石灰浆液双流体荷电喷雾烟气脱硫理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕石灰浆液荷电喷雾烟气脱硫,对双流体荷电喷雾特性与卷吸流动结构、荷电喷雾烟气脱硫模型与试验、伴有传热传质的荷电多相湍流流动进行了系统而深入的理论与实验研究。在喷雾湿法烟气脱硫的基础上,利用双流体荷电喷雾改善石灰浆液雾滴的运动特性、荷电特性和表面吸收特性来提高喷雾法烟气脱硫效率。研究内容包括:石灰浆液雾滴的荷电特性,浆液双流体荷电喷雾卷吸结构,雾滴空间分布规律,荷电气液两相流动特性,荷电喷雾烟气脱硫模型与试验,荷电多相湍流流动理论等。本文的研究工作得到了江苏省高校自然科学基金的资助,取的部分阶段性成果为荷电喷雾烟气脱硫的进一步深入研究和实际工业应用奠定了基础。
     主要内容有:
     1.对介质的电导、介质的极化进行了理论分析,探讨了石灰浆液雾滴的带电机理和极化机理。提出了浆液雾滴和SO_2分子的偶极矩估算公式,建立了感应荷电雾滴荷质比的数学模型,计算结果与试验数据基本吻合。假定浆液雾滴吸收SO_2的过程符合双膜理论模型,得出了伴有化学反应的雾滴吸收SO_2的传质速率公式。
     2.设计制造了双流体荷电喷雾装置,进行了双流体荷电喷雾雾滴荷电特性试验,研究表明环形电极高度、液气比、石灰浆液浓度等对雾滴荷电量有较大的影响。雾滴荷质比随着荷电电压升高而增大,随着雾化效果的改善而增加。
     3.根据实际烟气脱硫塔系统设计了荷电喷雾烟气脱硫实验系统,进行了石灰浆液荷电喷雾烟气脱硫试验研究。试验结果表明:荷电喷雾烟气脱硫效率较普通喷雾提高5-12%,脱硫效率的提高与带电雾滴运动特性和表面吸收特性有关。同时,在电压作用下雾滴粒径的减小和在空间的均匀分布程度的改善也是脱硫效率提高的关键因素。对Ca/S比、温度、旋流进气、SO_2浓度等对脱硫效率的影响进行了试验。研究表明:Ca/S比的增大可以改善脱硫效率;温度在一定范围可以改善脱硫效率;旋流进气降低了烟气流速,增加了雾滴与烟气接触时间,有利于传质的进行;SO_2浓度越大,脱硫效率降低。
     4.采用PIV对石灰浆液双流体荷电喷雾流场进行了测试,得到了喷雾图像、流场矢量图和速度云图等。通过对喷雾流动的测量,发现双流体荷电喷雾存在复杂的漩涡结构;通过对喷雾流动结构的分析,得出具体结构形式包括主射流区、上卷吸区、下卷吸区及影响区等四个区域;雾滴荷电后在库伦力、极化力作用下,其横向速度增大,有利于浆液雾滴与周围烟气的接触,提高了气液传质速率,提高了烟气脱硫效率。
     5.采用PDA对石灰浆液荷电喷雾特性进行了测试,得到了不同电压和液气比下的雾滴粒径、雾滴运动速度、湍流脉动强度等信息。雾滴粒径随荷电电压的升高而变小,雾滴尺寸分布均匀程度随电压升高明显提高,雾滴速度随着电压的升高先增大再减小,并对石灰浆液雾滴静电破碎机理进行了理论分析。对荷电气液两相流动的测量表明:荷电雾滴具有良好的跟随性,雾滴的脉动强度与雾滴的速度有关,且本身存在较强的脉动。
     6.在分析带电雾滴与SO_2分子微观作用的基础上,考虑雾滴带电和极化过程对雾滴吸收SO_2传质的影响,认为带电和极化是荷电喷雾脱硫区别于常规雾化脱硫的关键。荷电雾滴由于带有过剩电荷和非过剩电荷感应极化等原因在库伦力和极化力作用下与SO_2产生附加作用力,从而提高了雾滴吸收SO_2的传质速率。在此基础上结合喷雾塔反应器烟气脱硫过程,考虑了高压静电强电场区、雾滴诱导电场区和塔壁反应膜区三个过程,建立了荷电喷雾烟气脱硫的传质模型。
     7.根据荷电喷雾脱硫流动的特点,采用颗粒拟流体假设建立了荷电多相流动的方程组。根据雷诺时均法则,建立了荷电气体—颗粒两相湍流雷诺时均方程组的κ-ε-κ_p模型,并考虑了气体与颗粒之间化学反应产生的传热传质。对石灰浆液荷电喷雾脱硫塔内部流场进行了数值计算,计算值与实验值基本吻合。
Based on series fundamental experiments and theoretical analyses, the charged spray theory, flue gas absorption mechanism, the two-fluid electrostatic spray characteristics of the limewater, flue gas desulfurization by the electrostatic spray, charged multiphase turbulent flow are studied systematically and comprehensively in this paper, which established a research foundation for flue gas desulfurization by the electrostatic spray. Based on the WFGD systems, the desulfurization efficiency is improved by improving the limewater droplets movement characteristics, charging characteristics and surface absorption characteristics through making uses of the charged spray. The research work involves the limewater droplets charging characteristics, the two-fluid electrostatic spray structure of the limewater and the droplets space distributing, the model and experiment of flue gas desulfurization by the electrostatic spray, charged multiphase turbulent flow theory and numerical simulation in the tower. This research work is supported by the University Natural Science Foundation of Jiangsu Province.
