多参数非线性优化方法关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代CAE技术的发展使得各类优化方法在汽车车身设计领域得到广泛应用。车身设计优化问题的目标函数通常为隐式的黑箱函数,且其CAE仿真过程非常耗时,传统的梯度算法和启发式算法在计算效率上已经远远不能满足工程实践的应用需求。目前,近似模型技术是求解此类优化问题的有效手段。该技术的最大优势在于能够通过有限次数的正问题计算给出目标响应在整个设计空间中的经验性估计。如果能够建立问题的高精度近似模型,则优化的效率将得到大幅度提升。然而,随着设计变量的增多,设计空间的规模迅速扩大,构建精度和效率成为当前近似模型技术的主要瓶颈,因此,建立一种行之有效的多参数近似模型方法很有必要。此外,很多优化问题涉及到离散设计变量,其高维性导致近似模型技术的优势难以得到发挥,为此,需要立足于新的角度,开发适用于离散变量的多参数优化方法。综上所述,本文将围绕多参数优化问题展开研究,具体的研究内容如下:
     (1)随着优化问题设计参数的增多,构建近似模型所需样本点的数量将呈近乎指数级增长,对于非线性问题,在可接受的计算成本(训练样本点数)下,难以获取黑箱问题的高精度近似模型,且传统的元模型技术无法有效识别设计参数之间的耦合性以及它们对目标响应的敏感程度,从而难以体现问题的本质。为此,本文提出基于多参数解耦的自适应非线性近似模型方法(Kriging-HDMR)。该方法采用Cut-HDMR多参数解耦模型将高维问题分解成不同阶次耦合项的组合,通过逐一识别两两参数之间的耦合性确定Cut-HDMR中一阶耦合项的组成,同时忽略那些对目标响应影响较弱的高阶耦合项,从而可将样本点数随问题维数增长的数量级由原来的指数级降为多项式级。另一方面,Kriging-HDMR方法利用Cut-HDMR模型将建模的对象由最初的高维问题转化为若干较低维问题,成功地降解了建模的复杂度,因此能够大幅度地提高近似模型的精度。研究结果表明,基于同一组训练样本点,Kriging-HDMR模型的精度显著优于Kriging模型。
     (2)目前主流的连续设计变量优化方法是基于近似模型技术和智能布点策略进行的。此类算法的性能在很大程度上依赖近似模型的精度,然而对于多参数问题,传统近似模型的全局精度差,导致优化的效率低且容易陷入局部最优。为此,本文提出了基于连续型设计变量的多参数非线性优化算法(P-HGS)。该算法采用多维投影技术将Kriging-HDMR近似模型与MPS智能布点策略相结合,在每个迭代步,根据Kriging-HDMR模型的结构将新样本点向过中心点的切线和切面内投影,利用生成的投影点更新Kriging-HDMR近似模型中的各分项,并通过添加修正项来确保整个近似模型在新样本点上的插值性,从而可以利用Kriging-HDMR模型的精度优势改善优化的效率和精度。采用不同规模的测试函数对P-HGS方法的性能进行测试,并与MPS方法作比较,测试结果表明,P-HGS方法显著提高了MPS的全局搜索能力、效率和稳健性。
     (3)工程优化问题会常常会涉及离散变量,如材料变量。而离散变量的存在会额外地、甚至成倍地增加解向量的维数,这会导致近似模型的精度大幅度下降,难以用于求解优化问题,尤其是多参数优化问题。因此,本文提出了基于离散型设计变量的多参数非线性优化算法(KCHS-UPDA)。算法根据Pareo前沿定义若干特征解,在每个迭代步中,找到每个特征解的位置,进而确定相应的采样集合,从而实现了空间缩减,提高了优化效率。为了进一步提高算法的收敛速度,在每个采样集合内部,采用K-mean聚类方法建立采样概率模型,并随机地生成样本点。该算法不需要建立近似模型,从而有效地避免了近似模型对于离散变量多参数问题的精度缺陷。另一方面,在同一个迭代步中,几个特征解的位置通常是分散的,而采样集合中的样本点在每个特征解周围都有分布,因此,算法的全局搜索性能可以在一定程度上得到提升。通过若干多目标优化问题对算法的可行性进行测试,测试结果表明该算法可以通过较少量的正问题计算找到精度较高的Pareto前沿。
Development of modern CAE technique has boosted wide applications of variousoptimizations to automobile body design. Objective functions of such optimizationproblems are black-box and usually require complicate CAE analysis which is verytime-consuming. For such problems, traditional gradient-based and heuristic methodscan hardly satisfy the application requirement of practical engineering. So far,metamodel technique is an effective approach to solve black-box expensiveoptimizations. The most remarkable advantage of metamodel-based optimization isthat experimental prediction of the objective functions can be drawn by a few functionevaluations, so that the efficiency of optimization can be improved. However, withincreasing number of design variables, the scale of design space will expand rapidly.Accuracy and efficiency become main bottlenecks of the metamodel technique. Thus,constructing an effective metamodel method for multi-variable problems is verynecessary. Moreover, many engineering optimizations involve discrete variables. Thehigh dimensionality of discrete variable limits the advantage of metamodel technique,so a study of discrete variables based multi-variable optimization from anotherperspective is needed. Summarily, this paper conducts research on the basis ofmulti-variable optimization. Details of the research contents are described as thefollows:
     (1) With increasing number of design variables, the number of sample pointsused to construct the metamodel grows almost exponentially. For nonlinear problems,metamodels with high accuracy can be hardly obtained under acceptablecomputational cost. Moreover, conventional metamodel techniques lacks capability toeffectively identify coupling relationships among the design variables and theircontributions to the objective response, so essence of the problem cannot be wellreflected. Thus, a multi-variable decoupling based adaptive nonlinear metamodeltechnique (Kriging-HDMR) is proposed in this paper. The method uses multi-variabledecoupling model (Cut-HDMR) to decompose a high-dimensional problem into aseries of coupling terms with different hierarchies. The components of Cut-HDMR aredetermined by identifying the relationship of each pair of variables and neglectinghigh-order coupling terms which have weak contributions to the objective response,so that the computational cost can be reduced from exponential growth to polynomial level. On the other hand, the proposed method uses Cut-HDMR model to transformmetamodeling object from a high-dimensional problem into a few lower-dimensionalsub-problems, successfully reducing the metamodeling complexity, so accuracy of themetamodel can be remarkably improved. Research results indicate that based on asame set of sample points, the accuracy of Kriging-HDMR model is much better thanthat of Kriging model.
