基于环境磁学的长江干流沉积物来源及组成变化初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在流域人类活动不断加剧、入海泥沙通量日益减少的背景下,寻求河口海岸泥沙运动与地貌演变规律的主控因子,仍需要从流域泥沙来源及组成变化着眼。人类活动对流域水沙输移的影响范围正在扩大,涉及到干流及其主要产沙支流。获得大面积、高质量的样品进行分析,是研究上述问题的基础。本文基于金沙江石鼓至长江河口的流域大面积沉积物采样,结合粒度测量、磁学测量、粒级分离实验和数学统计方法,将长江流域地表侵蚀与河流输沙作为一个系统,分析沿岸表层土壤、支流、干流及长江口沉积物的磁性特征,探讨长江干流沉积物的来源及组成变化,得到主要认识如下:
     1.长江流域表层土壤、支流沉积物、干流及长江河口沉积物的磁性特征:通过测量研究区域从金沙江石鼓至长江河口(99°E至122°E,25°N至32°N)大面积的表层土壤、16条主要支流的沉积物、长江干流沿程数个站位沉积物及长江口沉积物的磁性特征,结果表明,表层土壤的磁化率x在9-1955×10-8m3/kg之间,饱和等温剩磁SIRM在2136-235654×10一6Am2/kg之间,非磁滞剩余磁化率χARM范围为23-8185×10一m3/kg,硬剩磁HIRM范围为15-7716×10一6Am2/kg,频率磁化率系数xfd%在0.9--15%之间,反映磁性矿物类型的S-300在40-100%之间,指示磁性矿物晶粒大小的χARM/SIRM范围为0.06-1.44×10一3m/A;主要支流、干流以及长江口沉积物的x在2.2-665.1×10-8m3/kg之间,SIRM在192-84820×10-6 Am2/kg之间,χARM范围为4.9~1600.5×10-8m3/kg, HIRM范围为37-1578×10一6Am2/kg,χfd%在0.1-11.4%之间,S-300在75-100%之间,χARM/SIRM范围为0.07-1.35×10-m/A。以磁化率大小比较,表层土壤磁性比河流沉积物强;流域上游支流及干流沉积物磁性要高于流域中下游支流及干流;长江北岸支流沉积物磁性总体强于南岸支流沉积物。
     2.长江流域表层土壤及河流沉积物的磁性差异及原因分析:表层土壤和河流沉积物的磁性特征主要由母质控制。峨眉山玄武岩在长江上游地区广泛分布,玄武岩属基性火山岩,亚铁磁性矿物含量高。金沙江、雅砻江、大渡河、岷江和牛栏江等支流下游位于玄武岩广泛分布的区域,沉积物继承了母岩的磁性特征,因而磁性较强。从嘉陵江、乌江流域的沉积岩发育而来的紫色土和南方红壤,具有较多的不完整反铁磁性矿物,涪江、嘉陵江、赤水河、乌江及干流上游沉积物的不完整反铁磁性矿物同样较高。汉江流域上游分布着超基性岩、板岩和片岩,下游岩石由沉积岩、片岩和少量碳酸盐组成。这些岩类中磁性矿物的含量不是很高,但在成土过程中形成一定量的亚铁磁性矿物,亚铁磁性矿物的相对贡献大,因此汉江沉积物具有较高的S-300值。中下游干流、湘江、沅江、赣江以及抚河等,河床基岩主要为花岗岩、板岩、沉积岩和碳酸盐,花岗岩主要为长石和石英,原生磁性矿物含量极低。中下游河流沉积物的磁性也非常低。与河流沉积物相比,流域上游的表层土壤除了接受母岩良好的“本底”外,风化过程中生成大量的细粒磁性矿物,使得表层土壤的磁性要高于河流沉积物。
     3.长江干流沉积物的磁性特征沿程变化过程及其对物源的指示意义:干流上、中、下游沉积物中磁性矿物类型和晶粒大小沿程变化不大,但磁性矿物含量沿程呈阶梯状减小,其中上游至中游河段沉积物的磁性矿物含量减幅最大。三峡蓄水拦沙是造成干流上游与中下游沉积物磁性差异的主要原因。干流沉积物的磁性受多源性影响,表现为沿程物源差异和粗细不一沉积物来源差异。地表侵蚀对于干流上游部分河道细粒沉积物的来源起主要贡献。金沙江作为主要输沙支流之一,其细粒组分随水流输运的距离更长,并控制干流中游沉积物细颗粒组分的磁性特征,往下游磁信号衰减,岷江、嘉陵江、乌江和两湖等沉积物细粒组分对长江中下游沉积物细粒组分的贡献相对增大。汉江沉积物对长江下游沉积物的磁性特征的影响明显,且主要集中粗颗粒组分。长江河口沉积物的磁性特征与干流沉积物相似程度较高,反映了沉积物“源一汇”过程。其中,中下游河道及两湖一江对于河口沉积物的来源起到重要的贡献。
Under the background of intensification of human activities in the Yangtze Basin and declining sediment load into the sea, to seek the host factors which impact the sediment transport dynamic and morphology evolution in coastal zone, it still need to focus on sediment source and composition change first. Human activities, including land use and intensification, influence sediment load in the Yangtze Catchment more than before, even the main stream and tributaries involved.