     1. The medium conductance and polarization mechanisms are analyzed in theory, the limewater droplets electrification and non-excess charge polarization mechanisms are discussed. The annular electrode and droplets troop inducement voltage distributing are gained. Dipole moments of limewater droplets and SO_2 are analyzed in theory. The model of charge to mass ratio of limewater droplets is established, the calculation results is in accord with the experimental data.
     2. The experimental equipments have been designed and produced. The limewater droplets charging characteristics are tested. The experimental data indicate the pole distance, liquid to gas ratio and the slurry consistence are the important factors for the droplets electrification effect.
     3. Flue gas desulfurization of electrostatic charged spray system have been designed and produced. The experimental data show the efficiency by limewater electrostatic spray could improve 5-12% than the traditional spray. The improvement of efficiency is relation to the electrification droplets movement characteristics and surface absorption characteristics. And the minishing of the droplets and space distributing uniformity are important factors to improve the efficiency. The effects of Ca/S ratio, temperature, revolving flow, inlet SO_2 consistence to efficiency are test and discussed. The efficiency is proved when the Ca/S mol ratio increase. The temperature could improve the efficiency under the some range. Revolving flow could improve the time of the droplets and flue gas, and revolving flow enhances the gas turbulent fluctuation, and could conduce to the contact gas and droplets. Inlet SO_2 consistence is big, and the efficiency is small.
     4. The two-fluid electrostatic spray of the limewater is tested by the PIV. The spray flow images, velocity vector graphs and nephograms are gained. There are the distinctness convolution structures in the two-fluid electrostatic spray. The idiographic flow structures are analyzed. The two-fluid electrostatic spray flow structures involve main jet flow section, up convolution section, down convolution section and influence section.
     5. The two-fluid electrostatic spray of the limewater is tested by the PDA. The droplets diameter, droplets velocity and droplets turbulent fluctuation intensity are obtained under the different voltages and liquid to gas ratios. The limewater droplets diameter minish, the dimension distributing uniformity improve and the droplets velocity increase at first and decrease later while the high voltage increasing. The possibility of atomization of droplets is analyzed on base of the Rayleigh Limitation. The experimental data on the charged two-fluid flow show that the charged droplets are provided with follows. The droplets turbulent fluctuation intensity is concerned with the droplets velocity and the droplets themselves are provided with strong turbulent fluctuation.
     6. Based on the microcosmic function between electrification droplets and SO_2 molecules, the electrification and non-excess charge polarization for SO_2 absorption mass transfer process are important factors and are know from the conventional spray. The electrostatic force and polarization force between droplets and SO_2 molecules for the electrification and non-excess charge polarization. The mass transfer velocity increases. Combined with the spray reactor FGD process, the high electrostatic field reaction section, droplets inducement electric field reaction section and tower wall film reaction section are taken into account. The model of flue gas desulfurization by the electrostatic spray reactor is inextenso established.
     7. Based on the electrostatic spray, adopting assumption that the droplets are regarded as fluid, the charged multiphase flow is established. Applied the Reynolds time-average method, a k-ε-k_p model of Reynolds time-average equations for gas and chargeddroplets are set up. The heat and mass transfer of gas and droplets are advised. The simulation of limewater electrostatic spray flow is carried through in the tower. The simulations indicate the charged droplets distribute uniformity and the droplets inlet velocity is different under the different voltage.
引文
[1]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [2]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [3]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002.
    [4]雷仲存.工业脱硫技术[M].北京:化学工业出版社.2001.
