俊霞,等.东濮凹陷探井压裂效果影响因素分析.断块油气田,1996,3(3):70-73
    [18] 蒋廷学,汪绪刚,等.水力压裂选井选层的快速评价方法.石油钻采工艺,2003,25(4):49-43
    [19] 蒋廷学.重复压裂选井选层的模糊识别方法.石油钻采工艺,1997,19(3):60-64
    [20] 肖芳淳.压裂酸化中选层的模糊物元评价分析.石油钻采工艺,1996,18(6):49-55
    [21] 刘洪,赵金洲,等.模糊神经网络系统在优选压裂井层中的应用.钻采工艺,2002,25(5):34-39
    [22] 杜卫平.重复压裂选井选层人工神经网络方法.钻采工艺,2003,26(4):106-108
    [23] 刘长印,孔令飞,张国英,等.人工智能系统在压裂选井选层方面的应用.钻采工艺,2003,26(1):37-39
    [24] 吴亚红,李秀生,等.人工神经网络在压裂选井及选层中的应用.石油大学学报(自然科学版),2001,25(5):42-46
    [25] S.R.Reeves, et al, Benchmarking of Restimulation Candidate Selection Techniques in Layered, Tight Gas Sand Formations Using Reservoir Simulation, SPE 63096
    [26] Robert F.Shelley: Artificial Neural Networks Identify Restimulation Candidate in the Red Oak Field, SPE 52190
    [27] Christian Oberwinkler, Michael J.Econmides,The Definitive Identification of Candidate Wells for Refracturing,SPE 84211
    [28] S. Mohaghegh, et al, Candidate Selection for Stimulation of Gas Storage Wells Using Available Data With Neural Networks and Genetic Algorithms, SPE 51080
    [29] Shahab Mohaghegh, et al. Development of an Intelligent Systems Approach for Restimulation Candidate Selection,SPE 59767
    [30] W K Miller et al:In-stiu stress profiling and prediction of hydraulic fracture azimuth for the Canyon sands formation, Sonora and sawyer Field, Sutton county, Texas,SPE 21848
    [31] N R Warpinski, L W Teufel:In-situ stress measurement at Rainier Mesa, Nevada test site-Influene of topography and lithology on stress state in Tuff..Int.J.Rock Mech., Min, Sci&Geomech.Abstract, V.28.No.213, 10
    [32] N R Warpinski, L W Teufel: In-situ stresses in low permeability, Non-marine rocks.SPE 16402
    [33] B M Robinson et al:The Gas Research Institute second staged field experiment:A study of hydraulic fracturing. SPE 21459
    [34] P R Sheorey:A theory for in-situ stress in isotropic and transversely isotropic rock.。 Inf.J.Rock Mech., Min, Sci.&Geomech,. Abstract, V.28. No.2/3.
    [35] J.Geertsma:The effect of fluid pressure decline on volumetric changes of porous rocks。 RIME.210.1957, P331-340
    [36] L W Teufel, D W Rhett&H E Farell:Effect of Reservoir Depletion and Pore Pressure Drowdown on In-situ Stress and Deformation in the Ekoffisk Field, North Sea, Rock Mechanics as a Multidisplianary Science, Roegiers, Balkerma,.Roffordan.
