煤储层固—液—气相间作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于地层条件下煤储层固-液-气三相耦合体系的地质事实,以IS-100等温吸附解吸仪和MTS815型电液伺服岩石实验系统为主要实验平台,对采自新疆、肥城、鄂尔多斯和沁水盆地的煤样进行高压注水实验和等温吸附实验。发现储层条件下煤层中的液态水对煤基质吸附气体存在显著影响;从表面物理和界面化学层面,通过对范德华力、气相分子间作用力和煤基质表面作用势能定量分析,建立了煤储层固-液-气相间作用物理化学模型,揭示了不同实验条件煤吸附甲烷特征的物理化学机理。通过吸附扩散动力学分析和吸附扩散系数计算,揭示了不同压力和水分条件下的煤吸附甲烷的吸附扩散动力学特征。通过实验数据拟合和理论分析,区分出了Langmuir模型和Dubinin-Radushkevich模型的适应性条件。实验方法的改进和有关煤储层相间作用机理的揭示,将影响对煤层储气、产气的相关认识,对煤层气勘探开发生产有现实意义。
     煤储层固-液-气三相耦合体系煤吸附甲烷气体本质是以范德华力作用为主的物理吸附,吸附能力的大小取决于不同相态水分子影响下的煤分子与气体分子间作用力的大小。由于强氢键作用,平衡水煤样中气态水分子优先吸附于煤基质表面,使煤基质表面吸附势能较干燥煤样低。注水煤样中的液态水在高压下进入煤体孔裂隙内并润湿煤基质表面形成单分子层水膜,甲烷气体受到润湿煤基质和水膜的共同作用吸附在煤基质表面,此时煤分子与甲烷分子间范德华作用力相对于干燥煤样要小,而相对于平衡水煤样要大,煤基质表面吸附势能低于干燥煤样而高于平衡水煤样。对于不同煤级煤样,与孔隙结构相关的煤体润湿性决定了煤基质吸附甲烷气体能力大小。
     煤吸附甲烷实验过程中,煤的气体扩散速率决定了整个吸附实验过程的快慢。由于实验粒级小的煤样其总表面积大且扩散路径复杂,因而吸附扩散系数较粒级大的煤样小。对于不同煤级煤样,孔隙度大的煤样吸附扩散系数大,所以孔隙结构的变化是吸附扩散系数变化的主要原因。平衡水煤样中气态水的存在,增加了气体流动的介质粘度,降低了煤基质吸附甲烷的能力,扩散系数较干燥煤样低。注水煤样中的液态水润湿煤基质表面形成水膜,介质粘度较平衡水煤样偏差不大,但润湿煤基质和水膜的作用力较平衡水煤样高,吸附甲烷能力强,所以注水煤样的扩散系数较平衡水煤样高,但低于干燥煤样。
     所有的理论模型都有假设条件,所以Langmuir模型和Dubinin-Radushkevich模型适用的储层压力的范围和煤样的类型都不同。对于低煤级的含水煤样,Dubinin-Radushkevich模型适应的储层压力的范围大于Langmuir模型,所以Dubinin-Radushkevich模型适应性较好;而中高煤级的含水煤样Langmuir模型的拟合度较Dubinin-Radushkevich模型高,所以Langmuir模型适应性较好。
Based on the geology situation of solid-liquid-gas coupling system in coal reservoir under stratigraphic condition, the isothermal adsorption/desorption water system model (IS-100) and electrohydraulic servo rock system (MTS815) were used to carry out the injection experiments under high pressure and isothermal adsorption experiments using coal samples which are from Sinkiang, Feicheng, Ordos and Qinshui basin. The results suggested that the methane adsorbability of coal matrix is remarkably influenced by liquid water exist in coals. According to the quantitative analyses of Van der waals force, gas interaction force and superficial potential force of coal matrix, the physical chemistry model of solid-liquid-gas interaction in coal reservoir which revealed the physical chemistry mechanisms of coal adsorption under different experimental conditions, was established from the physic and chemistry point of view. Adsorption diffusion dynamic characteristics of methane adsorption were indicated under different pressure and water content by calculating the adsorption diffusion coefficient and analyzing the adsorption diffusion dynamic. Adaptability conditions of Langmuir and Dubinin-Radushkevich model were distinguished based on experimental fitting data and theory analyzing. Therefore, the improvement of experiment method and investigation of solid-liquid-gas interaction mechanism of coal reservoir will influence the understandings of gas storage and production, and these are significant to coalbed methane exploration and development.
