近40年来长江口崇明东滩沉积记录与环境过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以崇明东滩为研究对象,通过粒度分析、磁性测量和其他化学分析手段,综合运用了沉积学、环境磁学、地球化学等方法,来探讨近40年来崇明东滩的潮滩沉积环境过程及其环境过程中的磁性参数、有机碳、磷等的变化特征,并且分析讨论了磁性参数、有机碳、磷的影响因素及环境意义。主要结论如下:
     (1) 崇明东滩表层沉积物以粉砂为主要组分,属于粘土质粉砂~粉砂类型,粒度频率曲线以单峰、正偏态为主;平均粒径的空间分布特征:高潮滩<中潮滩<低潮滩,且从北线到南线平均粒径不断增大。表层沉积物的有机碳的含量在0.37-0.87%之间;总磷含量的变化范围为541.0-633.7μg/g,平均值为594.2μg/g;无机磷含量在497.3-590.7μg/g之间,平均值为524.8μg/g,占总磷的89.3%;有机磷含量在37.6-109.91μg/g之间,占总磷的6.5-17.7%,平均值为11.7%;都具有明显的空间分布特点,其中北线断面沉积物有机磷、有机碳的含量高于南线断面,与北线断面的植物茂盛,生物量大有关。  (2) 根据表层的高、中、低潮滩沉积物的粒度特征和三个剖面的粒度变化曲线的特征及野外的剖面描述,在采样深度内对剖面进行分层:中线剖面(CDM)具有低潮滩(105cm以下)、中潮滩(49—104cm)和高潮滩(1—48cm)的沉积;北线剖面(CDN)在1-40cm内为高潮滩沉积、40cm以下为中潮滩沉积;南线剖面(CDS)在0-20cm内为高潮滩、在20cm以下为中潮滩沉积。三个剖面的高、中、低潮滩的沉积厚度不同,反映了在潮滩的发育过程的差异。
     (3) 剖面沉积物Fe~(2+)和Fe~(3+)的垂向变化特征分别是:Fe~(2+)的含量的自上而下递增、Fe~(3+)的含量自上而下递减。有机碳、总磷和有机磷的垂向变化特征为从上向下具有递减趋势,并且北线剖面>中线剖面>南线剖面。无机磷的垂向变化呈波浪性变化,但南线剖面的无机磷含量高于北线中线剖面,这可能与长江流域内的大量使用的农用磷肥有关。
     (4) CDM、CDN剖面:在40-50cm处为氧化-还原界面,以上为氧化性环境,尤其是有20-40cm之间为一强氧化带,50cm以下为还原性环境;CDS剖面:在0-20cm内,为氧化环境,20cm以下为还原环境。剖面氧化-还原界面的深度基
    
    摘要
    本上与剖面的高一中潮滩的过渡界面位置相一致,表明剖面上部是属于高潮滩沉
    积,为氧化环境,界面以下属于中低潮滩沉积,为还原环境。
    (5)根据有机碳的垂向变化特征,中线剖面北线剖面在60cm处、南线剖面在
    17cm处把剖面划分为上下两层,这两个划分界面与中高潮滩界面、氧化一还原界
    面的深度位置不一致。但是仍有高潮滩的氧化环境中有机碳的含量高且自上而下
    递减、在中低潮滩的还原环境中比较低的分布特点。总磷、有机磷的垂向变化特
    征,表现为在氧化环境的高潮滩沉积环境中,总磷和有机磷的含量高于下部沉积
    物;在氧化一还原界面上,总磷和有机磷的垂向变化发生突变。
    (6)综合粒度参数、磁性参数、Fe孙/Fe对、有机碳含量、磷含量垂向变化的特
    征,表明崇明东滩在地貌发育演化过程中,高潮滩的沉积环境明显不同于中低潮
    滩的沉积。在高潮滩沉积中:Fe对/Fe玲值大于1,为氧化环境;沉积物中有机碳
    的含量高,且自上而下递减;具有较高的磁化率和SIR人1,磁性矿物含量高;有
    机磷与总磷的变化特征自上而下递减且高于中低潮滩。在中低潮滩沉积中:
    Fe劝jF尹值小于1,为还原环境;沉积物中有机碳的含量低,变幅不大;有机磷
    与总磷的含量低于高潮滩。
The research object of this article is Chongming east tidal flat .The means and methods including grain-size analysis, magnetic measurement and other chemical analysis are used in the article to discuss process of sedimentary environment and characteristic of changing about magnetism, organic carbon and phosphorus etc in Chongming east tidal flat in the past 40 years. It also analyzed the factors which influenced the changing of magnetism , organic carbon and phosphorus etc. and discuss their meaning in environment. The main conclusions are as follows: (1)The surface sediment with fine sand as the main ingredient has two types of fine-sand with clay and fine sand. Most of grain size frequency curves are unimodal and right leaning. The space distribution characteristics of mean parameter of surface sediment indicated that the upper tidal is more than the middle tidal and the lower tidal and lower tidal flat is most fine. From Section North to Section South, the mean size of sediment increases gradually. The p