    [5]孙明.OH、NH_2自由基提高脉冲放电等离子体烟气脱硫效率的研究[D].大连:大连理工大学博士学位论文,2004.
    [6]王爱军.循环流化床烟气脱硫技术试验研究[J].燃烧科学与技术,2000,6(4):351-355.
    [7]王贞涛.荷电喷雾烟气脱硫的试验研究[D].镇江:江苏大学硕士学位论文,2006.
    [8]国家环保局:《2007年中国环境状况公报》.
    [9]国家酸雨和二氧化硫污染防治“十一五”规划.http://www.zhb.gov.cn/info/gw/huangfa /200801/W020080114497394621804.pdf.
    [10]林永明.大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D].杭州:浙江大学博士学位论文,2006.
    [11]岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004.
    [12]王贞涛,闻建龙,陈汇龙,等.基于高压电技术的烟气脱硫研究与应用进展[J].中国农机化,2005,(6),75-79。
    [13]陈汇龙.石灰浆液荷电雾化脱硫的基础理论和试验研究[D].镇江:江苏大学博士学位论文,2007.
    [14]滕斌.半干法烟气脱硫的试验及机理研究[D].杭州:浙江大学博士学位论文,2004.
    [15]刘炳江,郝吉明,贺克斌,等.中国酸雨和二氧化硫控制区区划及实施政策研究.中国环境科学,1998,18(1):1-7.
    [16]候庆伟,石荣桂,李永臣等.湿法烟气脱硫系统的PH值及控制步骤分析[J].山东大学学报(工学版),2005,35(5),37-40.
    [17]李小宇.石灰石-石膏湿法烟气脱硫系统工艺设计初探[J].锅炉制造,2007(1),30-32.
    [18]苏大雄,钱枫.石灰湿法脱硫过程终PH值条件对结构的影响研究[J].环境污染与防治,2005,27(3),198-200.
    [19]王五清,贺元启.石灰石-石膏湿法烟气脱硫工艺与关键参数分析[J].华北电力技术,2004,(2),1-3.
    [20]杜谦,马春元,董勇等.石灰石-石膏湿法烟气脱硫过程的试验研究[J].热能与动力工程,2007,22(2),216-220.
    [21]金新荣,任建兴.火电厂湿法烟气脱硫装置运行特性及注意事项[J].华东电力,2004,32(5),21-23.
    [22]周祖飞,金新荣.影响湿法烟气脱硫效率的因素分析[J].浙江电力,2001,(3),42-45.
    [23]王维之.花环填料在钠碱烟气脱硫中的应用[J].煤炭学报,2005,32(11),1187-1190.
    [24]杜谦,马春元,董勇,等.液气比对石灰石-石膏湿法烟气脱硫过程的影响[J].动力工程, 2007,27(3),123-127.
    [25]陈莲芳,徐夕仁.烟气脱硫系统液气比控制指标探讨[J].环境工程,2005,23(6),45-47.
    [26]程水源,郑自保,郝瑞霞,等.用电厂粉煤灰水脱除烟道气SO_2的研究[J].河北科技大学学报,1999,20(1),61-63.
    [27]林军,王红梅,张凡.钙硫比小于1.0条件下下半干半湿法烟气脱硫技术的研究[J].环境保护,2004,(2),15-17.
    [28]周屈兰,刘尧祥,惠世恩.高钙粉煤灰直接应用于烟气脱硫的试验研究[J].动力工程,2007,27(1),117-121.
    [29]胡满银.湿式脱硫系统运行性能的数值模拟[J].河北电力技术,2005,24(3),1-3.
    [30]张凯,赛俊聪,郑鹏,等.液柱射流式脱硫反应器的实验研究[J].电站系统工程,2007,23(5),31-33.
    [31]李荫堂,李安平.烟气脱硫喷淋塔气体旋流实验研究[J].环境技术,2005,(1),25-28.
    [32]许淑惠,段凤华,刘艳丽,等.导流旋流烟气脱硫装置的实验研究[J].北京建筑工程学院学报,2006,22(3),29-31.
    [33]郝晓文,马春元,黄盛珠,等.循环流化床脱硫塔直/方定流复合流化下的两相流场试验研究[J].热能动力工程,2005,20(5),497-501.
    [34]刘新爱.石灰浆雾化脱硫中雾滴吸收SO_2的传质机理研究[D].镇江:江苏大学硕士学位论文,2007.
    [35]王乃华.新型半干法烟气脱硫的实验及机理研究[D].杭州:浙江大学博士学位论文,2001.