     The essence of methane adsorption by coal is physical adsorption (mainly the Van der waals force) in the solid-liquid-gas coupling system, coal adsorption capacity is decided by the intermolecular force between coal and methane molecule which is influenced by different phase water. Gaseous water in moisture-equilibrated coal sample is easier to be adsorbed on the coal surface than that of methane because of the hydrogen bond, which makes adsorption potential of coal surface lower than that of dry coal sample. As for water injection sample, liquid water enters fissures and pores, making the coal surface wet and forming monomolecular water layer under high pressure. Then methane is absorbed on the coal surface because of the Van der waals force from wet coal matrix and water film. This Van der waals force between wet coal matrix and methane of water injection sample is lower than that between dried coal matrix and methane of dried sample but it is higher than the force of moisture-equilibrated sample, and so does superficial potential of water injection sample. Coal wettability, which is related with pore structure, determines the adsorption capacity of samples with regard to different coal rank. In adsorption experiment, adsorption diffusion rate of coal dominates the speed of methane adsorption process. Adsorption diffusion rate of big grain size sample is higher than small one which has bigger total surface area and the more complicated diffusion path. The diffusion rate of high porosity sample is higher than that of low porosity sample in different coal rank. Consequently, pore structure is the reason that mainly influences the adsorption diffusion coefficient of coal. Gaseous water in moisture-equilibrated sample increases the medium viscosity of gas moving and decreases coal adsorption capacity; therefore adsorption diffusion coefficient of mosiure-equilibrate sample is lower than that of dried coal sample. Liquid water in water injection sample wets coal surface and forms water film, and the medium viscosity of water injection sample is close to that of moisture-equilibrated sample. However, the interaction force of wetted coal matrix and water film of water injection sample is higher than the force of moisture-equilibrated sample, which leads to the adsorption diffusion rate of water injection sample higher than that of moisture-equilibrate sample but lower than diffusion rate of dried coal sample.
     Like all models, Langmuir and Dubinin-Radushkevich have their own hypothesis conditions which make them can be applied in different reservoir pressure ranges and different type coal samples. For low rank moisture-equilibrated and water injection sample, the adaptability of Dubinin-Radushkevich model is greater than that of Langmuir model because Dubinin-Radushkevich model can be applied in wider reservoir pressure range. However, for middle or high rank moisture-equilibrated and water injection sample, the adaptability of Langmuir moedel is greater than that of Dubinin-Radushkevich model for the fitting degree of Langmuir moedel is higher than that of Dubinin-Radushkevich model.
引文
[1] Glass A S,Larsen J W.Surface themodynamics for nonpolar adsorption on Illinois No.6 coal by inverse gas chromatography[J].Energy & Fuel,1993,7:994-1000.
    [2]陈昌国,魏锡文,鲜学福.用从头计算研究煤表面与甲烷分子相互作用[J].重庆大学学报,2000,23(3):77-83.
    [3]孙培德.煤与甲烷气体相互作用机理的研究[J].煤,2000,9(1):18-21.
    [4] Harpalani S , Pariti U M.Study of coal sorption isotherms using a multicomponent gasmixture[C].International Coalbed Methane Symposium,1993,151-160.
    [5]张遂安,叶建平,唐书恒等.煤对甲烷气体吸附—解吸机理的可逆性实验研究[J].天然气工业,2005,25(1):44-46.
    [6] Clarkson C R.Adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure[J].Carbon,1997,35:1689-1705.
    [7] Weishauptova Z,Medek J.Bound forms of methane in the porous system of coal[J].Fuel,1998,77:71-76.
    [8]吴俊.煤表面能的吸附法计算及研究意义[J].煤田地质与勘探,1994,22(2):18-23.
    [9]聂百胜,何学秋.煤的表面自由能及应用探讨[J].太原理工大学学报,2000,21(7):346-348.
    [10] Yang R T,Saunders J T.Adsorption of gases on coals and heated-treated coals at elevated temperature and pressure[J].Fuel,1985,64:610-620.
    [11] Nodzenski A.Sorption and desorption of gases (CH4,CO2) on hard coal and activated carbon at elevated pressures[J].Fuel,1998,78:1243-1246.