     Wide-range, high-quality samples for analysis, is the basis of such research work. With particle size measurement, magnetic measurement, grain size separation experiment and statistical methods combined, considering surface soil erosion and fluvial sediment transport process as a system, analyzing magnetic characteristics of topsoil, fluvial sediment and estuarine sediment, this study will discuss the source and the composition changes of the Yangtze River sediment. The main conclusions are showed as follows:
     1 The magnetic properties of topsoil, sediment from tributary, mainstream and estuary at the Yangtze Basin:The result of magnetic measurement of topsoil and sediment which taken from Jinshajiang (Shigu) to Yangtze Estuary, show that x values of topsoil are 9~1955* 10-8m3/kg, SIRM values are 2136~235654*10-6Am2/kg, XARM values are 23~8185* 10-8m3/kg, HIRM values are 15~7716*10-6 Am2/kg, S-300 values are 40~100%, Xfd% values are 0.9~15%, XARM/SIRM values are 0.06~1.44*10-3m/A. The x values of fluvial sediment are 2.2-665.1*10-8m3/kg, SIRM values are 192~84820*10-6Am2/kg, XARM values are 4.9~1600.5*10-8m3/kg, HIRM values are 37~1578*10-6Am2/kg, S-300 values are 75-100%, Xfd% values are 0.1~11.4%, XARM/SIRM values are 0.07~1.35*10-3m/A. The result indicates that much difference of magnetic properties within all samples exists. The content of magnetic minerals in topsoil is much higher than that in sediment. Besides, the content of magnetic minerals in sediment from upper basin is much higher than that in sediment from lower basin. The sediment from northern basin have much more magnetic minerals than that from southern basin.
     2 A discussion of magnetic properties of fluvial sediment and topsoil:Basalts are widely distributed around the upper basin and provide a good "background". Therefore, the content of ferrimagnetic minerals of fluvial sediment and topsoil in this region are very high, such as fluvial samples from Jinshajiang river, Yalongjiang river, Daduhe river, Minjiang river, Niulanjiang river. Purple soil and Southern red earth provide abundant of anti-ferrimagnetic minerals in the Jialingjiang and Wujiang basin, respectively. So HIRM values of the sediment from Chishuihe river, Wujiang river, Jialingjiang river and Fujiang river are relatively high. Granite, slate and carbonate rock are the primary rock type in the middle-lower basin, with low magnetic mineral content. As a result, magnetic mineral contents of downstream tributaries'sediment which are taken from Xiangjiang river, Yuanjiang river, Ganjiang river and Fuhe river are low too.
