长江口淤泥质潮滩高程遥感定量反演及冲淤演变分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淤泥质潮滩作为陆海相互作用的敏感地带,滩面泥泞、潮沟密布、变化频繁,常规地形测量难度较大。由于淤泥质潮滩具有一些能被可见光和近红外传感器探测到的特征,所以遥感技术为其地形信息提取和定量反演提供了广阔的前景。
     本论文首先利用多时相卫星影像资料及海图资料,结合实地调查完成了上海市不同时期的滩涂资源解译工作,统计结果为探明上海市滩涂资源总量及其变化规律提供了科学依据。
     利用遥感水边线方法和数值模型建立淤泥质潮滩的数字高程模型(DEM)。作者在分析长江口区不同浓度水体与背景地物光谱特征的基础上,利用多时相卫星遥感影像,采用决策树方法及区域增长算法提取水边线信息,提高了水边线提取效率和精度。利用国际上成熟的水动力数值模型(Delft-3D)模拟卫星过境时刻的潮位。最后,对具有高程值的水边线系列利用不规则三角网(TIN)完成插值,生成潮滩的数字高程模型。将得到的初始高程模型输入水动力模型,细化原来的地形条件重复运行模型,并将模型结果与水边线提取结果对比,进一步微调潮滩地形,直到模型模拟的水边线与卫星影像提取的水边线满足精度要求为止。作者以九段沙为主要研究对象,为消除潮滩冲淤变化的影响,选取相近年份的遥感数据为数据源,利用上述方法建立了不同时间段内的潮滩高程模型,并通过对比分析研究了长江口深水航道工程对九段沙冲淤演变的影响。
     以多时相高分辨率航空影像为数据源,在分析潮滩的动力沉积、动力地貌和光谱信息特征的基础上,进行了崇明东滩潮沟信息的提取。根据上述的提取结果研究了Horton定律在崇明东滩潮沟系统中的适用条件,并利用Horton定律及分形分维理论从定量角度分析潮沟形态变化。利用水边线高程反演技术,结合实测潮沟宽深比资料实现了潮沟地形反演,使潮滩地形得到更精细的刻画。
     利用大量的实测植被光谱及生态调查数据,利用主成份分析方法(PCA)分析了潮滩植被光谱信息与生态环境因子的关系,并以此为基础将植被覆盖度指数(FVC)、潮滩高程、潮沟等信息作为植被分类的辅助信息。在植被初次分类的基础上,构造模糊矩阵,根据辅助信息对不同植被类型的隶属关系对误分的像元进行二次分类,从而提高了潮滩植被分类的精度。
     为了得到潮滩的沉积速率,本文利用不同年份的水边线位置和实测的高程剖面,计算了潮滩不同部位的多年平均沉积速率,并分析了潮滩冲淤的空间差异及影响因素。结合上述高程反演及平均冲淤速率计算结果,探讨崇明东滩高程及沉积速率之间的相互关系。根据植被信息提取结果,研究了崇明东滩植被对潮滩沉积速率的影响,同时根据野外实测光滩区及植被区的流速、流向及悬沙浓度特征进一步研究了植被对潮滩地貌演化的影响。
     论文最后探讨了空间可视化技术,利用地理信息系统三维可视化功能对潮滩地形及近岸潮位、流场模拟结果进行了虚拟表达,为海洋科学研究人员进行深入、综合分析提供了技术支持。
As a sensitive belt of sea and land interaction, silt tidal flat is characterized as muddy surfaces, densely covered and frequently varied tidal creeks. Therefore, the traditional field observation has been restricted by the difficulty of access. Remote sensing, combined with in situ surveying, is an effective tool for monitoring the tidal flats which can be detected by visible and near infrared sensors.
     On the basis of field survey, multi-temporal remote sensing data and navigational maps were used to interpret wetland in Shanghai, which provide timely data (i.e. amounts and changes of wetland resource) for scientific management on coastal regions.