    [12]陈昌国,鲜晓红.温度对煤和炭吸附甲烷的影响[J].煤炭转化,1995,18(3):88-92.
    [13] Stevenson M D,Pinczewski W V. Adsorption/Desorption of multicomponent gas mixture at in-seam conditions[J].SPE,1991,741-756.
    [14] Laxminearayana Ch.Heat of methane adsorption of coal : implications for pore structure development[C].International Coalbed Methane Symposium,2001,151-162.
    [15]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130-131.
    [16]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [17]崔永君.煤对CH4、N2、CO2及多组分气体吸附的研究[D].陕西:煤炭科学研究总院西安分院,2003.
    [18]于洪观.煤对CH4、N2、CO2及其二元混合气体吸附特性、预测和CO2驱替CH4的研究[D].山东:山东科技大学,2005.
    [19]艾鲁尼AT著.唐修义,宋德淑,王荣龙译.煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社,1992.
    [20] Laxminarayana Ch,Crosdale P J.Modeling methane adsorption isotherms using pore filling models:a case study on India coals[C].International Coalbed Methane Symposium,1999a,117-128.
    [21]陈昌国,鲜晓红,张代钧等.微孔充填理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报,1998,21(2):75-79.
    [22]唐修义.有关煤层气几个基本问题的认识[J].煤田地质与探勘,1996,24(3):20-26.
    [23]赵志根,唐修义.对煤吸附甲烷的Langmuir方程的讨论[J].焦作工学院学报,2002,21(1):1-4.
    [24] Collins R E.New theory for gas adsorption and transport in coal[C].International Coalbed Methane Symposium,1991,525-531.
    [25]曾凡桂,郝玉英,赵玉兰等.煤吸附的高分子溶液理论[J].煤炭转化,1995,18(4):31-37.
    [26] Vishnyakov A,Piotrovskaya E M.Capillary condensation and melting/freezing transitions for methane in slit coal pores [J].Adsorption,1998,4:207-224.
    [27] Karacan C O,Okandan E.Assessment of energetic heterogeneity of coals for gas adsorption and its effect on mixture predictions for coalbed methane studies [J]. Fuel,2000,79:1963-1974.
    [28]朱自强.超临界流体技术[M].北京:化学工业出版社,2000.
    [29] Donohue M D,Aranovich G L.A new classification of isotherms for Gbiss adsorption of gases on solid[J].Fluid Phase Equilibria,1999.158-160,557-563.
    [30] Aranovich G L,Donohue M D.Adsorption of supercritical fluids[J].Journal of Colloid Interface Science, 1996,180:537-541.
    [31] Aranovich G L,Donohue M D.Predictions of multilayer adsorption using lattice theory[J].Journal of Colloid and Interface Science,1997,189:101-108.
    [32] Aranovich G L,Donohue M D.Vapor adsorption on microporous adsorbents[J].Carbon,2000,38:701-708.
    [33]杨晓东,林文胜,郑青榕等.超临界温度甲烷吸附的晶格理论及实验[J].上海交通大学学报,2003,37(7):1137-1140.
    [34] Findenegg G H et al..Physical adsorption of gases at high pressures:Argon and methane onto graphitized carbon black.Ber. Bunsenges[J].Phys. Chem.,1978,82:174-180.
    [35] Findenegg G H et al.Physical adsorption of krypton on graphite over a wide density range[J].Chem.Soc. Faraday Trans.,1982,2(78):1753-1764.
    [36] Findenegg G H.High pressure adsorption of gases on homogeneous surfaces.In:Fundamentals of Adsorption[C].Proceedings of the Engineering Foundation Conference.Schloss Elamu,Bavaria,West Germany,1983,207-218.
    [37]周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J] .中国科学(B辑),2000,30(1):49-56.
    [38]胡涛,马正飞,姚虎卿.甲烷超临界高压吸附等温线研究[J].天然气化工,2002,27:36-40.
    [39] Murata K,El-merraoui M.A new determination method of absolute adsorption isotherm of supercriticalgases under high pressure with a special relevance to density-function theory study[L].J Chemical Physics,2001,14(9):4196-4205.
    [40]张力,刑平伟.煤体瓦斯吸附与解吸特性研究[J].江苏煤炭,2000,4:18-20.