    ercentage of organic carbon in the surface sediments is between 0.37-0.87%, the range of total phosphorus is from 541.0 to 633.7 g/g, the average is 594.2 g/g. The range of inorganic phosphorus is from 497.3 to 590.7 g/g, the average is 524.8 g/g and is 89.3% of total phosphorus; the range of organic phosphorus is from 37.6 to 109.9 g/g and is 6.5 to 17.7% of total phosphorus, the average is 11.7%. All these nutrients elements have obvious space distribution characteristics and the quality of organic phosphorus and organic carbon in Route North is more than that in Route south, which may be have some relations with the exuberant vegetable and a large amount living beings in North route.
    (2) According to the grain-size change characteristic of surface sediment and the vertical distribution curves of three section of sediment, the sections were divided in sampling depth by layers. Section on Route middle (CDM ) has the lower tidal' sediment (below 105cm ) , the median tidal' sediment (49-104cm ) and the upper tidal' sediment (1-48cm ); It is the upper tidal' sediment from 1 to 40cm in the section on Route North (CDN ) and depth below 40cm is the sediment of the middle tidal sediments. The upper tidal flat is from surface to 20cm and below 20cm is the
    
    
    
    
    sediment of middle tidal flat in the Section south (CDS).
    (3) The vertical variation curve of Fe2 + is differ from that of Fe3 +, the content of Fe2 + increase from top to bottom, but the content of Fe3 + is opposite. The variation of nutrients elements has the decreasing tendency on the direction and has a increasing tendency from the section on the Route north to the section on the South section. The vertical variation curve of Inorganic phosphorus is waviness, but the content of inorganic phosphorus in South section sediments is more than that of North section and Middle section, which may be relevant with a large amount of agricultural phosphorus fertilizer used in the Yangtze River valley.
    (4) In the Median and North section: There is an oxidation-deoxidization interface between 40 and 50cm, the upside above 40cm is oxidizing environment, especially the zone of strong oxidize environment between 20cm to 40cm, below 50cm is deoxidization environment. In the section CDS: oxidation-deoxidize interface at the depth is above 20cm and below 20cm is the deoxidization environment. Oxidation-deoxidize interfaces of sections are basically accord with the transition between the upper tidal flat and the middle tidal flat. So in all, environment of sediments of the upper tidal flat in the section is oxidation and below it, the middle-lower tidal flat, is deoxidization.