     3 The longitude change of magnetic properties of fluvial sediment along the mainstream, and its implication for the provenance identification:From upper reach to lower reach, the type and grain size of magnetic mineral change little. However, magnetic mineral's content decreases gradually. TGD'impact is the main factors which control magnetic mineral'change. Based on magnetic properties of bulk sample,<63μm fraction and>63μm fraction, using Q-mode cluster analysis, combining with corresponding physical process, to discuss the main source of Yangtze River sediment. The result indicates upper reach area (Nanxi station && Jiangjin station), magnetic properties of its bulk sample and<63μm fraction, are similar with topsoil along the river bank. It indicates that topsoil play a important role to the source of mainstream sediment. Jinshajiang river is the main source of Yangtze River sediment.<63μm fraction of Jinshajiang sediment can influence magnetic properties of middle reach's fine sediment to a large extent. Then, Minjiang, Jialingjiang, Wujiang rivers, Dongting Lake and Poyang Lake'fine-grain sediment make a relatively increasing contribution to fine-grain sediment of middle-lower reach. Hanjiang river sediment's imput, have a significantly impact on the low reach sediment (mainly coarse-grain).
引文
Andrews J.E., Greenaway A.M., Dennis P.F..1998. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary. Ectuarine, Coastal and Shelf Science,46(5):743~756.
    Basu A., Molinaroli E..1989. Provenance characteristics of detrital opaque Fe-Ti oxide minerals. J. Sedi. Petrol.59,922~934.
    Boyko T, Scholger R, Stanjek H et at..2004. Topsoil magnetic susceptibility mapping as a tool for pollution monitoring:repeatability of in situ measurements. Journal of Applied Geophysics, 5:249~259.
    Chen F H, Yang L P, Wang J M, et al..1999. Study on atmospheric particulate pollution of Lanzhou using magnetic measurements. J Environ Sci,11(3):373-377.
    Chen Z.Y., Li Jiufa, Shen Huangting,Wang Zhanghua.2001. Yangtze River of China:historical analysis of discharge variability amd sediment flux. Geomorphology,41(2-3):77~91.
    Crockford. R.H.; Olley. J.M.1998.The effects of particle breakage and abrasion on the magnetic properties of two soils. Hydrological Processes,12(9):1495~1505.
    Darby D.A., Tsang Y.U..1987. Variation in ilmenite element composition within and among drainage basins:implication for provenance. J. Sedi. Petrol.57:831~838.
    Dai. S.B., S.L. Yang, A.M. Cai.2008. Impacts of dams on the sediment flux of the Pearl River, southern China. Catena, (76):36~43.
    Ding T, Wan D, Wang C et al..2004. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochimica et Cosmochimica Acta,68(2):205~216.
    Fanos. A. M..1995. The impact of human activities on the erosion and accretion of the Nile delta coast. Journal of Coastal Research,11(3):821~833.
    Hay K L, Dearing J A, Baban SM J et al..1997. A preliminary attempt to identify atmospherically derived particles in English topsoils from magnetic susceptibility measurements. Physics and Chemistry of Earth,22(1-2):207~210.
    Hatfield R G., Robert G., Maher BA.2008. Suspended sediment characterization and tracing using a magnetic fingerprinting technique:Bassenthwaite Lake, Cumbria, UK. The Holocene, 18(1):105~115.
    Hesse, P.P.,1997. Mineral magnetic 'tracing' of aeolian dust in southwest Pacific sediments. Palaeogeography, Palaeoclimatology, Palaeoecology,131:327-353.
    Hu J, Peng P, Jia G et al..2006. Distribution and sources of organic carbon, nitrogen and their isotope in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Marine Chemistry,98:274~285.
    IGBP.2005. Science Plan and Implementation Strategy[M]. IGBP Report NO.51. IGBP Secretariat,3pp.
    J. Ken Versteeg, William A. Morris, Norm A. Rukavina.1995. The Utility of Magnetic Properties as a Proxy for Mapping Contamination in Hamilton Harbour Sediment. Journal of Great Lakes Research,21(1):71~83.
    Keown P.E., Dardeau Jr. E.A., Causey E.M.1986. Historic trends in the sediment flow regime of the Mississippi River. Water Resources Research,22:1555~1546.
    Lizhong Yu and Frank Oldfield.1989. A multivariate mixing model for identifying sediment source from magnetic measurements. Quaternary Research,32(2):168~181.