     (2) So far, popular methods for continuous variable optimizations are based onmetamodel techniques and intelligent sampling strategies. The performance of thesemethods significantly depends on the accuracy of metamodels. However, formulti-variable problems, traditional metamodels usually have low accuracies, leadingto low efficiency and local optimums. Therefore, a projection-based heuristic globalsearch algorithm (P-HGS) is proposed for multi-variable optimization. The algorithmadopts multi-dimensional projection technique to integrate Kriging-HDMR with MPSseamlessly. In each iteration, new samples are projected to the lines and hyper-planescrossing through the cut center. The projected points are used to update the Krigingmodels of the component terms of Kriging-HDMR. In order to ensure theinterpolation of Kriging-HDMR at the new samples, a error modification term is alsoadded. P-HGS takes advantage of Kriging-HDMR to improve the efficiency andaccuracy of the optimizaition. Tested by several nonlinear functions, P-HGSobviously excels MPS in global search, efficiency and robustness.
     (3) Engineering optimizations often concern with discrete variables, such as thematerial variable. Existence of discrete variables extraly, even multiply increase thedimensionality of solution vector so that the accuracy of metamodel can hardly beguaranteed, particularly for the multi-variable optimization. Thus, a K-mean Clusterbased Heuristic Sampling with Utopia-Pareto Directing Adaptive Strategy(KCHS-UPDA) is proposed for discrete design variables based multi-objectiveoptimization. The method defines several feature solutions according to the Paretofrontier. In each iteration, the feature solutions are located and correspondingsampling sets are generated, so that space reduction can be easily realized. In order toenhance the convergent rate, in each sampling set, k-mean cluster is employed toconstruct a probabilistic model, according to which new samples are drawnstochastically. The method successfully replaces metamodels so that accuracy defectof metamodel for the discrete variable can be well avoided. Moreover, in a iteration,the locations of the feature solutions are usually disperse and the sampling setsdistribute around each feature solution, so global search ability of the algorithm can be enhanced to some extent. A few benchmark problems are used to test theperformance of the proposed algorithm. Test results indicate that KCHS-UPDA cangenerally converge to the Pareto frontier with a small quantity of number of functionevaluations.