    [36]Ramachandran P A,Sharma M M.Absorption with fast reaction in a slurry containing sparingly soluble fine particles[J].Chemical Engineering Science,1969,24(11),1681-1686.
    [37]Gullet B K.Fundamental process involved in SO_2 capture by calcium-based adsorbents.Proceeding:Fourth Annual Pittsburgh Coal Conference 1987:219.
    [38]Jozewicz W,Rochelle G T.Modeling of SO_2 removal by spraying dryers.Proceeding:First Pittsburgh Coal conference,1984:663
    [39]Brogren C,Karsson H T.Modeling the absorption of SO_2 in a spray scrubber using the penetration theory[J].Chem.Eng.Sci.1997,52(18):3085-3088.
    [40]Karsson H T,Klingpor.Tentative modeling of spray drying scrubbing of SO_2[J].Chem.Eng.Technol.1987,10(2):104-109.
    [41]Maibodi.Simulation of spray dryer absorber for SO2 removal from flue gases[C].Proceedings:Tenth symposium on flue gas desulfurization,1987.
    [42]Barrie L A.An improved model of reversible SO_2-washout by rain[J].Atmospheric Environment,1978,12(1-3),407-412.
    [43]Mattteson M J and Giardina P J.Mass transfer of sulfur dioxide to growing droplets:Role of surface electrical properties[J].Sci.&Techinol.,1974,8(1):50-55.
    [44]Lancia A,Musmarra D.SO2 absorption in a bubbling reactor using limestone suspensions[J].Chem.Eng.Sci.1996,51:461-477.
    [45]Brogren C,Karsson H T.The impact of the electrical potential gradient on limestone dissolution under wet flue gas desulfurization condition[J]Chem.Eng.Sci.1997,52:3101-3106.
    [46]钟秦.湿法烟气脱硫的理论和实验研究(Ⅰ)-显壁塔脱硫反应系统及操作特性[J].南京理工大学学报,1998,22(6),517-520.
    [47]赵毅.Ca(OH)_2颗粒脱硫反应的动力学研究[J].电力环境保护,2005,21(1),21-23.
    [48]景启国,徐康富,马永亮,等.氧化镁FGD脱硫过程的建模及其应用[J].环境污染治理技 术与设备,2005,6(11),32-38.
    [49]赵健植,金宝升.喷淋塔内塔壁液膜脱硫的模型研究[J].锅炉技术,2007,38(5),62-71.
    [50]王凤东.喷雾干燥法烟气脱硫技术理论与实验研究[D].天津:天津大学硕士论文,2000.
    [51]巩增友.新型喷淋塔内石灰法烟气脱硫技术的理论与实验研究[D].天津:天津大学硕士学位论文,2003.
    [52]刘健吾.喷淋塔石灰湿法烟气脱硫的实验研究及数学模型[D].北京:北京科技大学硕士学位论文,2004.
    [53]郭三霞.石灰石湿法脱硫的传质模型[J].化学工业与工程,2007,24(2),169-172.
    [54]陆永琪.管式反应器石灰雾液脱硫的数学模拟[J].环境科学学报,1999,19(6),636-641.
    [55]高翔,骆仲泱,陈亚非,等.含湿Ca(OH)_2颗粒脱硫反应特性的模型研究[J].环境科学学报,1999,19(4),351-356.
    [56]张力,李午申,蒲舸.烟气净化双流体喷嘴雾化特性实验[J].环境工程,2006,24(2):40-43.
    [57]李兆东,王世和,王小明.湿法烟气脱硫旋流喷嘴雾化特性研究,热能动力工程,2006,21(1),66-69
    [58]Michalski,Jacek A.Spraying angle and spray polydispersity in modeling of the aerodynamic characteristics of FGD towers[J].Atomization & Spray,2002,12(5/6):593.
    [59]Michalski,Jacek A.Development of droplet size distribution in FGD tower[J].Atomization and sprays,2000,10(2):105-119.
    [60]金玲荣.燃煤锅炉灰水喷雾脱硫特性的数值研究[D].上海:东华大学硕士学位论文,2006.
    [61]王益农,童钧耕,严达.喷雾脱硫过程中喷雾特性对脱硫效率影响的数值研究[J].四川环境,2004,22(1),37-39.
    [62]亢燕铭.荷电喷雾脱硫与细颗粒捕集的研究[D].西安:西安交通大学博士论文,1999.
    [63]王雷,章明川,田凤国,等.运行参数对喷雾干燥烟气脱硫效率影响的数值模拟[J].热能动力工程,2005,20(5),262-266.
    [64]关国强.运动微液滴表面瞬态传质研究[D].成都:四川大学博士学位论文,2004.
