山西沁水盆地高煤阶煤层气成藏特征及构造控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的含煤盆地多具有复杂的演化史和构造变形史,煤的变质作用类型复杂且多经历过多阶段变质演化与多热源叠加变质作用,煤储层物性差异较大、且孔渗性与含气饱和度大多偏低,构成我国煤储层性质的主要缺陷。本文通过收集大量煤田地质、天然气地质和煤层气地质资料,采集煤岩、砂泥岩、灰岩、岩浆岩样品,选择山西省东南部沁水盆地典型地区(阳城、霍山、沁源)建立沁水盆地沉积埋藏史模型,确定了煤层气成藏关键时刻;开展大量测试分析与实验模拟,确定了构造热事件在煤层气富集成藏中扮演的作用;研究渗透性的控制因素,寻找有效的高渗区预测方法;开展高煤阶煤层气成藏综合模拟,确定高煤阶煤层气成藏特征及成藏优势。
    建立起来一套具有独立知识产权的煤层气成藏模拟实验装置,申请专利两项,其中发明专利一项(200420093572.0),实用新型一项(200410074732.1),开展大量物理模拟实验,形成了若干煤层气勘探开发中的部分机理上的新认识。如煤层气藏开采过程中的降压基质膨胀二元论、煤层气原地状态的突破参数、运聚压差、水对煤层气藏的溶解作用等等,在生产和科研中取得了很好的应用效果。提出煤层气成藏的“关键时刻“定义,即煤层最后一期生烃后上覆有效厚度在地史上埋藏最小的时刻。通过正演、反演和模拟实验明确提出演化程度最高的地质时期决定了煤层气的地化特征,是决定煤层气地球化学特征的关键地质时期。用正演和反演相结合的方式探讨“关键时刻”的温、压条件;结合聚气历史明确指出煤层的聚气量与煤层气藏演化的“关键时刻”有关。
    系统提出高煤阶由于受异常热事件的影响,一方面促进煤层气大量生成,同时改善了储层物性,形成煤层气高产富集区。提出物性变化二元论规律,高煤阶随着系统压力降低,割裂隙压力降低,上覆压力相对增大,裂隙闭合渗透率降低。低煤阶随着压力的降低,基质在卸压状态下不断膨胀,造成孔隙增大,基质渗透率增大,也就是说随着煤层气排采工作的进行,煤层物性不断变好。利用现代构造应力场主应力差值及应力方向与试井渗透率之间的耦合关系,开展高渗区域预测。
    总结了中国高变质无烟煤成藏特征及成藏优势。中国高变质无烟煤成藏特征主要集中在六个方面:(1)煤层气成因以原生和次生热成因煤层气为主;(2)煤阶高,煤层吸附量大,含气量高;(3)变质程度高,煤层基质致密,物性偏低;(4)构造热事件和构造应力场对煤层物性影响较大;(5)滞流水区域为富气区;(6)成藏过程复杂。成藏优势包括:(1)煤变质程度高,生气量大,煤吸附能力强,含气量大;(2)构造热事件和构造应力场对煤层物性影响较大;(3)滞流水和高矿化度区域煤层气保存条件好,利于煤层气保存和排水降压开采。
Main limitations of reservoir property of coal-bed methane (CBM) in China include as following: Generally coal-bearing basins have complex history of evolution and tectonism; Type of coal metamorphism is complex and coal undergone through multi-periods metamorphic evolution and superimposed metamorphism of multi-thernal source; Physical property of different coal reservoir is diverse and the porosity, permeability and gas saturation are usually low. On the basis of collecting large amount of geological data of coal field, natural gas and CBM, samples of coal, sand-shale, limestone and magmatite, this paper selects typical districts (Yangcheng, Huoshan and Qinyuan) of Qinshui basin in the southeast of Shanxi province and sets up model of sedimentary and burial history, determined key period of CBM reservoir formation. The great deals of test analysis and experiment simulation have been carried out and function of tectono-thermal event in CBM reservoir formation has been determined, in which it also studies the control factors of permeability and looks for valid prediction method of high-permeability area. At the same time comprehensive simulation of reservoir formation of high rank CBM has been carried out to determine characteristic and predominance of reservoir formation.