    LOICZ.1998. Report of LOICZ Open Science Meeting 1998:Global Change Science in the Coastal Zone. LOICZ Meeting Report No.29, LOICZ International Project Office, NIOZ, The Netherlands, pp.244.
    Maher B A.1988. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal,94,83~96.
    Martin J.M.; Meybeck M.1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry,7(3):173~206.
    Oldfield F, Yu L.1994.The influence of particle size variations on the magnetic properties of sediments from the north Eastern Irish Sea. Sedimentology.41:1093~1108.
    Oldfield F.1994. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments. Journal of Geophysical Research,99(B5):9045-9050.
    Oldfield F, Yu L.1994. The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea. Sedimentology,41(6):1093~1108.
    Paul P. Hesse.1997. Mineral magnetic 'tracing' of aeolian dust in southwest Pacific sediments. Palaeogeography, Palaeoclimatology, Palaeoecology.131:327-353.
    Robin Rotman, Larissa Naylor, Rachael McDonnell, Conall MacNiocaill.2008. Sediment transport on the Freiston Shore managed Realignment site:An investigation using environmental magnetism.100:241-255.
    R. Thompson, F. Oldfield.1986. Environmental Magnetism[M]. London:Allen& Unwin.71-75.
    Shuqing Qiao, Zuosheng Yang, Yanjun Pan, Zhigang Guo.2007. Metals in suspended sediments from the Changjiang(Yangtze River) and Huanghe(Yellow River) to the sea, and their comparison. Estuarine, Coastal and Shelf Science,74:539~548.
    Shouye Yang, Zhongbo Wang, Yun Guo, Congxian Li, Jinggong Cai.2009. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication. Journal of Asian Earth Sciences.35:56~65.
    Syvitski JPM, Vorosmarty C, Kettner AJ, Green P.2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308,376~380.
    Weiguo Zhang, Yun Xing, Lizhong Yu, Huan Feng and Min Lu.2008. Distinguishing sediments from the Yangtze and Yellow Rivers, China:a mineral magnetic approach. The Holocene, 18(7):1139~1145.
    Walden J, Oldfield F, Smith J.1999. Environmental magnetism:A pratical guide. Technical Guide, No.6 Quatemery Research Association, London:63-88.
    Xu K, Milliman J.D, Yang Z et al..2006. Yangtze sediment decline partly from Three Gorges Dam. EOS,87(19):185.
    Xu Jiongxin.2003. Sediment Flux to the Sea as Influenced by Changing Human Activities and Precipitation:Example of the Yellow River, China. Environment Management,2003, 31(3):328~341.
    Song Yinxian, Ji Junfeng, Mao Changping et al..2010. Heavy metal contamination in suspended solids of Changjiang River-environmental implications. Geoderma,159:286~295.
    Yang Z,Wang H, Saito Y et al..2006. Dam impacts on the Changjiang(Yangtze) River sediment discharge to the sea:The past 55 years and after the Three Gorges Dam. Water Resources Research,42,doi:10.1029/2005WR003970.
    陈吉余等.21世纪的长江河口初探[M].北京:海洋出版社,2009.
    陈显维,许全喜,陈泽方.2006.三峡水库蓄水以来进出库水沙特性分析[J].人民长江,37(8):1-7.
    陈曦.2009.长江主要输沙支流泥沙性质比较及其对河口沉积物来源判别的指示意义[D].上海:华东师范大学.
    程强,寇小兵,黄绍槟等.2004.中国红层的分布及地质环境特征[J].工程地质学报,12:34-40.
    长江流域地图集.1999.水利部长江水利委员会编.北京:中国地图出版社,4-11.
    董瑞斌,张卫国,卢升高等.2000.土壤和沉积物的磁参数及其在环境科学中的应用[J].科技通报,16(6):479-483.
    董耀华,惠晓晓等.2008.长江干流河道水沙特性与变化趋势初步分析[J].长江科学院院报,25(2):16-20.
    丁文峰,张平仓,任洪玉.2008.近50年来嘉陵江流域径流泥沙演变规律及驱动因素定量分析[J].长江科学院院报,25(3):23-27.