    [37] Lesage Marc et al: Pore-pressure and Fracture-gradient Prediction. SPE 21607.W Thiercelin, 1991
    [38] 李志明,张金珠.地应力与油气勘探开发.石油工业出版社.北京,1998
    [39] Yale. In-situ Stress Orientation and the Effects of Local Structure-Sort Field, North Sea. SPE 28146
    [40] R.I.Keda. In-situ Stress Heterogeneity and Crack Density Distribution. Int.Rock Mech. Min. Sci.&Geomech.Abstract.Vol.30 No. 7,1013-1018
    [41] Peska P, Zoback M D. Stress and Failure of Inclined Borehole. Published 1996 by Stanford University Department of Geophysics
    [42] Peska P, Zoback M D. Compressive and Tensile Failure of Inclined Well and Determination of In-situ Stress and Rock Strength. JGR, 1995.100:B7, 12791-12811
    [43] 万仁溥主编:采油技术手册(九),石油工业出版社:北京,1989
    [44] Newberry B.M. Prediction of Vertical Hydraulic Fracture Migration Using Compress ional and Shear Wave Slowness SPE 13895
    [45] M J Thiercelin&R A Plumb"A core-based prediction of lithologic stress contrasts in Ea Texas Formation, SPE 21847
    [46] M Prats. Effect of burial history on the subsurface horizontal stresses of formation having different material properties.SPEJ Dec. 1981
    [47] 孙均,等.地下结构有限元法解析.国济大学出版社.上海,1988
    [48] K.J.贝斯.工程呈分析中的有限元法.机械工业出版社.北京,1991
    [49] 郑宏,等.关于岩士工程有限元分析中的若干问题.岩土力学,1995.(3)
    [50] 张顺,林春明,等.松辽盆地头台油田现代地应力场分布特征研究.高校地质学报,2001,7(2):230-236
    [51] 陶良军,冯兴武,等.宝浪油田地应力和裂缝特征研究与应用.钻采工艺,2001,24(2):25-28
    [52] 王世泽.川西洛带构造蓬莱镇组地层现今地应力场特征.矿物岩石
    [53] 王鸿勋,张士诚,等.《水力压裂设计数值计算方法》.北京:石油工业出版社,1998
    [54] McDeniel, R.R. and Deysarkar, A,K.An Improved Method of Measuring Fluid Loss at Simulated Conditions. SPE 10259
    [55] G.D. Cooper. Comparison of Methods for Determining Ineite Leakoff Rate Based on Analysis With Simulation. SPE 13223
    [56] 古发刚,任书泉.多种因素下的滤失速度计算模型.西南石油学院学报,1991,13(2)
    [57] Tongchun Yi. and Peden, J.M. A Comprehensive Model of Fluid Loss in Hydraulic Fracturing. SPEPE. Nov. 1994. 267-272
    [58] 李勇明,纪禄军,郭建春,等.压裂液滤失的二维数值模拟.西南石油学院院报,2000,22(2):43-47
    [59] James L. Rodgerson.Impact of Natural Fractures in Hydraulic Fracturing of Tight Gas Sands. SPE 59540
    [60] R.M. Stahl and R.E. Clark.Fluid Loss During the Fracturing of Naturally Fractured Reservoirs. SPE 21874
    [61] 王鸿勋编.《水力压裂原理》.北京:石油工业出版社,1989
    [62] 李勇明,赵金洲,郭建春,等.裂缝性低渗透储层压裂液滤失计算新模型.石油钻采工艺,2004,26(5):44-48
    [63] 李勇明,郭建春,赵金洲,等.裂缝性气藏压裂液滤失模型的研究及应用.石油勘探与开发,2004,31(5):120-122
    [64] P.S. Vinod, M.L. Flindt etc. Dynamic Fluid-Loss Studies in Low-permeability Formations With Natural Fractures.SPE 37486
    [65] James M, McGowen etc. Incorporating Crossflow and Spurt-Loss Effects in Filtration Modeling within a Fully 3D Fracture-Growth Simulator. SPE 56597
    [66] Fan.Y. and Economides,M.J. Fracturing Fluid Leakoff and Net Pressure Behavior in Frac&pack Stimulation. SPE 29988
    [67] Fan Y. and Liave F.M. Tip Screenout Fracturing of Gas Wells. SPE 35636
    [68] C.H. Yew and A.D. Hill et al. A Study of Fluid Leakoffin Hydraulic Fracture Propagation. SPE 64786