     Waterline method and hydrodynamic model were investigated to construct Digital Elevation Model (DEM). According to spectral characteristics of tidal flat and nearshore water body, a decision tree model and region growing method were applied in detecting waterline with improved accuracy. A series of waterlines were extracted from multi-temporal remotely sensing images by above approach. The assignment of an elevation to the waterline was performed according to hydrodynamic model(Delft3D) at the satellite overpass. The waterlines labeled elevation were used to construct DEMs (Digital Elevation Model). This initial DEM was then used to refine the topography in the intertidal zone, and the model was re-run to produce improved water levels and a new DEM. This procedure was iterated by comparing modeled and actual waterlines until no further improvement occurred. Jiuduansha Island with rapid evolution was selected as study area, and multi-temporal remote sensing images ware divided into different groups which spanned a short period to eliminate the error of the dynamics of mudflat. Then the generated DEMs, built by above method, were compared to evaluate the effects of the construction of Deep Water Channel Project (DWCP) at the north of Jiuduansha shoals.
     Based on the dynamic nature and spectral information of tidal flat, tidal creeks were extracted from high resolution aerial images, on which whether Horton law has general applicability was analyzed. Then Horton law and fractal dimension were applied in quantifying geomorphic changes. The topography of tidal creeks was also acquired using remote sensing waterline method and measured width-depth ratios.
     Paired measurements of saltmarsh community and spectral characteristics were carried out and were then ordinated using Principal Component Analysis (PCA). According to the relationship between vegetation spectrum and environmental factors, vegetation cover, elevation of tidal flat and tidal creeks were selected as additional information for vegetation classification. With the fuzzy matrix and previous classification, the second classification was made on the error pixels in terms of fuzzy membership function of different vegetation and additional information. The results indicated this approach obviously improved the accuracy of vegetation classification.
     Heighted waterlines and corresponding field measurements were employed to acquire the mean annual accretion/erosion rate between satellite and survey time. We also studied the accretion/erosion pattern and factors which influenced the evolution of tidal flat. The interactions of between vegetation and tidal elevation were also investigated according to the extracted vegetation and inversed DEM at Dongtan. To analyze the impacts of vegetation on hydrodynamics, tidal current and suspended sediment concentration were measured and compared at vegetation and unvegetation fields respectively. The interaction of the accretion/erosion rate and extracted vegetation using remote sensing method showed the same conclusion with which was made by field survey.
     At last, 3D visualization of tidal flat, tidal level and nearshore flow field were implemented by the field visualization technique of GIS, which made marine scientist more intuitionistic understanding the hydrodynamic process at coastal region.
引文
[1] Olsen S, P Christie.(2000),What are we learning from tropical coastal management experiences. Coastal Management,28,52-81.
    [2] Shi, Z and Chen, J.Y. (1996), Morphodynamics and sediment dynamics on intertidal mudflats in China (1961-1994). Continental Shelf Research, 16(15), 1909-1926.
    [3] 任明达,柳林,王安龙.粉砂淤泥质潮滩的多波段与多时相卫片解译.海洋学报,1990,12(6):741-748。
    [4] Pritchard,D., Hogg,A.J and Roberts, W.(2002), Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents. Continental Shelf Research, 22, 1887-1895.
    [5] 仲德林,申宪忠.潮间带地形测量新途径.海岸工程,1998,17(1):64-66.
    [6] Mason,D.C.,Davenport,I.J.,Flather, R.A., Gurney, C., Robinson, G. J and Smith, J. A.(2001),A sensitivity analysis of the waterline method of constructing a DEM model for intertidal Area In ERS SAR scene of Eastern England. Estuarine, Coastal and Shelf Science,53,759-778.
    [7] 韩震,恽才兴.伶仃洋大铲湾潮滩冲淤遥感反演研究.海洋学报,2003,25(5):58-64.
    [8] Chen, L. C and Rau, J. Y. (1998), Detection of shoreline changes for tideland areas using multi-temporal satellite images.International Journal of Remote Sensing,19(17), 3383-3397.