    [41]杨明莉.煤层甲烷变压吸附浓缩的研究[D].重庆大学,2004.
    [42]吴世跃.煤层气与煤层耦合运动理论及其应用的研究-具有吸附作用的固气耦合理论[D].东北大学,2005.
    [43] S.V. Kuznetsov,V.A.Bobin.Desorption kinetics during phenomena in collieries [J].Soviet Mining Science, 1987,23(2):159-168.
    [44] I.L.Ettinger..Solubility diffusion of methane in coal stata [J].Soviet Mining Science,1980,16(1):49-54.
    [45] A.M.M.Mendes , C.A.V.Costa , A.E.Rodrgues.Linear driving for isothermal non-isobaric diffusion/convection with binary Langmuir absorption [J].Gas Sep Purif,1995,9(4):259-268.
    [46] John H. Levy,Stuart J.Day,John S. Killngley.Methane capacities of Bowen Basin coals related to coal properties [J].Fuel,1997,76(9):813-819.
    [47] Waclaw Dziurzynski,Andrzej Krach.Mathematical model of methane emission caused by a collapse of rock mass crump [J].Archives of Mining Sciences,2001,46(4):433-449.
    [48]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社.1993,4:35-40.
    [49]王佑安,杨思敬.煤与瓦斯突出的某些特征[J].煤炭学报,1980(1):33-37.
    [50]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全,1981(11):46-49.
    [51]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性关系[J].煤矿安全,1982(7):16-21.
    [52]杨其銮.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [53]杨其銮,王佑安.瓦斯球向流动的数学模型[J].中国矿业大学学报,1988(4):44-48.
    [54]徐龙君,鲜学福,刘成伦等.突出区煤吸附甲烷特征的差异[J].煤炭转化,1998,21(4):44-48.
    [55]陈昌国.煤的物理化学结构和吸附(解吸)甲烷机理的研究[D].重庆大学博士论文,重庆大学,1995.
    [56]〔美国〕S.哈帕拉尼,S欧阳.测定煤的气体扩散特性的新技术[J].中国煤层气,1999,1:32-37.
    [57]陈昌国,鲜晓红,杜云贵,鲜学福.煤吸附与解吸甲烷的动力学规律[J].煤炭转化,1996,19(1):68-71.
    [58]李育辉,崔永君,钟玲文,降文萍.煤基质中甲烷扩散动力学特性研究[J].煤田地质与勘探,2005,33(6):31-34.
    [59]村田逞诠著.煤的润湿研究及应用[M].朱春笙,龚祯祥译.北京:煤炭工业出版社,1992.
    [60]何杰.煤的表面结构与润湿性[J].选煤技术,2000.5:13-15.
    [61]傅贵,张英华,邹得志.煤与纯水间平衡接触角的测量与分析[J].煤炭转化,1997,20(4):60-62.
    [62]傅贵,秦凤华,阎保金.我国部分矿区煤的水润湿性研究[J].阜新矿业学院学报(自然科学版),1997,16(6):666-669.
    [63]张晓宝,徐永昌,刘文汇等.吐哈盆地水溶气组分与碳同位素特征形成机理及意义[J].沉积学报,2002,200(4):705-709.
    [64]杨申镳.水溶性天然气勘探与开发[M].北京:是有大学出版社,1997.
    [65]张子枢.水溶气浅论[J].天然气地球科学,1995,6(5):29-34.
    [66]付晓泰、王振平、卢双舫.气体在水中的溶解机理及溶解度方程[J].中国科学,1996,26(2):124-130.
    [67]武晓春,庞雄奇,于兴河等.水溶气资源富集的主控因素及其评价方法探讨[J].天然气地球科学,2003,14(5):416-421.
    [68] Cramer,S.D. .Solubility of methane in brines from 0 to 300℃[J].Industrial Engineering Chemical Process Design and Development,1984,23:533-538.
    [69]刘朝露,李剑,方家虎等.水溶气运移成藏物理模拟实验技术[J] .天然气地球科学,2004,15(1):23-61.
    [70]张云峰.温压控制水溶气释放的模拟实验方法[J].石油实验地质,2002,24(1):77-81.
    [71]傅雪海,秦勇,杨永国等.甲烷在煤层水中溶解度的实验研究[J].天然气地球科学,2004,15(4):345-347.