引文
[1] Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor:University of Michigan Press,1975
    [2] Holland J H. Adaptation in natural and artificial systems: an introductoryanalysis with applications to biology, control and artificial intelligence.Cambridge: MIT press,1992
    [3] Yang J, Honavar V. Feature subset selection using a genetic algorithm.Intelligent Systems and their Applications,1998,13(2):44-49
    [4] Falkenauer E. A new representation and operators for genetic algorithms appliedto grouping problems. Evolutionary Computation,1994,2(2):123-144
    [5] Seront G, Bersini H. Simplex ga and hybrid methods. In Proceedings of IEEEInternational Conference on Evolutionary Computation,1996. Publication Date:20-22May1996,845-848
    [6] Yoshimura M, Izui K. Hierarchical parallel processes of genetic algorithms fordesign optimization of large-scale products. Journal of Mechanical Design,2004,126(2):217-224
    [7] Falkenauer E. Genetic algorithms and grouping problems. Chichester, England:John Wiley&Sons Ltd,1997
    [8] Goldberg D E, Holland J H. Genetic algorithms and machine learning. Machinelearning,1988,3(2):95-99
    [9] Syswerda G. Uniform crossover in genetic algorithms. In proceedings of of the3rd International Conference on Genetic Algorithms. San Francisco, CA, USA:Morgan Laufmann Pubilishers Inc,1989,2-9
    [10] Whitley D. A genetic algorithm tutorial. Statistics and computing,1994,4(2):65-85
    [11] Fogel D B. Evolutionary computation: toward a new philosophy of machineintelligence. New York: IEEE Press. pp.140,2000
    [12] Hill T, Lundgren A, Fredriksson R, et al. Genetic algorithm for large-scalemaximum parsimony phylogenetic analysis of proteins. Biochimica etBiophysica Acta (BBA)-General Subjects,2005,1725(1):19-29
    [13] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. InProceedings of the Sixth International Symposium on Micro Machine andHuman Science,1995MHS'95. Nagoya, Japan:1995,39-43
    [14] Parsopoulos K E, Vrahatis M N. Initializing the particle swarm optimizer usingthe nonlinear simplex method. In Advances in intelligent systems, fuzzy systems,evolutionary computation. USA: WSEAS Press,2002,216-221
    [15] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchicalparticle swarm optimizer with time-varying acceleration coefficients. IEEETransactions on Evolutionary Computation,2004,8(3):240-255
    [16] Raquel C R, Naval P C. An effective use of crowding distance in multiobjectiveparticle swarm optimization. In Proceeding GECCO'05Proceedings of the2005conference on Genetic and evolutionary computation. New York, USA: ACM,2005,257-264
    [17] Salerno J. Using the particle swarm optimization technique to train a recurrentneural model. In Proceeding ICTAI'97Proceedings of the9th IEEEInternational Conference on Tools with Artificial Intelligence. Washington DC,USA: IEEE Computer Society,1997,45-49
    [18] Fourie P, Groenwold A. The particle swarm optimization algorithm in size andshape optimization. Structural and Multidisciplinary Optimization,2002,23(4):259-267
    [19] Eberhart R C, Hu X. Human tremor analysis using particle swarm optimization.In Proceedings of the1999Congress on Evolutionary Computation,1999, CEC99. Washington DC, USA:1999,1927-1930
    [20] Karaboga D, Basturk B. A powerful and efficient algorithm for numericalfunction optimization: artificial bee colony (ABC) algorithm. Journal of globaloptimization,2007,39(3):459-471
    [21] Karaboga N. A new design method based on artificial bee colony algorithm fordigital IIR filters. Journal of the Franklin Institute,2009,346(4):328-348
    [22] Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numericalfunction optimization. Applied Mathematics and Computation,2010,217(7):3166-3173
    [23] Karaboga D, Akay B, Ozturk C. Artificial bee colony (ABC) optimizationalgorithm for training feed-forward neural networks. In Proceedings of the4thInternational Conference on Modeling Decisions for Artificial Intelligence.Berlin, Heidelberg: Springer-verlag,2007,318-329
    [24] Karaboga D, Ozturk C. A novel clustering approach: Artificial Bee Colony(ABC) algorithm. Applied Soft Computing,2011,11(1):652-657
    [25] Singh A. An artificial bee colony algorithm for the leaf-constrained minimumspanning tree problem. Applied Soft Computing,2009,9(2):625-631
    [26] Kang F, Li J, Xu Q. Structural inverse analysis by hybrid simplex artificial beecolony algorithms. Computers&Structures,2009,87(13):861-870
    [27] Karaboga D, Akay B. A modified artificial bee colony (ABC) algorithm forconstrained optimization problems. Applied Soft Computing,2011,11(3):3021-3031
    [28] Pan Q K, Fatih T M, Suganthan P N, et al. A discrete artificial bee colonyalgorithm for the lot-streaming flow shop scheduling problem. InformationSciences,2011,181(12):2455-2468
    [29] Karaboga D, Ozturk C. Fuzzy clustering with artificial bee colony algorithm.Scientific Research and Essays,2010,5(14):1899-1902
    [30] Kirkpatrick S, Jr. D G, Vecchi M P. Optimization by simulated annealing.Science,1983,220(4598):671-680
    [31] Szu H, Hartley R. Fast simulated annealing. Physics letters A,1987,122(3):157-162