    A set of simulation experiment device of CBM reservoir formation with absolute intellectual property right was established and two patents were applied including an invention patent and a practical patent. A lots of physical simulation experiments were carried out and several new understandings about mechanism of CBM exploration and development were obtained and won good application effect in production and scientific research, such as dualism of pressure-relief and matrix expansion in the process of CBM production, breakthrough parameter and pressure difference of migration and accumulation of CBM in place, dissolving function of water to CBM. Definition of “Key moment”was presented that is the moment when buried depth i.e. effective thickness of overlying strata is minimum in geological history after last time of hydrocarbon formation in coal bed. The forward, backward consequence and modeling experiments show that geologic time when evolution degree is highest determines geochemical feature of CBM. This paper discussed condition of temperature and pressure in “Key moment”in combination with forward and backward consequence, and pointed out definitely that quantity of gas accumulation is correlative to “Key moment”of CBM reservoir evolution combined with gas accumulation history. This study shows that high coal rank will accelerate the large amount of CBM generation and improve physical properties of reservoir and to form CBM enriched area, influenced by abnormal thermal event. Different variable laws of physical properties were proposed: For high rank coal, with the reduction of system pressure, fissure pressure will decrease; overlying pressure will increase comparatively; and closure of fissure leads to the decreasing of permeability. On the contrary, for low rank coal, with the reduction of system pressure, matrix will expanse continuously in the state of pressure-relief, which results to the increase of pore diameter and matrix permeability, that is, with the production of CBM, physical properties of coal reservoir will become better. Prediction of high permeability area was developed to use the coupling relationship between the orientation of maximum principal compression stress, differential stress magnitude of recent tectonic stress field and permeability in test hole.
    The characteristics and predominance of reservoir formation for high metamorphic anthracite in China were summarized. Predominances include following three parts: 1. If metamorphosis degree is high, then amount of generated gas is large, adsorption capacity of coal is strong and gas content is high; 2. The tectono-thermal event and stress field will greatly affect on physical properties of coal reservoir; 3. The preserved condition of CBM, existed occluded water and high salinity water in the area, will be good, in which is beneficial to the preservation and production of CBM with pressure-relief methods by water draining.
引文
[1] 曹代勇等,沁水煤田东部构造特征研究-兼论资源勘探阶段地质构造综合研究方法,重庆大学出版社,1996 年
    [2] 陈刚,1998 年,沁水古生界天然气圈闭条件分析,西北地质19(4):55-58
    [3] 戴金星, 裴锡古, 戚厚发主编. 中国天然气地质学(卷一). 北京: 石油工业出版社, 1992
    [4] 樊明珠, 王树华. 煤层气勘探开发中的割理研究. 煤田地质与勘探, 1997, 25(1): 29-32
    [5] 傅家谟, 刘德汉, 盛国英主编. 煤成烃地球化学. 北京: 科学出版社, 1990
    [6] 傅雪海. 多相介质煤岩体物性的物理模拟与数值模拟[博士学位论文]. 徐州: 中国矿业大学, 2001
    [7] 傅雪海, 秦勇, 薛秀谦等. 煤储层孔隙—裂隙系统分形研究. 中国矿业大学学报, 2001, 30(3): 225~228
    [8] 郝石生鄂尔多斯盆地中部气田聚集条件与运聚动平衡,中国科学.1996,26(6):488-492
    [9] 李国平等天然气封盖层研究与评价,北京:石油工业出版社,1996
    [10] 李明潮, 张五侪主编. 中国主要煤田的浅层煤成气. 北京: 科学出版社, 1990
    [11] 李明诚,2001,沉积盆地中的流体,石油学报, 22(4):13-17
    [12] 李剑、胡国艺等中国大中型气田天然气成臧物理化学模拟研究石油工业出版社2001
    [13] 李明宅.沁水盆地煤层气勘探及地质分析. 天然气工业,2000,20(4):24~26
    [14] 李文阳等.中国煤层气地质评价与勘探技术新进展.中国矿业大学出版社(徐州).2001
    [15] 李文阳等.中国煤层气勘探与开发.中国矿业大学出版社(徐州).2003
    [16] 刘方槐等.油气田水文地质学原理.石油工业出版社.1991
    [17] 刘洪林等,2004,中国高煤阶地区的煤层气勘探理论与实践石油实验地质26(5):411-414
    [18] 刘焕杰,秦勇, 桑树勋. 山西南部煤层气地质. 徐州: 中国矿业大学出版社, 1998
    [19] 吕志发.煤微孔隙特征及其影响因素.中国矿业大学学报,1991;20(3):45~547
    [20] 宁正伟,陈霞.华北石炭二叠系煤化变质程度与煤层气储集性的关系.石油与天然气地质,1996,17(2):156-159
    [21] 钱凯,赵庆波,汪泽成. 煤层甲烷勘探开发理论与实验测试技术. 北京:石油工业出版社,1997.
    [22] 秦勇, 宋党育, 王超. 山西南部晚古生代煤的煤化作用及其控气特征. 煤炭学报, 1997, 22(3): 230~235
    [23] 秦勇, 宋党育. 山西南部煤化作用及其古地热系统—兼论煤化作用控气地质机理. 北京: 地质出版社, 1998
    [24] 秦勇, 傅雪海, 叶建平等. 中国煤储层岩石物理学因素控气特征及机理. 中国矿业大学学报, 1999, 28(1): 14~19
    [25] 秦勇. 中国高煤级煤的显微岩石学特征及结构演化. 徐州: 中国矿业大学出版社, 1994
    [26] 秦勇. 中国煤层气勘探开发所面临的的若干科学问题. 见: 中国煤层气研究与勘探进展(二). 赵庆波, 张建博主编. 徐州: 中国矿业大学出版社, 2003
    [27] 任战利,赵重远,陈刚. 1999. 沁水盆地中生代晚期构造热事件. 石油与天然气地质,20(1):46-48.