    [72]傅雪海,秦勇,王万贵等.煤储层水溶气研究及褐煤含气量预测[J].天然气地球科学,2005,16(2):153-157.
    [73] Dhima A,Jcan C.H.Gerard M.Solubility of light hydrocarbon and their mixtures in pure water under high pressure[J].Fluid Phrase Equilibria,1998,145:129-150.
    [74]杨远聪,李绍基,朱江.水溶气-四川盆地新的天然气资源[J].西南石油学院学报,1993,15(1):16-22.
    [75]李本亮,王明明,冉启贵等.地层水含盐度对生物气运聚成藏的作用[J].天然气工业,2003,23(5):16-20.
    [76]王锦山,王力,刘明远等.水溶解煤层气的特征及规律试验研究[J].辽宁工程技术大学学报.2006,25(1):14-16.
    [77]郝石生,张振英.天然气在地层水中的溶解度变化特征及地质意义[J].石油学报,1993,14(2):12-21.
    [78]吴强,张保勇,王永敬.煤层存在瓦斯水合物的可能性[J].黑龙江科技学院学报,2006,16(3):135-138.
    [79]吴强,李成林,江传力.瓦斯水合物生成控制因素探讨[J].煤炭学报,2005,30(3):283-287.
    [80]吴强.煤层瓦斯水合物机理实验研究[D].徐州:中国矿业大学,2005.
    [81]吴强,梁栋.甲烷其他相态及其意义[J].辽宁工程技术大学学报,2004,23(3):426-429.
    [82] Buffett B.A. .Dissolved gas in the crude poriferousmedium form gassy hydrate[J].Marine Geology,2000,164(1):22-25.
    [83] Joubert J I,Grein C T,Bienstock D.Sorption by coal of methane at high pressures[J].Fuel,1955,34:449-462.
    [84] Levy J H,Day S J,Killingley J S.Methane capacities of Bowen Basin coals related to coal properties [J].Fuel,1997,74:1-7.
    [85] Bustin R M,Clarkson C R.Geological controls on coalbed methane reservoir capacity and gas content [J].Int J Coal Geol,1998,38(12):3-26.
    [86] Joubert J I,Grein C T,Bienstock D.Effect of moisture on the methane capacity of American coals [J].Fuel,1974,53:186-191.
    [87] Krooss B M,Bergen F,Gensterblum Y et al.High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J].Int J Coal Geol,2002,51:69-92.
    [88]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特征研究[J].煤炭学报,1999,24(4):566-570.
    [89]傅雪海,秦勇,李贵中等.特高煤级煤平衡水条件下的吸附试验[J].石油试验地质,2002,24(2):177-180.
    [90]马东明.煤储层的吸附特征实验综合分析[J].北京科技大学学报,2003,25(4):291-294.
    [91]钟玲文.煤的吸附性能及影响因素[J].地球科学-中国地质大学学报,2004,29(3):327-368.
    [92]聂百胜,段三明.煤吸附瓦斯的本质[J].中国矿业大学学报,1998,29(4):417-421.
    [93]聂百胜,何学秋,王恩元等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383.
    [94]贺天才,秦勇.煤层气勘探与开发利用技术[M].中国矿业大学出版社,2007.
    [95]桑树勋,朱炎铭,张时音等.煤吸附气体的固气作用机理I.煤孔隙结构与固气作用[J].天然气工业,2005,25(1):13-15.
    [96]朱履冰.表面与界面物理[M].天津:天津大学出版社,1992.
    [97]霍多特B B.煤与瓦斯突出[M].宋世钊等译.北京:中国工业出版社,1966.
    [98]洪世泽,孙士孝,刘玉龙.碳酸盐岩孔隙结构与退汞效率的研究[J].新疆石油地质.1986,7(3):54-62.
    [99]唐仁骐,曾玉华.岩石退汞效率几个影响因素的研究[J].石油实验地质.1994,16(1):84-92.
    [100]刘玉龙.关于毛细管压力回线测定与分析的几个问题[J].石油实验地质.1987,9(3):281-286.
    [101]程传煊.表面物理化学[M].北京:科学技术文献出版社,1995.
    [102] Yalcin E,Durucan S.Methane capacities of Zonguldak coals and the factors affecting methane adsorption[J].Mining Science & Technology.1991,13(2):215-222.