    (5) Basing on the vertical variation of organic carbon, Section middle and Section north At the depth of 40-50cm and Section south at the depth of 20cm can be divided two layers, top layer and low layer, by a interface which is accord with the interface between upper tidal flat and middle tidal flat and between oxidation and deoxidization. Results above tell that the content of organic carbon in the ox
引文
1.陈宗团,徐立,洪华生,河口沉积物—水界面重金属生物地球化学研究进展[J],地球科学进展,1997,12(5):434-439
    2.陈振楼,许世远,柳林等,上海滨岸潮滩沉积物重金属元素的空间分布与累积[J],地理学报,2000,55(6):641-651
    3.陈满荣,潮滩重金属和有机化合污染物的环境磁学诊断研究—以长江口难沉积物为例,华东师范大学博士论文,2001
    4.陈振楼,许世远,柳林等,上海滨岸潮滩沉积物重金属元素的空间分布与累积[J],地理学报,2000,55(6):641-651
    5.陈绍勇,湄洲湾沉积物有机碳、铁和锰的化学成岩过程[J],热带海洋,1992,11(3):24-28
    6.陈中原,周长振,杨文达等,长江口外现代水下地貌和沉积[J],东海海洋,1986,14(2):28~37
    7.陈卫跃,潮滩泥沙输移及沉积动力环境[J],海洋学报,1992,13:813-821
    8.陈吉余,王宝灿,渤海湾淤泥质海岸(海河口—黄河口)的塑造过程,上海市科技论文选,上海:上海科学技术出版社,1961:1-6
    9.陈吉余,三峡工程对长江河口的影响[J],长江流域资源与环境,1995,4(3):242-246
    10.陈才俊,围滩造田与淤泥质潮滩的发育[J],海洋通报,1990,9:3
    11.陈才俊,江苏淤长型淤泥质潮滩的剖面发育[J],海洋与湖沼,1991,22(4):360-367
    12.董永发,曹沛奎,浙闽淤泥质港湾沉积特征[J].华东师范大学学报(自然科学版),1996,2:77-82
    13.董瑞斌,张卫国,卢升高等,土壤和沉积物的磁参数及其在环境科学中的应用[J],科技通报,2000,16(6):479-483
    14.郭志刚,杨作升,陈致林等,东海陆架泥质区沉积有机质的物源分析[J],地球化学,2001,30(5):416-424
    15.郭志刚,杨作升,曲艳慧等,东海中陆架泥质区及其周边表层沉积物的分布与固碳能力的研究[J],1999,30(4):421-426
    16.高善明等,黄河三角洲形成和沉积环境[M],北京:科学出版社,1989:106-132
    17.韩兴国,李凌浩,黄建辉,生物地球化学概论[M],高等教育社,1999:245
    18.侯立军,刘敏,许世远等,长江口岸柱状沉积物中磷的存在形态及其环境意义[J],海洋环境科学,200120(2):7-12
    19.韩晓非,张卫国,陈满荣等,长江口潮滩植物对沉积物铁的地球化学循环及磁性特征的影响[J],沉积学报,2003,21(3):495-499
    20.韩晓非,潮滩根际环境的生物地球化学效应及沉积物磁性表征,华东师范大学博士论文,2002
    21.何小勤,顾成军,崇明湿地围垦与可持续发展研究,国土与自然资源研究,2003,4:
    
    39-40
    22.黄静伟,洪家珍,厦门港滩涂沉积物中铁、锰的早期化学成岩过程[J],厦门大学学报(自然科学版).1993,32(6):782-787
    23.黄静伟,洪家珍,厦门港滩涂及海域沉积物中磷与铁的关系[J],台湾海峡,1994,13(3):240-244
    24.韩晓非,潮滩植物根际环境的生物地球化学效应及沉积物磁性表征,华东师范大学博士论文,2002
    25.韩晓非,张卫国,陈满荣等,长江口滩植物 对沉积物铁的地球化学循环及磁性特征的影响,沉积学报,2003,21(3):495-499
    26.黄自强,暨卫东,长江口水中总磷、有机磷、磷酸盐的变化特征及相互关系[J],海洋学报,1994,16(1):51~60