    [32] Ingber L. Adaptive simulated annealing (ASA): Lessons learned. Proceedings ofthe Control and cybernetics. Citeseer,1996
    [33] Goffe W L, Ferrier G D, Rogers J. Global optimization of statistical functionswith simulated annealing. Journal of Econometrics,1994,60(1):65-99
    [34] Chen L, Aihara K. Chaotic simulated annealing by a neural network model withtransient chaos. Neural networks,1995,8(6):915-930
    [35] Dekkers A, Aarts E. Global optimization and simulated annealing. Mathematicalprogramming,1991,50(1-3):367-393
    [36] Jones D R, Perttunen C D, Stuckman B E. Lipschitzian optimization without theLipschitz constant. Journal of Optimization Theory and Applications,1993,79(1):157-181
    [37] Bjorkman M, Holmstrom K. Global optimization using the DIRECT algorithmin Matlab. Adanced Modeling and Optimization,1999,1(2):17-37
    [38] Bartholomew-Biggs M C, Parkhurst S C, Wilson S P. Globaloptimization–stochastic or deterministic? Stochastic Algorithms: Foundationsand Applications. Berlin, Heidelberg: Springer-Verlag,2003,125-137
    [39] Siah E S, Sasena M, Volakis J L, et al. Fast parameter optimization oflarge-scale electromagnetic objects using DIRECT with Kriging metamodeling.IEEE Transactions on Microwave Theory and Techniques,2004,52(1):276-285
    [40] Wang L, Shan S, Wang G G. Mode-pursuing sampling method for globaloptimization on expensive black-box functions. Engineering Optimization,2004,36(4):419-438
    [41] Duan X, Wang G, Kang X, et al. Performance study of mode-pursuing samplingmethod. Engineering Optimization,2009,41(1):1-21
    [42] Sharif B, Wang G G, Elmekkawy T Y. Mode pursuing sampling method fordiscrete variable optimization on expensive black-box functions. Journal ofMechanical Design,2008,130(2):021402
    [43] Wang H, Shan S, Wang G G, et al. Integrating least square support vectorregression and mode pursuing sampling optimization for crashworthiness design.Journal of Mechanical Design,2011,133(4):041002
    [44] Shan S, Wang G G. An efficient Pareto set identification approach formultiobjective optimization on black-box functions. Journal of MechanicalDesign,2005,127(5):866-874
    [45] Tang L, Li G Y, Wang H. Advanced high strength steel springback optimizationby projection-based heuristic global search algorithm. Materials&Design,2013,43:426-437
    [46] Wang H, Li E Y, Li G Y, et al. Development of metamodeling basedoptimization system for high nonlinear engineering problems. Advances inEngineering Software,2008,39(8):629-645
    [47]李恩颖,王琥,李光耀.基于支持向量机回归的材料参数反求方法.机械工程学报,2012,48(6):90-95
    [48] Wang H, Li E Y, Li G Y. Parallel boundary and best neighbor searchingsampling algorithm for drawbead design optimization in sheet metal forming.Structural and Multidisciplinary Optimization,2010,41(2):309-324
    [49] Wang H, Li G Y. Min–Median–Max metamodel-based unconstrained nonlinearoptimization problems. Structural and Multidisciplinary Optimization,2012,45(3):401-415
    [50] Sacks J, Schiller S B, Welch W J. Designs for computer experiments.Technometrics,1989,31(1):41-47
    [51] Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computerexperiments. Statistical science,1989,4(4):409-423
    [52] Chen V C, Tsui K L, Barton R R, et al. A review of design and modeling incomputer experiments. Handbook of statistics,2003,22231-261
    [53] Chen V C, Tsui K-L, Barton R R, et al. A review on design, modeling andapplications of computer experiments. IIE transactions,2006,38(4):273-291
    [54] Crary S B. Design of computer experiments for metamodel generation. AnalogIntegrated Circuits and Signal Processing,2002,32(1):7-16
    [55] John R S, Draper N R. D-optimality for regression designs: a review.Technometrics,1975,17(1):15-23
    [56] Steinberg d M, Hunter W G. Experimental design: review and comment.Technometrics,1984,26(2):71-97
    [57] Mckay M D, Beckman R J, Conover W J. Comparison of three methods forselecting values of input variables in the analysis of output from a computercode. Technometrics,1979,21(2):239-245
    [58] Simpson T W, Lin D K, Chen W. Sampling strategies for computer experiments:design and analysis. International Journal of Reliability and Applications,2001,2(3):209-240
    [59] Jin R, Chen W, Sudjianto A. On sequential sampling for global metamodeling inengineering design. In Proceedings of DETC’02ASME2002Design AutomationConference. Montreal, Canada:2002
    [60] Chan T F, Golub G H, Leveque R J. Algorithms for computing the samplevariance: Analysis and recommendations. The American Statistician,1983,37(3):242-247
    [61] Ford I, Titterington D, Kitsos C P. Recent advances in nonlinear experimentaldesign. Technometrics,1989,31(1):49-60
    [62] Wang G G, Shan S. Review of metamodeling techniques in support ofengineering design optimization. Journal of Mechanical Design,2007,129(4)370-380
    [63] Gunst R F. Response Surface Methodology: Process and Product OptimizationUsing Designed Experiments. Technometrics,1996,38(3):284-286
    [64] Bose R C, Bush K. Orthogonal arrays of strength two and three. The Annals ofMathematical Statistics,1952,508-524
    [65] Hedayat A, Sloane N J A, Stufken J. Orthogonal arrays: theory and applications.Springer Verlag,1999