    [103]桑树勋,朱炎铭,张井等.液态水影响煤吸附甲烷的实验研究:以沁水盆地南部煤储层为例[J].科学通报,2005,50(增1):70-75.
    [104]宋岩,张新民等.煤层气成藏机制及经济开采理论基础[C].北京:科学出版社,2005.
    [105]恽正中,王恩信,完利祥.表面与界面物理[M].成都:电子科技大学出版社.1993.
    [106] Anna Marzec.Towards an understanding of the coal structure: a review [J].Fuel Processing Technology,2002,77–78.
    [107] K.H. van Heek.Progress of coal science in the 20th century[J].Fuel,2000,79:1–26.
    [108] [阿根廷]德鲁·迈尔斯著.表面、界面和胶体-原理及应用[M].吴大诚,朱谱新,王罗新等译.北京:化学工业出版社,2005.
    [109]段世铎,谭逸玲.界面化学[M].北京:高等教育出版社,1990.
    [110] [美] A.W.亚当森.表面的物理化学(上册)[M].顾惕人译.北京:科学出版社,1984.
    [111] [美]Prausnitz J M, Lichenthaler R N, Azevedo G.流体相平衡的分子热力学(第二版)[M].骆赞椿,吕瑞东,刘国杰,等译.北京:化学工业出版社,1990.
    [112]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993.
    [113]黄祖洽,丁鄂江.表面浸润和浸润相变[M].上海科学技术出版社,1994.
    [114]周公度,段联运.结构化学基础(第三版)[M].北京:北京大学出版社,2002.
    [115]王青松,金龙哲,孙金华.煤层注水过程分析和煤体润湿机理研究[J].安全与环境学报,2004,4(1):70-73.
    [116]桑树勋,秦勇,郭晓波等.准噶尔和吐哈盆地侏罗系煤层气储集特征[J].高校地质学报,2003,9(3):365-372.
    [117]周亚平,周理.超临界氢在活性炭上的吸附等温线研究[J] .物理化学学报,1997,13(2):119-127.
    [118]崔永君,李育辉,张群等.煤吸附甲烷的特征曲线及其在煤层气储集研究中的作用[J].科学通报,2005.50(I):76-81
    [119]苏现波,林萌,林晓英等.吸附势理论在煤层甲烷吸附中的应用[J].中国煤层气,2006,3(2):28-30.
    [120]苏现波,刘国伟,郭盛强等.甲烷在煤表面的吸附势与煤级的关系[J].中国煤层气,2006,3(3):21-23.
    [121]黄迅,韩宝华,顾国维等.理论等温方程式在CS2-ACF静态吸附体系的应用[J].上海环境科学,1992,11(4):17-21.
    [122] Dubinin M.The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J].Chem Rev,1960,60:235-241.
    [123]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990;27 (4):29-35.
    [124]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [125]时钧,余国琮,陈敏恒,汪家鼎.化学工程手册(第二版)[M].北京:化学工业出版社,1996.
    [126]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20-22.
    [127]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,10(6):24-28.
    [128]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-4.
    [129]张庆玲,崔永君,曹利戈.煤的等温吸附实验中各因素影响分析[J].煤田地质与勘探,2004,32(2):16-19.
    [130]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994.
    [131]于洪观,范维唐,孙茂远,叶建平.煤中甲烷等温吸附模型的研究[J].煤炭学报,2004,29(4):463-467.
    [132]崔永君.煤等温吸附特性测试中体积校正方法探讨[J].煤田地质与勘探,1999,27(5):29-32.
    [133]崔永君,杨锡禄.多组分等温吸附测试中的体积校正方法探讨[J].煤田地质与勘探,2001,29(5):25-27.
    [134]张庆玲,曹利戈.煤的等温吸附测试中数据处理问题研究[J].煤炭学报,2003,28(2):131-135.
    [135]朱(王步)瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996.
    [136]张和平,李国英.用低温氮吸附法表征炭载体及Pd/C催化剂的织构[J].石油学报,1995,11(2):44-50.
    [137]张新民,张遂安,钟铃文等.中国的煤层甲烷[M].西安:陕西科学技术出版社,1991.
    [138]孙茂远,黄盛初等.煤层气开发利用手册[M].北京:煤炭工业出版社,1998.
    [139]张遂安.有关煤层气开采过程中煤层解吸作用类型的探索[J].中国煤层气.2004,1(1):26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700