    27.胡敦欣,韩舞鹰,章申等,长江、珠江及邻近海域陆海相互作用[M],北京,海洋出版社,2001:26-48
    28.侯立军,刘敏,许世远等,长江口岸柱状沉积物中磷的存在形态及其环境意义[J],海洋环境科学,2001,20(2):7—12
    29.贾国东,钟佐粲,铁的环境地球化学综述[J],环境科学进展,1998,7(5)::74-84
    30.李凡,海岸带陆海相互作用研究及我们的策略[J],地球科学进展,1996,11(1):52-56
    31.李学刚,吕晓霞,孙云明等,渤海沉积物中的“活性铁“与其氧化还原环境的关系[J],海洋环境科学,2003,22(1):20-24
    32.李九发,何青,张琛,长江口拦门沙河床淤积和泥沙再悬浮过程[J],海洋与湖沼,2001,31(1):101-109
    33.李茂田,崇明东滩湿地生态系统硅的生物地球化学循环初探,华东师范大学硕士论文,2002
    34.罗莎莎,万国江,黄荣贵,云南洱海沉积物-水界面铁锰的分布和迁移特征[J],重庆环境科学,2000,22(6):19-21
    35.刘良梧,茅昂江,胡雪峰,磁化率-沉积、成土作用环境的指示剂[J],土壤,2001,33(2):98-101
    36.刘健,磁性矿物还原成岩作用述评[J],海洋地质与第四纪地质,2000,20(4):102-107
    37.刘敏,陆敏,许世远等,长江河口及其上海岸带水体沉积物中磷的存在形态[J],地学前缘,2000(增刊):94-98
    38.刘敏,侯立军,许世远,底栖穴居动物对潮滩沉积物中营养盐早期作用的影响[J],上海环境科学,2003,22(3):180-184
    39.刘敏,许世远,侯立军等,长江口滨岸潮滩沉积物中磷的存在形态和分布特征[J],海洋通报,2001,20(5):10—17
    40.刘巧梅,刘敏,上海滨岸潮滩不同沉积物中无机形态磷的分布特征[J],海洋环境科学,2002,21(3):29-33
    41.蓝先洪,河口区磷的地球化学研究[J],海洋地质动态,1997(3):1-3
    42.蓝先洪,珠江口沉积物的地球化学研究[M],见中国主要河口的生物地球化学研究—化
    
    学物质的迁移与环境,张经主编,海洋出版社,北京,1996:37-53
    43.陆健健,唐亚文,崇明东滩湿地生态系统中重金属元素的分布和迁移,中国湿地系统研究和保护,1998:259-272
    44.南京大学地质系主编,地球化学[M],科学出版社,北京,1987:356
    45.任明达,王乃梁,现代沉积环境概论[M]1985北京,科学出版社:8-32
    46.宋金明,中国近海沉积物—海水界面化学[M],海洋出版社,1997:73-125
    47.宋金明,李鹏程,渤海南部沉积物中的活性铁及其氧化还原环境[J],海洋科学,1997,2:38-41
    48.上海市海岛资源调查组,上海市海岛资源综合调查报告[M],上海科学技术出版社,上海,1996:57-59
    49.邵虚生,严钦尚,上海潮坪沉积[J],地理学报,1982,37(3):241-249
    50.王宪礼,我国自然湿地的基本特点[J],生态学杂志,1997,16(4):64-67
    51.万国江,白占国,王浩然等,“洱海近代沉积物中碳、氮、硫、磷的地球化学记录[J],地球化学,2000,29(2):189-197
    52.王宝灿,黄仰松,海岸动力地貌[M],华东师范大学出版社,上海,1989,236-237
    53.汪福顺,刘丛强,梁小兵,湖泊沉积物-水界面铁的微生物地球化学循环及其与微量金属元素的关系[J],地质地球化学,2003,31(3):63-69
    54.翁焕新,河流沉积物中磷的结合状态及其环境地球化学意义[J],科学通报,1993,38(13):1219-1222
    55.吴华林,器测时期以来长江河口泥沙冲淤及其入海通量研究,华东师范大学硕士论文,2001
    56.徐志明:崇明岛东部潮滩沉积[J],海洋与湖沼,1985,16(3):231-238
    57.肖保华,万国江,泸沽湖沉积物有机质碳同位素组成与气候变迁记录[J],矿物岩石地球化学通报[J],1997,16(1):22-24
    58.许世远,邵虚生,洪雪晴等,杭州湾滨岸的风暴沉积[J],中国科学(B辑),1984(12):1136-1143
    59.许世远等,杭州湾北岸沉积特征[M],见海岸河口研究,海洋出版社,1990:110-117,
    60.许世远,陈振楼,中国东滩潮滩沉积特征与环境功能[J],云南地理环境研究,1997,9(2):7-10