    [9] Bush, David M., Neal, William J.,Young, Robert S and Pilkey, Orrin H.(1999), Utilization of geoindicators for rapid assessment of coastal-hazard risk and mitigation. Ocean & Coastal Management,42, 647-670.
    [10] Blodget.H.W.,Taylor.P.T and Roark.J.H.(1991),Shoreline changes along the Rosetta-Nile Promontory:Monitoring with satellite observations.Marine Geology, 99,67-77.
    [11] Donoghe,D.N.M.,Thomas D.C.R and ZONG, Y.(1994),Mapping and Monitoring the intertidal zone of the east coast of England using remote-sensing techniques and a coastal monitoring GIS. Marine Technology Society Journal,28(2), 19-29.
    [12] Mason, D. C., Davenport, I and Flather, R. A. (1997),Interpolation of an intertidal digital elevation model from heighted shorelines: a case study in the western Wash. Estuarine, Coastal and Shelf Science,45,599-612.
    [13] Mason, D. C., Davenport, I., Flather, R. A and Gurney, C. (1998),A digital elevation model of the intertidal areas of the Wash produced by the waterline method.
    International Journal of Remote Sensing,19,1455-1460.
    [14]Mason,D.C.,Amin,M.,Davenport,I.J., Flather, R. A., Robinson, G. J and Smith, J. A. (1999),Measurement of recent intertidal sediment transport in Morecambe Bay using the waterline method.Esturine,Coastal and Shelf Science,49,427-456.
    [15]Frihy,O.E.,Dewidar, Kh. M.,Nasr,S.M and El Raey,M.M.(1998),Change detection of the northeastern Nile Delta of Egypt: shoreline changes, Spit evolution, margin changes of Manzala lagoon. International Journal of Remote Sensing, 19(10), 1901-1912.
    [16]E1 Raey, M.M., Sharaf El-Din,S.H., Khafagy, A.A and Iabo Zed A.(1999), Remote sensing of beach erosion/accretion patterns along Damietta-Port Said shoreline,Egypt. International Journal of Remote Sensing,20(6), 1087-1106.
    [17]Alberotanza, L., Brando,V.E and Ravgnan,G.(1999),Hyperspectral aerial images: a valuable tool for submerged vegetation recognition in the Orbetello Lagoons, Italy. International Journal of remote sensing,20(3),523-533.
    [18]Kevin, W and El Asmar,H.M. (1999),Monitoring changing position of coastlines using thematic mapper imagery, an example from the Nile Delta. Geomorphology, 29,93-105.
    [19]Lohani,B and Mason,D. C. (1999), Construction of a digital elevation model of the Holderness Coast using the waterline method and airborne thematic mapper data. International Journal of Remote Sensing,20(3),593-607.
    [20]Joo-Hyung Ryu.,Joong-Sun Won and Kyung Duck Min.(2002),Waterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, Korea. Remote Sensing of Environment,28,442-456.
    [21]Joo-Hyung Ryu., Young-Ho Na., Joong-Sun Won and Doerffer,Roland.(2004), A critical grain size for Landsat ETM+ investigations into intertidal sediments: a case study of the Gomso tidal flats, Korea. Estuarine, Coastal and Shelf Science,60, 491-502.
    [22]Marco Marani.,Stefano Lanzoni and Sonia Silvestri.(2004),Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. Journal of Marine Systems,51,191-210.
    [23]Sonia Silvestri.,Marco Marani and Alessandro Marani.(2003),Hyperspectral remote sensing of salt marsh vegetation,morphology and soil topography. Physics and Chemistry of the Earth,28,15-25.
    [24]Sonia Silvestri,Andrea Defina and Marco Marani.(2005),Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science, 62, 119-130.
    [25] Bockelmann, Anna-C., Bakker, Jan R, Neuhaus, Reimert and Lage, Jochim. (2002), The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh. Aquatic Botany, 73, 211-221.