    [65]蔡旺锋.浆料体系中细颗粒增加气液传质研究[D].天津:天津大学博士学位论文,2003.
    [66]曾芳,陈力,李晓芸.湿法脱硫塔内部流场数值计算[J].华北电力大学学报,2002,29(2),106-110.
    [67]唐志永,仲兆平,孙克勤,等.湿法脱硫喷淋塔空塔流场数值模拟[J].能源利用与研究,2003,(2):10-12.
    [68]杨柳,王世和,王小明.湿式脱硫塔除雾器流场的数值模拟.华东电力,2004,32(10),5-6.
    [69]徐君岭.锅炉烟气喷雾湿法脱硫机理研究[D].上海:上海交通大学硕士学位论文.2002.
    [70]吴树志,赵长遂,段钰锋,等.增湿活化脱硫反应器内部流动、蒸发与碰撞过程的数值计算[J].热能与动力工程,2003,18(5):471-474.
    [71]陈效鹏,董绍彤,程久生,等.电雾化装置及雾化模型研究.实验力学,2000,15(1),97-103
    [72]Law S E.Agricultural electrostatic spray application:a review of significant research development during the 20th century[J].Journal of Electrostatics,2001,51(1):25-42.
    [73]王军锋.荷电喷雾燃烧的基础研究-燃油静电喷雾及荷电两相湍流射流的研究[D].镇江: 江苏大学博士学位论文,2002.
    [74]闻建龙.荷电两相湍流理论及柴油荷电喷雾燃烧的试验研究[D].镇江:江苏大学博士学位论文,2002.
    [75]Law S E,Henry D B.Effects of Liquid Conductivity Upon Gaseous Discharge of Droplets[J].IEEE.1989,25(6),1073-1080.
    [76]杨超珍,吴春笃,陈翠英,等.静电喷雾电晕充电特性研究[J].排灌机械,2006,24(1),27-30.
    [77]杨超珍,吴春笃,陈翠英.环形电极感应充电机理及其应用技术研究[J].高电压技术,2004,30(5),9-11.
    [78]张宝铭,林文获.静电防护技术手册[M].北京:电子工业出版社,2000.
    [79][日]菅义夫.静电手册[M].北京:科学出版社,1983.
    [80]王贞涛,罗惕乾,王军锋,等.雾滴荷质比测量装置与模型研究[c].2008仪表、自动化与先进集成技术大会,深圳.
    [81]徐航.测试水滴荷电特性的实验设计[J].遵义师范高等专科学校学报,1999,1(3),86-87
    [82]刘景良.水雾荷电特性的试验研究[J].工业安全与除尘,1998,3,8-12.
    [83]于辉,何雄奎,仲崇山,等.在静电喷雾中喷物化特性对荷质比的影响[J].安徽农业科学,2007,35(15),4706-4707.
    [84]杨超珍、叶五梅,赵伟敏.电极位置影响荷电量的试验研究[J].高电压技术,2007,33(10),79-82.
    [85]周浩生,冼福生,高良润.双流体式静电喷头特性的试验研究[J].江苏理工大学学报,1996,17(3),1-4
    [86]叶红卫,栾昌才.水雾荷电量与荷质比的关系[J].电力环境保护,1996,12(2),1-3.
    [87]刘保垣,丛昉琦,徐绍曾,等.荷电水雾饱和带电量的研究[J].松辽学刊(自然科学版),1995,54-56.
    [88]刘保垣,丛昉琦,杨以纲,等.复合式静电感应电极水雾喷头的研究[J].东北师范大学学报,自然科学版,1996,2,58-60.
    [89]金晗辉.荷电两相湍流理论在病虫害防治技术中的应用研究[D].江苏理工大学硕士学位论文,1999.
    [90]Garmendia L.A.Simplified Model of Electro-aerodynamic Atomization[J].AICHE Jour,1997,23(6),935-938.
    [91]Thong K C,Weinberg F J.Electrical Control of the Combustion of solid and Liquid Particulate Suspensions[J].Proc Roy Soc,1971,324:201-215.
    [92]李世武,高延令,徐绍曾,等.燃油荷电改善雾化的机理与试验研究[J].农业机械学报,2000,31(3),19-23.
    [93]于水,李理光,胡宗杰,等.静电喷雾雾滴破碎的理论边界条件研究[J].内燃机学报,2005,23(3),239-243.
    [94]王贞涛,岑旗钢,宋晓宁,等.双流体荷电雾化PDA实验[J].农业机械学报,2008,39(10):80-84
    [95]Gabriel N L,Soo-Young N.Development of electrostatic pressure-swirl nozzle for agriculture applications[J].Journal of Electrostatics,2003,57(2),129-142.