    61.许世远,长江三角洲地区风暴沉积研究[M],北京:科学出版社,1997,1-150
    62.徐元,王宝灿,章可奇,上海淤泥质潮滩潮锋作用及其形成机制初步探讨[J],地理研究,1994,13:60-68
    63.恽才兴,长江河口潮滩冲淤和滩槽泥沙交换[J],泥沙研究,1983(4):235-244
    64.恽才兴,美国河口研究近期进展[J],地理学报,1985,40(4):377-382
    65.杨世伦,崇明东部滩涂沉积物的理化特性[J],华东师范大学学报,1990,3:110-112
    66.杨世伦,徐海根,长江口长兴、横沙岛潮滩沉积特征及其影响机制[J],地理学报,1994,49(5):449-456
    67.杨世伦,中国淤泥质海岸的发育特点,华东师范大学学报[J](自然科学版),1990,4:
    
    85-91
    68.杨世伦,长江三角洲季节性冲淤循环的多因子分析[J],地理学报,1997,52(2):123-130
    69.杨世伦,长江口潮沼植物对动力沉积过程的影响[J].海洋学报,2001,23(4):75-80
    70.杨世伦,试论植物在潮滩发育演变中的作用[J],海洋与湖沼,1994,25(6):631-634
    71.杨世伦,风浪在开敞潮滩短周期冲淤演变中的作用—以南汇东滩为例[J],海洋科学,1991(2):59-63
    72.杨世伦,赵庆英,丁平兴等,上海岸滩动力泥沙条件的年周期变化及其与滩均高程的统计[J].海洋科学,2002,26(2):37-41
    73.杨世伦,姚炎明,贺松林,长江口冲积岛岸滩剖面形态和冲淤规律[J],海洋与湖沼,1999,30(6):764-768
    74.杨世伦,长江口沉积物粒度参数的统计规律及其沉积动力学解释[J],泥沙研究,1994,3:23-30
    75.杨世伦,谢文辉,朱骏等,赵庆英大河口潮滩地貌动力过程的研究——以长江口为例[J],地理学与国土研究,2001,17(3):44-48
    76.杨文鹤,中国海岛[M],海洋出版社,北京2000.153-154
    77.杨留法,试论粉砂淤泥质海岸微地貌类型的划分—以上海市崇明县东部潮滩为例,上海师范大学学报(自然科学版)[J],1997,26(3):72—77
    78.严钦尚,论滨岸浅海的风暴沉积[J],海洋与湖沼,1984,15(1):14-19
    79.袁华茂,吕晚霞,李学刚等,自然粒度下渤海沉积物中有机碳的地球化学特征[J],环境化学,2003,(22):115-120
    80.于天仁,王振权,土壤分析化学[M],科学出版社,1988:9-18
    81.俞立中,张卫国,利用磁信息研究潮滩重金属污染的探讨[J],环境科学进展,1993,1(5):37—44
    82.杨光复等,三峡工程对长江口区沉积结构及地球化学特征的影响,海洋科学集刊——三峡工程对长江口区生态与环境影响调查研究专辑,科学出版社,1992:69-108
    83.庄武艺,谢佩尔,海草对潮滩沉积作用的影响[J],海洋学报,1991,13(2):230-239
    84.周立旻,长江口潮滩生物地貌作用研究—以崇明东滩藨草地貌系统为例,华东师范大学硕士论文,2003
    85.朱广伟,陈英旭,沉积物中有机质的环境行为研究进展[J],湖泊科学,2001,13,(3):272-279
    86.张卫国,俞立中,许羽,孙振斌,沉积物磁性测量对铁还原的指示及其在重金属污染研究中的应用[J],科学通报,1998,43(19):2114-2118
    87.张卫国,俞立中,长江口潮滩沉积物的磁学性质及其与粒度的关系[J],中国科学,2002,32(9):783-792
    88.张卫国,俞立中,东海陆架表层沉积物的磁性测量及其油气勘探意义[J],华东师范大学学报(自然科学版)1998,1:76-81
    89.张卫国,长江口潮滩沉积物环境磁学研究,华东师范大学博士论文,2001
    90.张卫国,俞立中,沉积物磁性测量对铁还原的指示及其在重金属污染中的应用[J],科
    
    学通报、1998,43(19):37-43
    91.张勇,虞志英,金庆祥,波浪作用下淤泥质潮滩剖侵蚀过程的计算模式—以江苏北部淤泥质海岸为例[J],海洋工程,1993,11:74-83
    92.张勇,淤泥质海滩悬沙回归模型的建立及其应用,泥沙研究,1987,1:22-24
    93.郑丽波,东海特定海磷的地球化学循环及其生态意义,浙江大学硕士论文,2000