    [28] 桑树勋,刘焕杰,李贵中,韦重韬. 1997. 煤层气生成与煤层气富集I:有效阶段生气量与煤层气富集. 煤田地质与勘探,25(6):14-17.
    [29] 山西煤田地质局,山西省煤层气资源评价,1992 年
    [30] 汤达祯. 煤变质演化与煤成气生成条件. 北京: 地质出版社, 1998
    [31] 唐书恒.煤储层渗透性影响因素探讨.中国煤田地质,2001,13(1):28-30
    [32] 王洪林, 唐书恒, 林建法主编. 华北煤层气储层研究与评价. 徐州: 中国矿业大学出版社, 2000
    [33] 王红岩,李景明2003,中国煤层气可利用经济储量预测与发展前景石油勘探与开发,.230(1):15-17
    [34] 王红岩等. 2003,中国煤层气富集成藏规律,天然气工业,24(5):11-13
    [35] 王红岩等,2004,煤层气储量计算方法及应用,天然气工业,24(7):26-28
    [36] 王红岩等煤层气富集成藏规律北京:石油工业出版社, 2005
    [37] 王红岩,钱凯等.煤层气勘探研究进展.中国煤层气.2004,7(1):34-36
    [38] 万天丰. 中国东部中、新生代板内变形构造应力场及其应用. 北京: 地质出版社, 1993
    [39] 韦重韬,秦勇,傅雪海,姜波,李贵中,宋党育,焦思红. 2002. 沁水盆地中南部煤层气聚散史模拟研究. 中国矿业大学学报,31(2): 146-150.
    [40] 杨起, 韩德馨主编. 中国煤田地质学(上册). 北京: 煤炭工业出版社, 1979
    [41] 杨起主编. 中国煤变质作用. 北京: 煤炭工业出版社, 1996
    [42] 叶建平,秦勇,林大扬主编.中国煤层气资源.徐州:中国矿业大学出版社,1998
    [43] 张建博,王红岩,赵庆波.中国煤层气地质. 北京:地质出版社,2000
    [44] 张建博,王红岩. 1998. 沁水盆地煤层气有利区预测. 江苏徐州:中国矿业大学出版社.
    [45] 张建博,陶明信. 2000. 煤层甲烷碳同位素在煤层气勘探中的地质意义—以沁水盆地为例. 沉积学报,18(4):611-614.
    [46] 张建博, 陶明信. 煤层甲烷碳同位素在煤层气勘探中的地质意义. 沉积学报, 2000, 18(4): 611~614
    [47] 张义纲等油气运移及其聚集成藏研究南京:河海大学出版社1997
    [48] 张有生, 秦勇, 陈家良. 煤储层渗透率的非均质模型. 中国矿业大学学报, 1998, 27(1): 43~46
    [49] 张新民, 张遂安, 钟玲文等. 中国煤层甲烷. 西安: 陕西科学技术出版社, 1991
    [50] 张新民,庄军,张遂安主编.中国煤层气地质与资源评价,北京:科学出版社,2002
    [51] 张胜利,陈晓东. 控制煤层气含量及可采性的主要地质因素. 天然气工业,1997,17(4):15~19
    [52] 张晓宝, 徐永昌, 刘文汇, 沈平, 吉利明, 马立元. 吐哈盆地水溶气组分与碳同位素形成机理及意义探讨. 沉积学报. 2002,20(4):705-709.
    [53] 赵孟军,宋岩,苏现波,等.决定煤层气地球化学特征的关键地质时期. 天然气工业,2005,25(1):51-54.
    [54] 赵庆波等煤层气勘探开发技术.北京:石油工业出版社,1997 年
    [55] 赵庆波等《中国煤层气勘探》,石油工业出版社,2001 年
    [56] 钟玲文, 张新民, 1990. 煤的吸附能力与其煤化程度和煤岩组成间的关系. 煤田地质与勘探,27(4): 29-35.
    [57] 周荣福, 傅雪海, 秦勇, 叶建平, 唐书恒, 2000. 我国煤储层等温吸附常数分布规律及其意义. 煤田地质与勘探,28(5): 23-25.
    [58] 朱峰. 1999. 山西沁水煤田煤层气分布特征与开发前景分析. 中国煤田地质,11(2):32-53.
    [59] 邹艳荣, 杨起, 刘大锰. 华北晚古生代煤二次生烃的动力学模式. 地球科学(中国地质大学学报), 1999, 24(2): 189~192
    [60] Close J C. Natural Fracture in Coal. In: Hydrocarbons from Coal, Law B E and Rice D D (eds), AAPG Studies in Geology #38, 1993. 119-132
    [61] Dembicki H Jr et al.1989.Secondary Migration of Oil Experiments Supporting Effient Movement of Separate,Buoyant Oil Phase Along Limited conduits.AAPG,73:1018~1021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700