    邓成龙,刘青松,潘永信,朱日祥.2007.中国黄土环境磁学[J].第四纪研究,27(2):193-209.
    府仁寿,虞志英,金缪,方红卫.2003.长江水沙变化发展趋势[J].水利学报,11:21-29.
    郭斌,朱日祥,白立新,F. Florindo.2001黄土沉积物的岩石磁学特征与土壤化作用的关系[J].中国科学,31(5):377-386.
    和钟铧,刘招君,张峰.2001.重矿物在盆地分析中的应用研究进展[J].地质科技情报,20(4):29-32.
    金缪,虞志英,何青.关于长江口深水航道维护条件与流域来水来沙关系的初步分析[J].水运工程,2009,(1):91-96.
    景可,王王万忠,郑粉莉.2005.中国土壤侵蚀与环境[M].北京:科学出版社,1-3,
    贾海林,刘苍字,张卫国等.2004.崇明岛CY孔沉积物的磁性特征及其环境意义[J].沉积学报,22(1):117-123.
    刘红.长江河口泥沙混合和交换过程研究[D].华东师范大学,2009.
    刘杰.长江口深水航道河床演变与航道回淤研究[D]上海:华东师范大学,2008.
    刘育燕,林文姣,朱宗敏等.2003.南方红土中的磁极倒转以及磁化率变动记录[J].地质科技情报,22(3):33-36.
    刘秀铭,刘东生,John Shaw.1993.中国黄土磁性矿物特征及其古气候意义[J].第四纪研究,(3):281-287.
    卢升高,俞劲炎,章明奎等.2000.长江中下游第四纪沉积物发育土壤磁性增强的环境磁性机制.沉积学报,18(3):336-340.
    卢升高.2007.中国南方红土环境磁学[J].第四纪研究,27(6):1016-1022.
    卢升高,俞劲炎,张卫国,俞立中.1999.土壤氧化铁的磁性参数及其应用[J].土壤通报,30(4):160-162.
    李茂田.长江中下游干流水沙与现代河床地貌耦合作用研究[D].华东师范大学,2005.
    李建超,褚君达,丰华丽.河流底泥冲刷悬浮对水质影响途径的实验研究[J].长江流域资源与环境,2002,1.1(2):137-140.
    李从先,汪品先著.1998.长江晚第四纪河口地层学研究[M].北京:科学出版社,1-228.
    罗艺.2010.长江河口悬沙和沉积物磁性特征及其与流域泥沙的比较[D].上海:华东师范大学.
    牛军利,杨作升,李云海,乔淑卿.2008.长江与黄河河口沉积物环境磁学特征及其对比研究[J].海洋科学,32(4):24-30.
    潘永信,朱日祥.1996.环境磁学研究现状和进展[J].地球物理学进展,11(4):87-99.
    谈泽炜,范期锦,郑文燕,朱剑飞.长江口北槽航道回淤原因分析[J].水运工程,2009,(6):91-102.
    任雪梅,徐永辉,周彬,杨达源.2006.宜川一重庆段川江高阶地物质来源的定量分析[J].长江流域资源与环境,15(3):330-334.
    王永红,沈焕庭,张卫国.2004.长江与黄河河口沉积物磁性特征对比的初步研究[J].沉积学报,22(4):658-663.
    王昆山,王国庆,蔡善武等.2007.长江水下三角洲沉积物的重矿物分布及组会[J].海洋地质与第四纪地质,27(1):7-12.
    王中波,杨守业,李萍等.2006.长江水系沉积物碎屑矿物组成及其示踪意义[J].沉积学报,24(4):570-578.
    武法东,陆永潮,阮小燕.1996.重矿物聚类分析在物源分析及地层对比中的应用[J].现代地质,10(3):397-403.
    伍勇,侯晓岚.长江干流宜昌站全沙特性分析[J].人民长江,2006,37(4):33-35.
    魏海涛,夏敦胜,陈发虎等.2009.新疆表土磁学性质及其环境意义[J].干旱区地理,32(5):676-683.
    旺罗,刘东生,吕厚远.2000.污染土壤的磁化率特征[J].科学通报,45(10):1091-1094.