    94.郑丽波,周怀阳,叶瑛,东海特定海区柱状沉积物中磷的存在形态及其环境指示意义[J],上海环境科学,2003,22(6):414-417
    95.周济福,径流与潮流对长江口泥沙输送的影响[J],水动力研究与进展,1999,14(14):90-100
    96. Attrill M.J., R.M.Thomes., Heavy metal concentrations in sediments fron the Thames estuary,UK. Mar.Pollu.Bull., 1995, 30 (11): 742-744
    97. ALLER R C Mobile deltaic and continental shelf muds as suboxic fluidized bed reactors[J],Mar Chem, 1998,61:143-155
    98. Allen, J.R.L. and K.Pye. Saltmarshs, Cambridge University Press, 1992:184
    99. Beeftink W.G., J.Nieuwenhuize, M.Stoeppler et al., Heavy metal accumulation in salt marshes from the western and eastern Shield. Sci. Total Environ.,1982,25:199-223
    100. Bermer R. A el al The nature of phosphorus in modem marine sediment. In: Wollast R et al.(editors) interactions of C、N、P and S Biochemical Cycles and Gljobal change, New York,Spring Verlay Berlin Heidelberg,. 1993,365-378
    101. Baturin G N. Disseminated phosphorus in oceanic sediments Areview[J],MarineGeology,1988,(84):95~104.
    102. Broecker W S. Ocean chemistry during glacial time[J], Geochim. Cosmochim. Acta,1982,46:1689-1706
    103. Brennan E W, Lindsay W L. The role of pyrite in controlling metal iron activities in highly reduced soils [J]. Geochim Cosmochim Acta, 1996,60:3609-3618
    104. Celina Campell, Late Holocene lake sedimentology and climate change in southern Alberta, Canada[J], Quaternary Research, 1997, (49): 96-101
    105. Canfield, D.E.,Thamdrup, B., Hansenm J.W., The anaerobic degradation of organic matter in Danish Coastal sediments:iron reduction, manganese reduction, and sulfate reduction,Geochim. Cosmochim. Acta, 1993,57:3867—3883
    106. D'Angelo E M, Reddy K R, Disgenesis of organic matter in a wetland receiving hypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and water column,J Eneiron Qual., 1994, 23(5): 928-936
    107. Emmerson R.H.C., S.B.O'reilly-Wiese,C.L.Macleod. A multivariate assessment of metal distribution in inter-tidal sediments of the Blackwaer estuary, UK.Mar.Pollu.Bull., 1997, 34 (11): 960-968