    [96]Law S E,Bailey A G.Perturbations of charged droplets trajectories caused by introduced target corona;LDA analysis[J].IEEE Transactions on Industry Applications,1984,20(6),1613-1622.
    [97]岑旗钢.静电雾化的PDPA试验[D].镇江:江苏大学硕士学位论文,2004.
    [98]张军、闻建龙,王军锋,等.不同雾化模式下静电雾化的雾滴特性.江苏大学学报(自然科学版),2006,27(2),105-108.
    [99]贾卫东,李萍萍,邱白晶,等.农用荷电喷雾雾滴粒径与速度分布的试验研究.农业工程学报,2008,24(2),17-21.
    [100]Bachalo W D.Experimental methods in multiphase flows[J].International Journal of Multiphase Flow,1994,20(1),261-295.
    [101]Bachalo W D,Houser M J.Development of the phase doppler spray analyzer for liquid drop size and velocity characteristics[C].AIAA -84-11199,1984.
    [102]杨敏官,高波,刘栋,等.旋流泵内部盐析两相速度场的PDPA实验[J].工程热物理学报,2008,29(2):237-240.
    [103]徐行,郭志辉,顾善建.新型气动雾化喷嘴喷雾特性的实验研究[J].航空动力学报,1997,1(3),295-301.
    [104]Shrimpton,J S,Yule,A J.Characterization of charged hydrocarbon sprays for application in combustion systems[J].Experiments in Fluids,1999,26(5),460-469.
    [105]Chen Xiaopeng,Cheng Jiusheng,Yinxiezhen,et al.Mesurements of drop velocity in electrostatic spray.Optical technology and image processing for fluids and solids diagnostics 2002[C].Beijing:The International Society for Optical Engineering,2003:181-187.
    [106]高正平.荷电气固两相流动管内输运过程的试验研究[D].镇江:江苏大学硕士学位论文,2006.
    [107]刑小军,徐行,郭志辉,等.模型燃烧室冷态喷雾场的实验研究.推进技术,2000,21(5),61-65.
    [108]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [109]郑加强.风送静电喷雾研究及其在灭蝗中的应用[D].镇江:江苏工学院博士论文,1992.
    [110]王泽.荷电气固两相流及在植保工程中的应用[D].镇江:江苏工学院博士论文,1994.
    [111]周浩生.荷电气-固两相流动理论及应用[D].镇江:江苏理工大学博士论文,1997.
    [112]Kawamura.Radiation for a Clean Enviroment.Rroceedings of the International Symposium on the Use of High-level Radiation in Waste Treatment-Status and Prospects,IAEA-SM-194/707,March,1975:197-215.
    [113]Machi S.Research and development of electron beam treatment of combustion flue gases in Japan,final report of a consultants meeting on electron beam proceeding of combustion flue gases,Karlsruhe,1986,10:13-20.
    [114]Kawamura.Conference proceeding on industrial application of radioisotopes and radiation technology 1981:297-215.
    [115]毛本将.电子束脱硫关键技术与工艺研究[D].北京:中国工程物理研究院博士学位论文,2004.
    [116]张大欣,徐光,罗经宇.电子束半干法烟气净化技术[J].环境污染治理技术与设备,2001,2(3):69-72.
    [117]周鹏,向晓东,杨静,等.射流感应破碎荷电液滴在烟尘控制中的新进展[J].建筑热能通风空调,2006,25(5),78-82.
    [118]李瑞阳,王龙文,董超.新型烟气脱硫技术--电法脱硫的应用前景分析[J].能源研究与信息,1999,15(3),6-14.
    [119]徐息,罗永禄,夏怀祥.电子束脱硫技术应用及分析[J].电力环境保护,1999,15(1),1-5.
    [120]张晔.电子束烟气脱硫技术特点及适用条件分析[J].电力环境保护,2000,16(4),47-50.
    [121]Masuda S,Nakao H.Control of NOx by positive and negative pulsed corona discharges.Proc.IEEE/IAS Ann.Meeting,UA Denver:1986:1173-1182.
    [122]Masuda S,Wu Y,Urabe U,et al.Pulse induced plasma chemical process for De NOx and mercury vapor control of combustion gases[C].Proc.3Rd Int Conf on electrostatic precitation,Abano Italy,October 1987:667-676.
    [123]Chang J S,Masuda S.Mechanism of pulse corona induced plasma chemical processor removal of NO and SO from combustion[C].IEEE,1998:1628-1635.