    [66] Owen A B. Orthogonal arrays for computer experiments, integration andvisualization. Statistica Sinica,1992,2(2):439-452
    [67] Owen A B. A central limit theorem for Latin hypercube sampling. Journal of theRoyal Statistical Society Series B (Methodological),1992,54(2):541-551
    [68] Tang B. Orthogonal array-based Latin hypercubes. Journal of the AmericanStatistical Association,1993,88(424):1392-1397
    [69] Ye K Q. Orthogonal column Latin hypercubes and their application in computerexperiments. Journal of the American Statistical Association,1998,93(444):1430-1439
    [70] Hickernell F. A generalized discrepancy and quadrature error bound.Mathematics of Computation of the American Mathematical Society,1998,67(221):299-322
    [71] Johnson M E, Moore L M, Ylvisaker D. Minimax and maximin distance designs.Journal of statistical planning and inference,1990,26(2):131-148
    [72] Chaloner K, Verdinelli I. Bayesian experimental design: A review. StatisticalScience,1995,10(3):273-304
    [73] Currin C, Mitchell T, Morris M, et al. Bayesian prediction of deterministicfunctions, with applications to the design and analysis of computer experiments.Journal of the American Statistical Association,1991,86(416):953-963
    [74] Mitchell T J, Morris M D. Bayesian design and analysis of computerexperiments: two examples. Statistica Sinica,1992,2(2):359-379
    [75] Morris M D, Mitchell T J, Ylvisaker D. Bayesian design and analysis ofcomputer experiments: use of derivatives in surface prediction. Technometrics,1993,35(3):243-255
    [76] Ye K Q, Li W, Sudjianto A. Algorithmic construction of optimal symmetricLatin hypercube designs. Journal of statistical planning and inference,2000,90(1):145-159
    [77] Jin R, Chen W, Sudjianto A. An efficient algorithm for constructing optimaldesign of computer experiments. Journal of Statistical Planning and Inference,2005,134(1):268-287
    [78] Morris M D, Mitchell T J. Exploratory designs for computational experiments.Journal of statistical planning and inference,1995,43(3):381-402
    [79] Simpson T W, Mauery T M, Korte J J, et al. Comparison of response surface andkriging models for multidisciplinary design optimization. The7thAIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis andOptimization. USA:1998
    [80] Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniquesunder multiple modelling criteria. Structural and Multidisciplinary Optimization,2001,23(1):1-13
    [81] Wang L, Beeson D, Wiggs G, et al. A comparison of metamodeling methodsusing practical industry requirements. In Proceedings of the47thAIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materialsconference. USA: Newport, Rhode Island,2006
    [82] Hill W J, Hunter W G. A review of response surface methodology: a literaturesurvey. Technometrics,1966,8(4):571-590
    [83] Denison D G T. Simulation based Bayesian nonparametric regression methods.Imperial College. London University. PhD.1997
    [84] Friedman J H. Multivariate adaptive regression splines. The annals of statistics.1991,1-67
    [85] Fang H, Horstemeyer M F. Global response approximation with radial basisfunctions. Engineering Optimization,2006,38(04):407-424
    [86] Regis R G, Shoemaker C A. Parallel radial basis function methods for the globaloptimization of expensive functions. European journal of operational research,2007,182(2):514-535
    [87] Regis R G, Shoemaker C A. A stochastic radial basis function method for theglobal optimization of expensive functions. INFORMS Journal on Computing,2007,19(4):497-509
    [88] Joseph V R, Hung Y, Sudjianto A. Blind kriging: A new method for developingmetamodels. Journal of mechanical design,2008,130(2):031102
    [89] Martin J D, Simpson T W. Use of kriging models to approximate deterministiccomputer models. AIAA journal,2005,43(4):853-863
    [90] Krige D G. A statistical approach to some mine valuation and allied problems onthe Witwatersrand. University of the Witwatersrand. PhD.1951
    [91] Collobert R, Bengio S. SVMTorch: Support vector machines for large-scaleregression problems. The Journal of Machine Learning Research,2001,1143-160
    [92] Andrews D W, Whang Y-J. Additive interactive regression models:circumvention of the curse of dimensionality. Econometric Theory,1990,6(04):466-479
    [93] Friedman J H, Silverman B W. Flexible parsimonious smoothing and additivemodeling. Technometrics,1989,31(1):3-21
    [94] Stone C J. Additive regression and other nonparametric models. The annals ofStatistics,1985,13(2):689-705
    [95] Friedman J H, Stuetzle W. Projection pursuit regression. Journal of theAmerican statistical Association,1981,76(376):817-823
    [96] Ciampi A, Lawless J, Mckinney S, et al. Regression and recursive partitionstrategies in the analysis of medical survival data. Journal of clinicalepidemiology,1988,41(8):737-748
    [97] Li G, Rosenthal C, Rabitz H. High dimensional model representations. TheJournal of Physical Chemistry A,2001,105(33):7765-7777
    [98] Rabitz H, Alis OF. General foundations of high-dimensional modelrepresentations. Journal of Mathematical Chemistry,1999,25(2-3):197-233