    [26] 恽才兴,益建芳,陈希海.遥感图像在河口演变及沿海潮滩调查研究中的应用.海洋调查,1986,(2):37-47。
    [27] 恽才兴,任友谅,益建芳.卫星遥感在丹东新港选址中的应用.陈吉余著.中国海岸带发育过程和演变规律.上海:上海科学技术出版社,1989:384-392.
    [28] 吴家乃.遥感图像在海岸带测图中的应用.河海大学学报,1991,19(2):99-103.
    [29] 黄海军,李成治.莱州湾潮滩地物光谱特征研究.海洋科学,1993,(3):36-38.
    [30] 陆惠文,杨裕利.烟台市海岸带遥感研究.武测科技,1995,(4):38-41.
    [31] 黄增,于开宁.秦皇岛市海岸线侵淤变化规律研究.河北地质学院学报,1996,19(2):136-143.
    [32] 王贵明,董裕国.珠江韩江三角洲海岸变迁遥感解译对比研究.海洋科学,1997,(4):50-53.
    [33] 张鹰,丁贤荣,王文.水深遥感与潮滩地形冲淤变化分析.港口工程,1998(2):26-30.
    [34] 赵锐.长江三角洲地区卫星遥感动态决策咨询系统.中国航天,1999(4):6-7.
    [35] 赵庚星,张万清,李玉环等.GIS支持下的黄河口近期淤、蚀动态研究.地理科学,1999,19(5):442-445.
    [36] 庞家珍,姜明星,李福林.黄河口径流、泥沙、海岸线变化及发展趋势.海洋湖沼通报,2000,4:1-6.
    [37] 杨金中,李志中,赵玉灵.杭州湾南北两岸岸线变迁遥感动态调查.国土资源遥感.2002(1):23-28.
    [38] 蔡则健,吴曙亮.江苏海岸线演变趋势遥感分析.国土资源遥感,2002(3):19-23.
    [39] 韩震,恽才兴,蒋雪中等.温州地区淤泥质潮滩冲淤遥感反演研究.地理与地理信息科学,2003,19(6):31-34.
    [40] 黄海军,樊辉.1976年黄河改道以来三角洲近岸区变化遥感监测.海洋与湖沼,2004,35(4):306-314.
    [41] 张华国,郭艳霞,黄韦艮等.1986年以来杭州湾围垦淤涨状况卫星遥感调查.国土资源遥感,2005(2):50-54.
    [42] 何青,恽才兴.遥感在海岸岸滩稳定性分析中的应用.海洋学报,1999,21(5):87-94.
    [43] 马荣华,杨桂山,陈雯等.长江江苏段岸线资源评价因子的定量分析和综合评价. 自然资源学报,2004,19(2):176-182.
    [44] 黄家柱.遥感与地理信息系统技术在长江下游江岸稳定性评价中的应用.地理科学,1999,19(6):521-524.
    [45] 卢晓东,刘旭,谷洪钦.卫星遥感技术在泥沙运动及岸滩稳定分析中的应用.电力勘测,2000,(1):20—25.
    [46] 王传胜,王开章.长江中下游岸线资源的特征及其开发利用.地理学报,2002,57(6):693-700.
    [47] 姜义,李建芬,康慧.渤海湾西岸近百年来海岸线变迁遥感分析.国土资源遥感,2003(4):54-58.
    [48] 黄鹄,陈锦辉,张丽娟.苏北南部淤泥质岸滩稳定性分析.广西科学.2005,12(3):197-199.
    [49] 韩震.海岸带淤泥质潮滩和II类水体悬浮泥沙遥感信息提取与定量反演研究.博士学位论文.2004.
    [50] 陈基炜,梅安新,袁江红.从海岸滩涂变迁看上海滩涂土地资源的利用.上海地质,2005,(1):18-20.
    [51] 王晓云,郭文利.利用“3S”技术进行北京地区土坡水分监测.应用气象学报,2002,13(4):422-429.
    [52] 赵英时等.遥感应用分析原理与方法.北京:科学出版社,2003.