    [124]汤红,白希尧,沈欣军,等.介质阻挡放电模拟烟气脱硫[J].大连海事大学学报,2003,29(2),57-59.
    [125]白希尧,白敏的,韩慧,等.强电场电离放电脱硫研究[J].环境污染与防治,2002,24(5),257-260.
    [126]戚栋,李春荣,阎颖,等.用高压脉冲电晕技术脱硫脱硝的研究进展[J].高电压技术,2003,29(12).32-34
    [127]Wu Yan,Wang Ninghui,Zhu Yimin,et al.SO2 removal from industrail flue gases using pulsed corona discharge[J].Journal of Electrostatics,1998,44,11-16.
    [128]童永湘,魏海荣,闵志军,等.脉冲电晕放电等离子体法烟气脱硫技术研究[J].工业安全与除尘,1998,(7),1-3.
    [129]周建刚.电离放电烟气脱硫的研究[J].大连海事大学学报,2004,(5),64-67.
    [130]孙岩洲,邱疏昌,荣命哲,等.介质阻挡放电与介质阻挡电晕放电用于空气脱硫的比较[J].西安交通大学学报,2004,38(10),1022-1025.
    [131]Lee Y H,Jung W S,Choi Y R.Application of pulsed corona induced plasma chemical process to an industrial incinerator[J].Environ.Sci.Technol.,2003,37(11),2563-2567.
    [132]张颜彬,王宁会,吴彦.3000Nm~3/h烟气脱硫试验系统的设计与运行[J].大连理工大学学报,1997,37(5),551-554.
    [133]李杰,吴彦,王宁会,等.脉冲电晕放电烟气脱硫的影响因素[J].环境科学,2001,22(5),38-40.
    [134]安钟峰,鲍爱楠,王希麟,等.高压沿面放电烟气脱硫技术动态实验研究[J].工程热物理学报,2003,24(4),711-713.
    [135]王祖武,曾汉才,杨敏,等.湿式电迁移烟气脱硫技术研究[J].华中科技大学学报:自然科学版,2005,33(1),84-86.
    [136]李亚冰,徐光,徐晓画,等.电子束深度氧化烟气净化技术[J].热力发电,2005,(11),30-33.
    [137]余文峰,程祖海,张耀宁,等.干式高效超微粒子烟气脱硫技术[J].环境工程,2001,19(4),35-37.
    [138]陈德放,钱飒飒.荷电干式吸收剂喷射脱硫系统[J].能源信息与研究,1999,15(1),18-27.
    [139]葛自良,毛骏健.液体静电雾化现象及其应用[J].自然杂志,2000,22(1),37-41.
    [140]Pialt M J.Collection of aerosol particles by electrostatic droplets spray scrubbers[J].JAPCA,1975,25(2):176-178.
    [141]李德文.预荷电喷雾除尘技术的研究[J].煤炭工程师,1994,6,8-13.
    [142]鲍重光.静电技术原理[M].北京:北京理工大学出版社,1993.
    [143]曹建明.喷雾学[M].北京:机械工业出版社,2005.
    [144]崔彦栋.气力式喷嘴雾化机理研究及水煤浆气力雾化喷嘴的开发[D].杭州:浙江大学硕士学位论文,2006.
    [145]罗宏昌,毕载俊,伍学正主编.静电实用技术手册[M].上海科学普及出版社,1990.
    [146][阿根廷]德鲁·迈尔斯著,吴大诚,朱谱新,王罗新,等译.表面、界面和胶体-原理及应用[M].北京:化学工业出版社,2005.
    [147][日]中野义映编,张乔根译.高电压技术[M].北京:科学出版社,2004.
    [148]周泽存,沈其工,方瑜,等.高电压技术[M].北京,中国电力出版社,2004.
    [149]王荣.植保机械理论与设计[M].长春,吉林人民出版社,2002.
    [150]Carroz J W,Keller P N.Electrostatic induction parameters to attain maximum spray charge[J].Transactions of the American Society for Aerospace Education,1978,21(1),63-69.
    [151]文荆江.静电及其应用[M].北京:科学出版社,1978.
    [152]Lee S J,Lee J Y.PIV measurements of the wake behind a rotationally oscillating circular cylinder[J].Journal of fluids and Structures,2008,24(1),2-17.
    [153]冯旺聪,郑士琴.粒子图象测速(PIV)技术的发展[J].仪器仪表学报,2003,6(10):1-3.