    [99] Sobol I M. Sensitivity estimates for nonlinear mathematical models.Mathematical Modelling and Computational Experiments,1993,1(4):407-414
    [100] Shan S, Wang G G. Metamodeling for high dimensional simulation-baseddesign problems. Journal of Mechanical Design,2010,132(5):051009
    [101] Wang H, Tang L, Li G Y. Adaptive MLS-HDMR metamodeling techniques forhigh dimensional problems. Expert Systems with Applications,2011,38(11):14117-14126
    [102] Ivakhnenko A. The group method of data handling-a rival of the method ofstochastic approximation. Soviet Automatic Control,1968,13(3):43-55
    [103] Ivakhnenko A, Ivakhnenko G. The review of problems solvable by algorithms ofthe group method of data handling (GMDH). Pattern Recognition And ImageAnalysis,1995,5(4):527-535
    [104] Gu L. A comparison of polynomial based regression models in vehicle safetyanalysis. In Proceedings of the ASME design engineering technical conferences-design automation conference. Pittsburgh, USA: ASME,2001
    [105] Li B, Shui B, Lau K. Fixture configuration design for sheet metal assembly withlaser welding: a case study. The International Journal of AdvancedManufacturing Technology,2002,19(7):501-509
    [106] Myers R H, Montgomery D C. Response Surface Methodology: Process andProduct Optimization Using Designed Experiments. New York, USA: JohnWiley and Sons Ltd,1995
    [107] Sun G Y, Li G Y, Hou S J, et al. Crashworthiness design for functionally gradedfoam-filled thin-walled structures. Materials Science and Engineering: A,2010,527(7):1911-1919
    [108] Xu F X, Sun G Y, Li G Y, et al. Crashworthiness design of multi-componenttailor-welded blank (TWB) structures. Structural and MultidisciplinaryOptimization,2013
    [109] Dennis J, Torczon V. Managing approximation models in optimization.Multidisciplinary design optimization: State-of-the-art,1997,330-347
    [110] Osio I G, Amon C H. An engineering design methodology with multistageBayesian surrogates and optimal sampling. Research in Engineering Design,1996,8(4):189-206
    [111] Booker A J, Dennis JR J, Frank P D, et al. A rigorous framework foroptimization of expensive functions by surrogates. Structural optimization,1999,17(1):1-13
    [112] Rodriguez J F, Perez V M, Padmanabhan D, et al. Sequential approximateoptimization using variable fidelity response surface approximations. Structuraland Multidisciplinary Optimization,2001,22(1):24-34
    [113] Schonlau M, Welch W J, Jones D R. Global versus local search in constrainedoptimization of computer models. New Developments and Applications inExperimental Design,1998,34:11-25
    [114] Wang G G. Adaptive response surface method using inherited latin hypercubedesign points. Journal of Mechanical Design,2003,125(2):210-220
    [115] Wang G G, Dong Z, Aitchison P. Adaptive response surface method-a globaloptimization scheme for approximation-based design problems. EngineeringOptimization,2001,33(6):707-734
    [116] Wang G G, Simpson T. Fuzzy clustering based hierarchical metamodeling fordesign space reduction and optimization. Engineering Optimization,2004,36(3):313-335
    [117] Sun G Y, LI G Y, ZHOU S, et al. Multi-fidelity optimization for sheet metalforming process. Structural and Multidisciplinary Optimization,2011,44(1):111-124
    [118] Koch P N, Simpson T W, Allen J K, et al. Statistical approximations formultidisciplinary design optimization: the problem of size. Journal of Aircraft,1999,36(1):275-286
    [119] Li G, Wang S-W, Rosenthal C, et al. High dimensional model representationsgenerated from low dimensional data samples. I. mp-Cut-HDMR. Journal ofMathematical Chemistry,2001,30(1):1-30
    [120] Shorter J A, Ip P C, Rabitz H A. An efficient chemical kinetics solver using highdimensional model representation. The Journal of Physical Chemistry A,1999,103(36):7192-7198
    [121] Schonlau M, Welch W J. Screening the input variables to a computer model viaanalysis of variance and visualization. Screening,2006,308-327
    [122] Jolliffe I T. Principal component analysis. New York, USA: Springer-Verlag,1986
    [123] Welch W J, Buck R J, Sacks J, et al. Screening, predicting, and computerexperiments. Technometrics,1992,34(1):15-25
    [124] Tu J, Jones D R. Variable screening in metamodel design by cross-validatedmoving least squares method. In Proceedings of the The44th AIAA/ASME/ASCE/AHS structures, structural dynamics, and materials conference. Norfolk,Virginia:2003
    [125] Shen H T, Zhou X, Zhou A. An adaptive and dynamic dimensionality reductionmethod for high-dimensional indexing. The International Journal on Very LargeData Bases,2007,16(2):219-234
    [126] Jin R, Chen W, Sudjianto A. Analytical metamodel-based global sensitivityanalysis and uncertainty propagation for robust design. SAE Trans. Journal ofMaterials and Manufacturing,2004,47-54
    [127] Kaya H, Kaplan M, Saygin N H. A recursive algorithm for finding HDMR termsfor sensitivity analysis. Computer physics communications,2004,158(2):106-112
    [128] Morris M D. Factorial sampling plans for preliminary computationalexperiments. Technometrics,1991,33(2):161-174