    [53] 《海洋大辞典》编辑委员会.海洋大辞典.沈阳:辽宁人民出版社,1998.214.
    [54] 陈吉余.长江口拦门沙及其水下三角洲的动力地貌、演变和深水航道治理.长江口深水航道治理与港口建设专辑,华东师范大学学报,1995:1-22.
    [55] 刘以宣.海岸与海底.北京:海洋出版社,1982.
    [56] 虞志英,劳治声,金庆祥,张勇等.淤泥质海岸工程建设对近岸地形和环境影响.北京:海洋出版社,2003.
    [57] 贺松林.淤泥质潮滩剖面塑造的探讨.陈吉余,王宝灿,虞志英等.海岸发育过程和演变规律.上海:上海科学技术出版社,1989.74-80.
    [58] 李铁松,李从先.潮坪沉积与事件.科学通报,1993,38(19):1778-1782.
    [59] 陆健健.我国滨海湿地的功能.环境导报,1996,41-42.
    [60] 杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律.海洋与湖沼,1999,36(6):764-769.
    [61] 沈焕庭,贺松林.中国河口量大浑浊带刍议.泥沙研究,2001,(1):23-29.
    [62] 于砚民,长江口地区湿地生态环境调查与保护对策.首都师范大学学报:自然科学版,2000,21(3):81-87.
    [63] 陈吉余,沈焕庭等.长江河口动力过程和地貌演变.上海:上海科技出版社,1988.
    [64] 周怡生.滩涂造地与湿地保护.上海湿地利用和保护研讨会论文集.2002..
    [65] 谢文君.海洋遥感的应用与展望.海洋地质与第四纪地质,2001,21(3):123-128.
    [66] 常艳.浅谈遥感新技术及其发展动态.数采与监测,2005(6):32-37.
    [67] 张志强,林波.3S技术与都阳湖流域生态系统管理.江西科学,2003,21(3):249-252.
    [68] ArcGIS World技术园地.北京:ESRI中国(北京)有限公司,2003.
    [69] 赵书河,冯学智,赵锐.中巴资源一号卫星南京幅数据质量与几何纠正评价.遥感技术与应用,2000,15(3):170-174.
    [70] 韩涛.在1:25万电子地图辅助下的TM影像精校正研究.遥感技术与应用,2003,18(1):6-9.
    [71] 张振德,肖继春.遥感在滩涂演变调查中的应用方法研究.国土资源遥感,1995,(3):25-28.
    [72] 赵明才,章大初.海岸线定义问题的讨论.海岸工程,1990,9(3~4):91-99.
    [73] 刘清玉,戴雪荣,何小勤.崇明东滩沉积环境探讨.海洋地质动态,2003,19(12):1-4.
    [74] 阵才兴著.长江河口近期演变基本规律.北京:海洋出版社,2004.
    [75] 茅志昌,李九发,吴华林.上海市滩涂促淤圈围研究.泥沙研究,2003,2:77-81.
    [76] 杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究.海洋学报,2003,25(5):83-91.
    [77] 何小勤,戴雪荣,刘清玉等.长江口崇明东滩现代地貌过程实地观测与分析.海洋地质与第四纪地质,2004,24(2):23-27.
    [78] 夏东兴,王文海.中国海岸侵蚀述要.地理学报,1993,48(5):468-476.
    [79] 季子修.中国海岸侵蚀特点及侵蚀加剧原因分析.自然灾害学报,1996,5(2):65-75.
    [80] 杨世伦,赵庆英,丁平兴,朱骏.上海岸滩动力泥沙条件的年周期变化及其与滩均高程的统计显示.海洋科学,2002,26(2):37-41.
    [81] 朱鉴远.长江沙量张减沙途径探讨.水力发电学报,2000,(3):38-48.
    [82] 韩震,恽才兴.伶仃洋大铲湾潮滩冲淤遥感反演研究.海洋学报,2003,25(5):58-64.