    席承藩.1991.论华南红色风化壳[J].第四纪研究,(1):1-8.
    许全喜,石国钰,陈泽方.长江上游近期水沙变化特点及其趋势分析[J].水科学进展,2004,15(4):420-426.
    许炯心.长江上游不同水沙来源区产沙量变化对宜昌-汉口河段泥沙冲淤量的影响[J].泥沙研究,2007,(1):36-43.
    许炯心.近40年来长江上游干支流悬移质泥沙粒度的变化及其与人类活动的关系[J].泥沙研究,2005,(3):8-15.
    徐俊杰.基于底边界层研究的航道回淤机制分析[D].上海:华东师范大学,2009.
    谢静,丁仲礼.2007.中国东北部沙地重矿物组成及沙源分析[J].中国科学D辑,37(8):1065-1072.
    夏敦胜,杨丽萍,马剑英等.2007.中国北方城市大气降尘磁学特征及其环境意义[J].中国科学D辑,37(8):1073-1080.
    杨达源等.2006.长江地貌过程[M].北京:地质出版社,1-6.
    杨小强,Rodney Grapes,周厚云,阳杰.2007.珠江三角洲沉积物的岩石磁学性质及其环境意义[J].中国科学D辑,37(11):1493-1503.
    杨浩,夏应菲,赵其国等.2001.红土系列剖面的磁化率特征与古气候冷暖变换.土壤学报,32:195-200.
    杨守业.2006.亚洲主要河流的沉积地球化学示踪研究进展[J].地球科学进展,21(6):648-655.
    俞立中.1992.利用磁信息追踪沉积物物质来源的定量方法[J].铁道师院学报,9(1):55-68.
    俞立中.1993.利用磁信息研究潮滩重金属污染的探讨[J].环境污染治理技术与设备,1(5):38-44.
    俞立中,张卫国.1998.沉积物来源组成定量分析的磁诊断模型[J].科学通报,43(19):2034-2041.
    俞劲炎,卢升高.1991.土壤磁学[M].江西:江西科学技术出版社,60-61.
    岳艳.2010.浅谈重矿物物源分析方法[J].科技情报开发与经济,20(12):138-139,246.
    恽才兴.2004.长江河口近期演变基本规律[M].北京:海洋出版社,10-15.
    张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,2002,(4):56-59.
    张立城,佘中盛,章申等.1996.水环境化学元素研究[M]].北京:中国环境科学出版社.
    张卫国,俞立中,许羽,孙振斌.1998.沉积物磁性测量对铁还原的指示及其在重金属污染研究中的应用[J].科学通报,43(19):2114-2117.
    张卫国,俞立中,S.M. Hutchinson.2000长江口南岸边滩沉积物重金属污染记录的磁诊断方法[J].海洋与湖沼,31(6):616-623.
    张卫国,贾铁飞,陆敏等.2007.长江口水下三角洲Y7柱样磁性特征及其影响因素[J].第四纪研究,27(6):1063-1071.
    张玉芬,李长安,王秋良等.2008.江汉平原沉积物磁学特征及对长江三峡贯通的指示[J].科学通报,53(5):577-582.
    张玉芬,李长安,韩晓飞等.2009.长江、汉江沉积物磁学特征比较研究[J].第四纪研究,29(2):282-289.
    张怀静,翟世奎,范德江等.2007.三峡工程一期蓄水后长江口悬浮体形态及物质组成[J].海洋地质与第四纪地质,27(2):1-10.
    赵红格,刘池洋.2003.物源分析方法及研究进展[J].沉积学报,21(3):409-415.
    周凤琴,唐从胜.2008.长江泥沙来源与堆积规律研究[M].湖北:长江出版社,2-15.
    中华人民共和国水利部.2006.中国河流泥沙公报[M].北京:中国水利水电出版社,2-13.
    中华人民共和国水利部.2008.中国河流泥沙公报[M]一北京:中国水利水电出版社,2-18.
    中华人民共和国水利部.2009.中国河流泥沙公报[M].北京:中国水利水电出版社,2-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700