    [129] Oakley J E, Ohagan A. Probabilistic sensitivity analysis of complex models: aBayesian approach. Journal of the Royal Statistical Society: Series B (StatisticalMethodology),2004,66(3):751-769
    [130] Brand M. Continuous nonlinear dimensionality reduction by kernel eigenmaps.In Proceedings of the International Joint Conference on Artificial Intelligence.San Francisco USA: Morgan Kaufmann Publishers,2003,547-552
    [131] Ding C, He X, Zha H, et al. Adaptive dimension reduction for clustering highdimensional data. In Proceedings of2002IEEE International Conference onData Mining. Maebashi, Japan: IEEE Computer Socirty,2002
    [132] Iman R L, Conover W. Small sample sensitivity analysis techniques forcomputer models. with an application to risk assessment. Communications instatistics-theory and methods,1980,9(17):1749-1842
    [133] Wagner S. Global sensitivity analysis of predictor models in softwareengineering. proceedings of the Predictor Models in Software Engineering,2007PROMISE'07Proceedings of the3rd International Workshop on PredictorModels in Software Engineering. Washington, DC, USA: IEEE ComputerSociety,2007
    [134] Sobieszczanski-Sobieski J. Sensitivity analysis and multidisciplinaryoptimization for aircraftdesign-Recent advances and results. Journal of Aircraft,1990,27(12):993-1001
    [135] Hamby D. A review of techniques for parameter sensitivity analysis ofenvironmental models. Environmental Monitoring and Assessment,1994,32(2):135-154
    [136] Bandler J W, Biernacki R M, Chen S H, et al. Space mapping technique forelectromagnetic optimization. IEEE Transactions on Microwave Theory andTechniques,1994,42(12):2536-2544
    [137] Shan S, Wang G G. Survey of modeling and optimization strategies to solvehigh-dimensional design problems with computationally-expensive black-boxfunctions. Structural and Multidisciplinary Optimization,2010,41(2):219-241
    [138] Bakr M H, Bandler J W, Georgieva N. An aggressive approach to parameterextraction. IEEE Transactions on Microwave Theory and Techniques,1999,47(12):2428-2439
    [139] Bandler J W, Biernacki R M, Chen S H, et al. Aggressive space mapping forelectromagnetic design. In Proceedings of the Microwave Symposium Digest,1995, IEEE MTT-S International. Oriando, USA:1995,1455-1458
    [140] Bandler J W, Biernacki R M, Chen S H, et al. Electromagnetic optimizationexploiting aggressive space mapping. IEEE Transactions on Microwave Theoryand Techniques,1995,43(12):2874-2882
    [141] Bakr M H, Bandler J W, Biernacki R M, et al. A trust region aggressive spacemapping algorithm for EM optimization. IEEE Transactions on MicrowaveTheory and Techniques,1998,46(12):2412-2425
    [142] Bakr M H, Bandler J W, Georgieva N, et al. A hybrid aggressive space-mappingalgorithm for EM optimization. IEEE Transactions on Microwave Theory andTechniques,1999,47(12):2440-2449
    [143] Bakr M H, Bandler J W, Madsen K, et al. Space-mapping optimization ofmicrowave circuits exploiting surrogate models. IEEE Transactions onMicrowave Theory and Techniques,2000,48(12):2297-2306
    [144] Leary S J, Bhaskar A, Keane A J. A constraint mapping approach to thestructural optimization of an expensive model using surrogates. Optimizationand Engineering,2001,2(4):385-398
    [145] Bakr M H, Bandler J W, Madsen K, et al. Review of the space mappingapproach to engineering optimization and modeling. Optimization andEngineering,2000,1(3):241-276
    [146] Bandler J W, Cheng Q S, Dakroury S A, et al. Space mapping: the state of theart. IEEE Transactions on Microwave Theory and Techniques,2004,52(1):337-361
    [147] Bakr M, Bandler J, Georgieva N. Modeling of microwave circuits exploitingspace derivative mapping. In Proceedings of the Microwave Symposium Digest,1999IEEE MTT-S International. Anaheim, CA, USA:1999,715-718
    [148] Bandler J W, Georgieva N, Ismail M A, et al. A generalized space-mappingtableau approach to device modeling. IEEE Transactions on Microwave Theoryand Techniques,2001,49(1):67-79
    [149] Bandler J W, Rayas‐Sanchez J E. Yield‐driven electromagnetic optimizationvia space mapping‐based neuromodels. International Journal of RF andMicrowave Computer‐Aided Engineering,2002,12(1):79-89
    [150] Shan S, Wang G G. Space exploration and global optimization forcomputationally intensive design problems: a rough set based approach.Structural and Multidisciplinary Optimization,2004,28(6):427-441
    [151] Wang G G, Shan S. Design space reduction for multi-objective optimization androbust design optimization problems. Journal of Materials&Manufacturing,2004,101-110
    [152] Hong L J, Nelson B L. Discrete optimization via simulation using COMPASS.Operations Research,2006,54(1):115-129
    [153] Tang L, Wang H, Li G Y, et al. Adaptive heuristic search algorithm for discretevariables based multi-objective optimization. Structural and MultidisciplinaryOptimization,2013,1-16
    [154] Fadel G, Cimtalay S. Automatic evaluation of move-limits in structuraloptimization. Structural optimization,1993,6(4):233-237
    [155] Fadel G, Riley M, Barthelemy J. Two point exponential approximation methodfor structural optimization. Structural Optimization,1990,2(2):117-124