    [83] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报,2005,9(5):589-595.
    [84] 杨存建,周成虎.基于知识发现的TM图像居民地自动提取研究.遥感技术与应用,2001,16(1):1-6.
    [85] 郁金康等.SPOT卫星影像的水体提取方法及分类研究.遥感学 报,2001,5(3):214-219.
    [86] 郑宗生,周云轩,沈芳,蒋雪中,田波.基于DTM的水边线遥感信息提取方法.国土资源遥感,2007,(2):56-59.
    [87] 邬伦,刘瑜,张晶,马修军,韦中亚.田原.地理信息系统—原理、方法和应用.北京:科学出版社,2000.
    [88] 万国江.现代沉积年分辨的~(137)Cs计年——以云南洱海和贵州红枫湖为例.第四纪研究,1999,1:73-80.
    [89] 段凌云,王张华,李茂田,潘建明,陈中原.长江口沉积物~(210)Pb分布及沉积环境释,2005,23(3):214-522.
    [90] Delft hydraulics. Delft3D-Flow user manual. Published and printed by WL| Delft hydraulics, 1999.
    [91] 茅志昌,沈焕庭,徐彭令.长江河口咸潮入侵规律及淡水资源利用.地理学报,2000,55(2):243-250.
    [92] 郭豫鹏,顾勇.长江口深水航道治理工程一期工程设计介绍.水运工程,2000,(12):3-9.
    [93] 严恺.开辟长江口深水航道建立上海国际航运中心.中国工程科学,1999,1(2):30-33.
    [94] 杜景龙,杨世伦,张文祥,李鹏,赵华云等.长江口北槽深水航道工程对九段沙冲淤影响研究.海洋工程,2005,23(3)78-83.
    [95] 谢小平,付碧宏,王兆印,沈焕庭.基于数字化海图与多时相卫星遥感的长江口九段沙形成演化研究.第四纪研究,2006,26(3):391-396。
    [96] 周海,郭豫鹏.长江口深水航道治理一期工程设计简介.水运工程,2002,(10):65-69.
    [97] 王谷谦,阮伟,周海等.长江口深水航道治理—期工程整治效果分析.水运工程,2002,(10):70-76.
    [98] 霍宏涛,王任华,游先祥.三维及相关辅助信息在提高图像分类精度中的研究.北京林业大学学报,2001,23(2):28-31.
    [99] 游晓斌,王蕾.应用辅助信息提高森林分类和森林区划能力的研究。北京林业大学学报,2003,特刊:41-42.
    [100] 师庆东,吕光辉,韦如意,潘晓玲,张旭.利用FVC和D EM对中国新疆南部植被的分类研究.新疆大学学报(自然科学版),2003,20(3):280-284.
    [101] 洪军,葛剑平,蔡体久,聂忆黄.基于地形限制特征的泾河流域遥感地表覆被分类.植物生态学报,2005,29(6):927-933.
    [102] 黄华梅,张利权,高占国.上海滩涂植被资源遥感分析.生态学报,2005,25(10):2686-2693.
    [103] 高占国,张利权.应用间接排序识别盐沼植被的光谱特征:以崇明东滩为例.植物生态学报,2006,30(2):252-260.
    [104] 宋国元,袁峻峰,左本荣.九段沙植被分布及其环境因子研究.上海师范大学学报(自然科学版),2001,30(1):69-73.
    [105] Zeng Xubin, Robert E. Dickinson, Alison Walke r, et. al.(2000), Derivat ion and Evaluation of Global 1-km Fractional Vegetation Cover Data for Land Modeling. Journal of Applies Meteorology, 9, 826-839.
    [106] Carlson T. N, Sanchez-Azofeifa. G. A. (1999), Satellite Remote Sensing of Land Use Changes in and around San Jose. Remote Sensing of Environment, 70(3), 247-256.
    [107] 杨世伦,陈吉余.试论植物在潮滩发育演变中的作用.海洋与潮沼,1994,25(6):631-635.