    [154]Lee J S,Jang Y G,Kim S,et al.Dynamic PIV Measurement of a Compressible Flow Issuing from an Airbag Inflator Nozzle[J].Journal of Thermal Science,2006,15(4):377-381.
    [155]Wang J F,Hwang W R,Luo T Q.Experimental Investigation on Electrostatic Spray of Twin-fliud Atomizaion[C].The 5th International Symposium on Measurement Techniques for Multiphase Flows Dec.10-13,2006,Maucau,China:184-191.
    [156]Shinohara M,Matsushima,S.Experimental study of the flow structure in fire- induced whirlwinds downwind of a fire using particle image velocimetry[C].Proceedings of the ASME International Mechanical engineering Congress and Exposition 2007,8 Pts A and B.839-842.
    [157]Aliseda A,Hopfinger E J,Lasheras J C,et al.Atomization of viscous and non-newtonian liquids by a coaxial,high-speed gas jet.Experiments and droplet size modeling[J].International Journal of Multiphase,2008,34(2),161-175.
    [158]Nuyttens D,Baetens K,Schampheleire M D,et al.Effect of nozzle type,size and pressure on spray droplet characteristics[J].Biosystems Engineering,2007,97(3),333-345.
    [159]Bachalo W D,Houser M J.Development of the phase doppler spray analyzer for liquid drop size and velocity characteristics[C].AIAA -84-11199,1984.
    [160]贾卫东.盐析流动理论及管内绿液流动的PDPA实验研究[D].镇江:江苏大学博士学位论文,2006.
    [161]庄逢辰.液体火箭反动机喷雾燃烧的理论、模型及应用[M].北京:国防科技大学出版社,1995,255-258.
    [162]Bachalo W D.Experimental methods in multiphase flows[J].International Journal of Multiphase Flow,1994,20(1),261-295.
    [163]蒋文举.烟气脱硫脱硝技术手册[M].北京:化学工业出版社,2007.
    [164]朱和平.静电喷雾理论及喷头的研究[D].镇江,江苏工学院博士学位论文,1990.
    [165]王贞涛,闻建龙,宋晓宁,等.双流体荷电喷雾雾滴荷电特性试验[J].高电压技术,录用待发表。
    [166]Perry R H,Chilton C H.Chemical Engineer's Handbook.McGraw-Hill Book Company,5th ed.,3-93.
    [167]吴忠标.《实用环境工程手册》,大气污染控制工程[M].北京:化学工业出版社,2001.
    [168]Newton G Het al.Modeling the SO_2-slurry droplet reaction[J].AIChEJ.,1990,36(12):1865-1872.
    [169]Getler J L.Modeling the spray absorption process for SO2 removal[J].JAPCA,1979,29(12):1270-1275.
    [170]Lenin E M.Me Murde H F.Phase Diagrams for Ceramics Supplement.Ohio,1975,342-355.
    [171]张辉明.传质原理[M].北京:化学工业出版社,2000.
    [172]吕志才,高辉,黄绩国.工程传质学IMl.天津:天津大学出版社,1989.
    [173]戴干策等.化学工程基础[M].北京:中国石化出版社,1991.
    [174]吴忠标,潘学良,钟丽,等.钢渣湿法脱硫试验研究[J].环境工程,1996,14(6),17-22.
    [175]郝吉明,王书肖,陆永琪编著.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [176]罗宏昌,毕载俊,等编.静电实用技术手册[M].上海:上海科学普及出版社,1990.
    [177]刘大有著.二相流体动力学IM].北京,高等教育出版社,1993.
    [178]李静海,欧阳洁,高士秋,等著.颗粒流体复杂系统的多尺度模拟[M].北京,科学出版社,2005.
    [179]钟毅,高翔,林永明,等.石灰石-石膏湿法烟气脱硫工艺液相系统分析与计算[J].热力发电,2007,(12),11-13.
    [180]陈声宗.化工设计[M].北京:化学工业出版社,2002.
    [181]钟惠生.化学工程计算IM].北京:北京师范大学出版社,1992.
    [182]吴志泉,涂晋林,徐讯.化工工艺计算[M].上海:华东理工大学出版社,1998.
    [183]Wang Zhentao,Wen Jianlong,Wang Junfeng,et al.Electrostatic charged two-phase spray equations.The 5th International Symposium on Measurement Techniques for Multiphase Flows.2006,Maucau.
    [184]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [185]陶文铨.计算传热学的近代进展IM].北京:科学出版社,2000.
    [186]帕坦卡S.V著,张政译.传热与流动的数值计算[M].北京:科学出版社,1984.
    [187]王福军编著.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [188]王瑞金,张凯,王刚编著.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700