    [156] Grignon P, Fadel G M. Fuzzy move limit evaluation in structural optimization.In Proceedings of the The5th AIAA/NASA/USAF/ISSMO fifth symposium onmultidisciplinary analysis and optimization. Panama:1994
    [157] Wujek B, Renaud J. New adaptive move-limit management strategy forapproximate optimization, part1. AIAA journal,1998,36(10):1911-1921
    [158] Wujek B, Renaud J. New adaptive move-limit management strategy forapproximate optimization, part2. AIAA journal,1998,36(10):1922-1934
    [159] Yoshimura M, Izui K. Machine system design optimization strategies based onexpansion and contraction of design spaces. In Proceedings of the7thAIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis andoptimization, St Louis, USA:1998
    [160] Byrd R H, Schnabel R B, Shultz G A. A trust region algorithm for nonlinearlyconstrained optimization. SIAM Journal on Numerical Analysis,1987,24(5):1152-1170
    [161] Celis M, Dennis J, Tapia R. A trust region strategy for nonlinear equalityconstrained optimization. Numerical optimization,1985,71-82
    [162] Rodriguez J F, Renaud J E, Watson L T. Trust region augmented Lagrangianmethods for sequential response surface approximation and optimization.Journal of mechanical design,1998,120(1):58-66
    [163] Metropolis N, Ulam S. The monte carlo method. Journal of the Americanstatistical association,1949,44(247):335-341
    [164] Powell M J. A hybrid method for nonlinear equations. Numerical methods fornonlinear algebraic equations,1970,7:87-114
    [165] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting ingenetic algorithms. Evolutionary computation,1994,2(3):221-248
    [166] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective geneticalgorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197
    [167] Aittokoski T, Miettinen K. Efficient evolutionary method to approximate thePareto optimal set in multiobjective optimization. Engineering Optimization,2008
    [168] Khokhar Z O, Vahabzadeh H, Ziai A, et al. On the performance of the PSPmethod for mixed-variable multi-objective design optimization. Journal ofMechanical Design,2010,132(7):071009
    [169] Johnson G R, Cook W H. A constitutive model and data for metals subjected tolarge strains, high strain rates and high temperatures. In Proceedings of the7thInternational Symposium on Ballistics. The Hague, Netherlands: InternationalBallistics Committee,1983
    [170] Gan W, Wagoner R. Die design method for sheet springback. InternationalJournal of Mechanical Sciences,2004,46(7):1097-1113
    [171] Tekiner Z. An experimental study on the examination of springback of sheetmetals with several thicknesses and properties in bending dies. Journal ofMaterials Processing Technology,2004,145(1):109-117
    [172] Andersson A. Numerical and experimental evaluation of springback in advancedhigh strength steel. Journal of materials engineering and performance,2007,16(3):301-307
    [173] Chen P, Koc M. Simulation of springback variation in forming of advanced highstrength steels. Journal of materials processing technology,2007,190(1):189-198
    [174] Gomes C, Onipede O, Lovell M. Investigation of springback in high strengthanisotropic steels. Journal of Materials Processing Technology,2005,159(1):91-98
    [175] Mullan H. Improved prediction of springback on final formed components.Journal of materials processing technology,2004,153:464-471
    [176] Xu W, Ma C, Li C, et al. Sensitive factors in springback simulation for sheetmetal forming. Journal of Materials Processing Technology,2004,151(1):217-222
    [177] Li H Z, Sun G Y, Li G Y, et al. On twist springback in advanced high-strengthsteels. Materials&Design,2011,32(6):3272-3279
    [178] Barlat F, Lian K. Plastic behavior and stretchability of sheet metals. Part I: Ayield function for orthotropic sheets under plane stress conditions. InternationalJournal of Plasticity,1989,5(1):51-66
    [179] Yan D, Mukai H. Stochastic discrete optimization. SIAM Journal on Controland Optimization,1992,30(3):594-612
    [180] Alrefaei M H, Andradottir S. A modification of the stochastic ruler method fordiscrete stochastic optimization. European Journal of Operational Research,2001,133(1):160-182
    [181] Gong W-B, Ho Y-C, Zhai W. Stochastic comparison algorithm for discreteoptimization with estimation. SIAM Journal on Optimization,2000,10(2):384-404
    [182] Pichitlamken J, Nelson B L. A combined procedure for optimization viasimulation. ACM Transactions on Modeling and Computer Simulation(TOMACS),2003,13(2):155-179
    [183] Shi L. Nested partitions method for stochastic optimization. Methodology andComputing in Applied Probability,2000,2(3):271-291
    [184] Audet C, Dennis JR. A pattern search filter method for nonlinear programmingwithout derivatives. SIAM Journal on Optimization,2004,14(4):980-1010
    [185] Macqueen J. Some methods for classification and analysis of multivariateobservations. In Proceedings of the fifth Berkeley symposium on mathematicalstatistics and probability. California, USA:1967,281-297
    [186] Li M. An improved kriging-assisted multi-objective genetic algorithm. Journalof Mechanical Design,2011,133(7):071008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700