    [108] 王爱军,高抒,贾建军.互花米草对江苏潮滩沉积和地貌演化的影响.海洋学报,2006,28(1):92-99.
    [109] 杨世伦,时钟,赵庆英.长江口潮沼植物对动力沉积过程的影响.海洋学报,2001,23(4):75-80.
    [110] 陈才俊.江苏滩涂大米草促淤护岸效果.海洋通报,1994,13(2):55-61.
    [111] 杨世伦,李鹏,郜昂,张经.基于ADP—XR和OBS-3A的潮滩水文泥沙过程研究以胶州湾北部红岛潮滩为例.海洋学报,2006,28(5):56-63.
    [112] 张忍顺,王雪瑜.江苏省淤泥质海岸潮沟系统.地理学报,1991,46(2):195-205.
    [113] 汪亚平,高抒,贾建军.浪流联合作用下潮滩沉积动力过程的高分辨率数据采集与分析.科学通报,2006,51(3):339-348.
    [114] 崔承琦,施建堂.古代黄河三角洲海岸的现代特征——黄河三角洲潮滩时空谱系研究Ⅰ.海洋通报,2001,20(1):46-52.
    [115] 李占海,高抒,柯贤坤等.江苏大丰海岸碱蓬滩潮沟及滩面的沉积动力特征.海洋学报,2005,27(6):75-82.
    [116] Wu. Jihua., Fu. Cuizhang., Lu Fan et al. (2005), Changes in free-living nematode community structure in relation to progressive land reclamation at an intertidal marsh. Applied Soil Ecology, 29(1): 47-58.
    [117] 陈才俊.江苏中部海堤大规模外迁后的潮水沟发育.海洋通报,2001,20(6):71-79.
    [118] Byun. D. S., Wang. X. H. and Holloway. P. E. (2004), Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea. Estuarine, Coastal and Shelf Science, 185-196.
    [119] Horton. R. E. (1945), Erosional development of the streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological society America Bulletin, 56: 275-370.
    [120] Novakowski. K. I., Torres. R., Gardner. L. R., et al. (2004), Geomorphic analysis of tidal creek networks.Water resources research, 40, W05401, doi: 10. 1029/2003 WR002722.
    [121] 孙效功,赵海虹,崔承琦.黄河三角洲潮滩潮沟体系的分维特征.海洋与湖沼,2001,32(1):74-80.
    [122] 黄海军,樊辉.黄河三角洲潮滩潮沟近期变化遥感监测.地理学报,2004,59(5):723-730.
    [123] 李九发,万新宁,陈小华等.上海滩涂后备土地资源及其可持续开发途径.长江流域资源与环境,2003,12(1):17-22.
    [124] 邵虚生.潮沟成因类型及其影响因素的探讨[J].地理学报,1988,43(1):35-42.
    [125] Kirchner. J. W.(1993), Statistical inevitability of Horton' s laws and the apparent randomness of stream channel networks. Geology, 21: 591-594.
    [126] 时钟,陈吉余,虞志英.中国淤泥质潮滩沉积研究进展,地球科学进展,1996,11(6):555-562.
    [127] 任美锷,张忍顺,杨巨海,章大初.风暴潮对淤泥质海岸垢影响-以江苏淤泥质海岸为例.海洋地质与第四纪地质,1982,3(4):1-24.
    [128] 张忍顺.淤泥质潮滩均衡态.以江苏辐射沙洲内缘区为例.科学通报,1995,18(2):89-94.
    [129] 张国栋,朱静昌,王益友,王慧中.苏北琼港现代潮沟沉积.海洋学报,1984,6(2):223-226.
    [130] 李炎,谢钦春.庵东浅滩沉积分带和沉积速率,东海海洋,1993,11(1):21-23.
    [131] 艾南山,李后强.从曼德布罗特景观到分形地貌学.地理学与国土研究,1993,9(1):13-17.
    [132] 赵锐.地理现象分形研究.地理科学,1994,14(1):9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700