    [69] Meyer, B.R. and Henry, R. Implementation of Fracture Calibration Equations for Pressure Dependent Leakoff SPE 62545
    [70] 埃克诺米德斯J,诺尔特G.《油藏增产措施》.张宝平,蒋阗,刘立云,等译.石油工业出版社,2002
    [71] R.D.Barree and H.Mukherjee. Determination of Pressure Dependent Leakoff and its Effect on Fracture Geometry. SPE 36424
    [72] R.C. Navarrete,K.E.Cawiezel etc. Dynamic Fluid Loss in Hydraulic Fracturing Under Realistic Shear Conditions ing High-Permeability Rocks. SPE 28529
    [73] Faruk Civan. Significance of the Non-Darcy Behavior on the Fluid Loss into High Permeability Formations. SPE 63054
    [74] 李季花,陈进富.近期国内外水基压裂液添加剂的发展概况.石油与天然气化工,1995(1):12-17
    [75] 赵炜,李玉堂.压裂液的过去与现状.世界石油工业,1997(8):36-39
    [76] 方娅,马卫荣.90年代压裂液添加剂的现状及展望.石油钻探技术,1999(3):42-46
    [77] Weaver, M. Parker, H.Walters etc. Application of New Viscoelastic Fluid Technology Results in Enhanced Fracture Productivity". SPE71662
    [78] Naval Goel,Subhash Shah. A Rheological Criterion for Fracturing Fluids to Transport Proppant during a Stimulation Treatment". SPE71663
    [79] Mahmoud Asadi,Michael W. Conway, Robert D. Barree. A Rheological Criterion for Fracturing Fluids to Transport Proppant during a Stimulation Treatment. SPE 73755
    [80] Norbert Heitm S. P. Mathis, Enzo Pitoni etc. A Rheological Criterion for Fracturing Fluids to Transport Proppant during a Stimulation Treatment. SPE 78317
    [81] Tann, Schlumberger etc. A Rheological Criterion for Fracturing Fluids to Transport Proppant during a Stimulation Treatment". SPE 78323
    [82] Bradley M. Robinson,lscander R. Dlyashev, Zillur Rahim etc. Fracture Fluid Damage to High-Permeability Gas Reservoirs: It Can Make A Difference. SPE 63106
    [83] 刘全新,易明新,等.粘弹性表面活性剂(VES)压裂液.油田化学,2001(9):273-277
    [84] 聂淑兰,孙应力,等.无聚合物压裂液是死井复活.国外油田工程,2000(6):19-22
    [85] 赵茹皓,樊文忠,等.对新型无聚合物压裂液的认识.世界石油工业,2000(6):42-46
    [86] 赫泽,焦亚凤,等.无聚合物压裂液.国外油田工程,2001(1):13-16
    [87] J. Peles,R. W Wardlow, G. Cox etc. Fracture Fluid Damage to High-Permeability Gas Reservoirs: It Can Make A Difference.SPE 77746
    [88] J. Weaver, E. Schmelzl,M. Jamieson etc. new fluid technology allows fracturing without internal breakers. SPE 75690
    [89] Jeff C. Dawson,Hoang V. Le,Dave Cramer. Successful application of a novel fracturing fluid in the wasatch formation in eastern utah. SPE 49042
    [90] Samuel M, Card R J etc. polymer-free fluid for hydraulic fracturing. SPE 38622
    [91] 赵小充.国外新型无伤害压裂液技术.国外油田工程,2000(11):4-6
    [92] 卢拥军.压裂液对储层的损害及其保护作用.钻井液与完井液,1995,12(5);36-43
    [93] 淡宜,陈山玉,刘卫,等.水基压裂液用HPG/PAM分子复合型稠化剂的研究.油田化学,2000,17(4):314-317
    [94] 卢拥军,陈彦尔,杜长虹.硼交联羟丙基瓜尔胶压裂液的综合性能.钻井液与完井液,1997,14(4):10-13
    [95] 任占春,孙慧毅,秦利平.羟丙基瓜尔胶压裂液的研究及应用.石油钻采工艺,1996,18(1):82-90
    [96] 卢拥军,方波,房鼎业等.粘弹性胶束压裂液的形成与流变性质.油田化学,2003,20(4):327-330
    [97] 丛连铸,崔明月,张睿达,等.水基压裂液现场实施质量控制技术.钻井液与完井液,2004,21(4):56-57
    [98] 刘敏,周福建,熊春明.原油基压裂液研究.石油勘探与开发,2003,30(2):104-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700