纳米粉体对ZrB_2基超高温陶瓷的制备及性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡族金属硼化物基超高温陶瓷复合材料具有耐高温、耐烧蚀、抗冲刷等优良特性,被认为是适用于极端环境下使用的新型耐高温结构材料。本研究针对目前超高温陶瓷材料强韧化以及抗热冲击方面的缺点,首先以微米ZrB_2为基体,纳米SiC(SiC_(np))为第二相,石墨(G)为第三相,利用热压烧结制备出致密的ZrB_2-SiC_(np)-G(ZS_(np)G)复合材料。之后将纳米ZrB_2(ZrB_(2np))作为基体引入超高温陶瓷,与纳米SiC粉体混合后制备了ZrB_(2np)-SiC_(np)复合材料。利用X射线衍射(XRD)、扫描电镜(SEM)及能谱分析(EDS)等对添加纳米粉体的超高温陶瓷复合材料的组织结构和性能进行了研究。
     利用沉降实验、激光粒度测试和TEM等方法,研究了纳米ZrB_2和SiC粉体的分散性,并在单相粉体的分散体研究的基础上进一步研究了两种粉体的共分散性。实验发现纳米粉体的分散行为强烈依赖于溶液的pH值、分散剂的类型和用量。通过添加1wt.%或更多的PEI,同时调节pH值低于10,可以获得均匀分散的ZrB_2和SiC纳米复合粉体。
     考察了烧结温度对ZrB_2-SiC_(np)-G复相陶瓷材料组织性能的影响。结果表明,当烧结温度为1800℃时,材料无法完全致密,并且随着石墨含量的增加材料的致密度降低;在高于1840℃下烧结后的ZS_(np)G复相陶瓷的相对密度接近完全致密,并且由石墨含量不同导致致密度不同的现象也随之消失。当石墨含量相同时,随着烧结温度的升高,材料的弯曲强度逐渐上升,尤其是1880℃之前,上升较为明显,之后材料强度的增加相对缓慢,同时材料的韧性也会略有下降。
     研究了石墨含量对ZrB_2-SiC_(np)-G复相陶瓷材料组织性能的影响。结果表明,在相同的烧结温度下,随着石墨含量的增加,ZS_(np)G复合材料的弯曲强度和弹性模量逐渐降低,材料的断裂韧性也略有下降。随着石墨含量的增加导致了材料抗热冲击能力以及热冲击后的残余强度提高。含10vol.%石墨材料的临界热震温差ΔTc=370℃,含20vol.%石墨材料的ΔTc=420℃,含30vol.%石墨材料的ΔTc=435℃。含10vol.%石墨材料在经过热冲击后的残余强度约为90MPa,含20vol.%石墨材料的残余强度约为120MPa,而含30vol.%石墨材料的残余强度大于150MPa。
     探讨了石墨粒径对ZrB_2-SiC_(np)-G复相陶瓷材料组织性能的影响。结果表明,在相同的烧结工艺和材料组分条件下,对于ZrB_2-20vol.%SiC_(np)-20vol.%G复相陶瓷材料,当添加的石墨直径由5μm增加到10μm时,材料的弯曲强度随之增大。但当石墨直径增加到20μm时,材料的强度却发生明显降低。在石墨粒径增加的过程中,材料的断裂韧性却没有发生十分明显的变化。当石墨直径为5μm和10μm时,材料接近完全致密。但当石墨直径增加到20μm时,材料的致密度却略有降低至98.7%。随着石墨粒径的增加,各组分材料的临界热震温差基本相同(约425℃),但热冲击后的残余强度却不同。较小直径的石墨有助于提高陶瓷材料的强度和阻碍热冲击过程中裂纹的萌生(提高R值),而较大直径的石墨则会降低材料的强度能但会阻碍热冲击过程中裂纹的扩展,并保持较高的残余强度(提高R’’’’值)。
     考察了ZrB_2-SiC_(np)-G复相陶瓷材料的强韧化机理。ZS_(np)G复合陶瓷材料实现强韧化的主要原因在于内晶型结构和层状结构二者的强韧化机制的有效结合所致。纳米SiC形成内晶型结构会诱发穿晶断裂,使材料具有了较高的强度并降低了由于添加石墨而导致材料强度降低的负面效果;另一方面,材料韧性的提高主要是由于石墨引发了裂纹的偏转,而这种效应由于纳米SiC的加入而得到了增强,因为裂纹在穿晶后已经消耗了大量的能量,这样更有利于石墨对于裂纹偏转的诱导。ZS_(np)G复相陶瓷表现出很明显的R-曲线效应即是材料强韧化的有力体现。