    108. Forstner U., G. Muller. Schwermetalle in Flussen and Seen. Berlin:Springer, 1974;
    109. Filippelli G M, Delaney M L. Phosphorus geochemistry of equatorial Pacific sediments[J].
    
    Geochem Cosmochim Acta, 1996,60(9): 1971-1980
    110. Goldberg E.D., E.Gamble,J.J. Griffin et al., Pollution history of Narragansett Bay as recorded in its sediments.Estuar.Coast. Shelf Sci., 1977,5: 549-561
    111. H.Yang, Baoyin H, Shuming C, et al., Enwironmental implications of magnetic measurements on recent sediments from lake Dong Hu, Wuhan[J], Water, Air and Soil Pollution, 1997, 98:187-195
    112. Hutchinson, S M. The magnetic record of particulate pollution in a saltmarsh, Dee Estuary, UK. The Holocene, 1993, 3(4)342-350
    113. Hunt, A, J. Jones and F.Oldfield.Magnetic measurements and heavy meatls in atmospheric particulates of anthropogenic orgin. Sci. Total Environ, 1984, 33: 129-139
    114. H.Yang,Baoyin H, Shuming C, et al., Enwironmental implications of magnetic measurements on recent sediments from lake Dong Hu, Wuhan[J], Water, Air and Soil Pollution, 1997,98:187-195
    115. Hutchinson, S M. The magnetic record of particulate pollution in a saltmarsh, Dee Estuary, UK. The Holocene, 1993, (41): 342-350
    116. Jensen, H. S, et al, Phosphorus cycling in a coastal marine sediment, Arhus Bay, Denmark,Limnol, Oceanogr, 1995:908-916
    117. Karlin R.magnetite Diagenesis in marine sediments from the Oregon continental margin[J],Journal of Geophysical Research, 1990,95(B4):4405-4419
    118. Karlin, R., S. Levi. Diagenesis of magnetic minerals in recent hemipelagic sediments.Nature, 1983,303,327-330
    119. Krom M D Berner R A, Adsorption of phosphateinanotic marine sediments[J], Limnol Oceanogr, 1980, 25(5): 787~806
    120. Lovely D R, Dissimilatory Fe(iii) and Mn(Ⅱ)reduction [J] microbi01 rev, 1991,55:29-287
    121. Leslie B W, Lund S, Hammond D E. Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California continental Borderland[J],Journal of Geophysical Research, 1990,95(B4):4437-4452
    122. McManus I, Berelson W M, Coale K H, et al. Phosphorus regenration in continental margin sediments [J], Geochimicaet Cosmochimica Acta, 1997,61 (14):2891~2907
    123. Oldfield F, Toward the discrimnation of fine-graded ferrimagnets by magnetic measurements in lake and near-shore marine sediments, Journal of Geophysical Research, 1994, 99 (B5):9045-9050
    124. R Giordani et al , Diagensis of carbon and nutrients and benthic exchange in sediments of the Northern Adriatic Sea. Marine chemistry,1999,(66):P53-79
    125. Postma, H, Transport and accumulation of Suspended matter in the Dutch Wadden Sea. In Holocene Tidal Sedimentation, 1961, pp.176-230
    126. Ronden, E.E., Wetzal, R.G., Organic carbon oxidation and suppression of methane production by microbial Fe(Ⅲ) oxide reduction in vegetated and unvegetated freshwater wetland
    
    sediments Limnol. Oceanogr., 1996,4(18): 1733-1748
    127. Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from non-up welling continental marginen vironments[J].GeochemCosmochimActa, 1993,57(5):997~1007
    128. Ruttenberg. K. C, Development of a sequential extraction method for different forms of phosphorus in marine sediments, Limnology, oceanography, 1992, 37(7): 1460-1482
    129. S.M.Hutchinson Yu L,Heavy metal contamination of tidal flat sediments in the shanghai region of the Yangtze (Changjiang) Estuary, P.R. China[J], Environmental education &information, 1998,17(4):423-432
    130. Scoullos, M., F.Oldfield, R.Thompsom. Magnetic minitoring of marine particulate pollutinn in the Elefisis Gulf, Greece. Mar. Pollut. Bull., 1979, 19:287-291
    131. SundbyB, GobeilC,SilverbergN. Thephosphoruscycleincoastalmarinesediments[J].Limnologya ndOceanography, 1992,37(6): 1129-1145
    132. Thompson. R. and Oldfield, F, Environmental Magnetism, George Allen & Unwin,London, 1986
    133. Wallschlager D, Desai M V M, Spengler M et al, How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments, J Environ Qual,1998,27(5):1044-1054
    134. Williams, T.B., Bubb, J.M., Lester, J.N., Metal accumulation within salt marsh environments:a review, Mar. Pollut. Bull., 1994, 28(5):277-290
    135. Wheeler.A. J, Oldfield F, Orford J D, Depositional and post-depostional controls on magnetic signals from saltmarshes on the north-west coast of Ireland[J], sedimentology, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700