     研究了ZrB_2-SiC_(np)-G复相陶瓷材料的抗烧蚀性能。结果表明,对ZrB_2-20vol.%SiC_(np)-20vol.%G组分材料的氧化烧蚀行为的实验结果表明高频等离子风洞烧蚀实验中,烧蚀425s后,试样表面温度维持在1700℃左右,接近零烧蚀率,烧蚀后仍保持良好的完整性,没有出现裂纹;同时,冷却后的试样表面的氧化层也没有发生脱落现象,这说明氧化层较薄并与试样基体有较好的结合强度,试样表面的氧化物主要是SiO2玻璃。
     对纳米ZrB_2陶瓷的烧结工艺过程进行了研究。结果表明,传统的单步烧结不适合纳米的ZrB_2陶瓷的制备。纳米的ZrB_2晶粒生长的控制,可以由多步骤的烧结实现。纳米ZrB_2的致密化起始温度是在约1300℃。纳米ZrB_2的相对密度在利用优化后的多步烧结工艺烧结后达到80%左右,而弯曲强度和断裂韧性分别为599.45MPa和4.17MPa·m~(1/2)。利用主烧结曲线理论对纳米ZrB_2粉体的烧结激活能进行研究,结果表明纳米ZrB_2粉体的烧结激活能为863kJ/mol,远远低于微米ZrB_2粉体。
     对纳米ZrB_2粉体烧结过程进行了原位观察。结果表明,在温度较低时,晶粒自身和晶粒之间在升温的过程中都没有出现明显的变化;纳米ZrB_2粉体的传质在1000℃左右开始进行,而且在烧结的过程中是按照ZrB_2的密排六方结构进行传质;当温度升高到1350℃左右的时候,两晶粒之间的晶界才出现要消失的迹象,而晶粒边缘接触处也有出现烧结颈的趋势;在此温度保温500s后,晶粒出现明显的烧结迹象,晶粒之间的晶界变得模糊。
     利用单相粉体烧结实验优化出的烧结工艺MSS2对复相粉体进行烧结,最终获得的ZrB_(2np)-SiC_(np)材料弯曲强度为521.20MPa,断裂韧性为3.92MPa·m~(1/2),致密度为80%。ZrB_(2np)-SiC_(np)复相陶瓷的性能还有较大的提升空间,这不仅需要对制备工艺进行相应的优化,还需要对组分进行相应的调整,即添加第三项来改善ZrB_(2np)-SiC_(np)复相陶瓷的性能。
Transition metal diborides based ultra-high temperature ceramics (UHTCs) arethought to be one kind novel structure material for use at extreme conditions due totheir refractory, good scouring resistance and superb ablation resistance, etc. In thisstudy, based on the low strength of ZrB_2-SiC-Graphite (ZSG) composites, thenano-SiC was added to ZrB_2-based composites that contanting graphite to producethe ZrB_2-SiC_(np)-G (ZS_(np)G) composite. The ZS_(np)G composite was prepaered byhot-pressed and achieved near full density. After that, the nano ZrB_2(ZrB_(2np)) wasintroduced as the base and sintered with nano SiC (SiC_(np)) to produce theZrB_(2np)-SiC_(np)composite. The microstructural features of the hot-pressed compositewere observed by scanning electron microscopy (SEM) with simultaneous chemicalanalysis by energy dispersive spectroscopy (EDS). The phase composition wasdetermined by X-ray diffraction (XRD).
     The dispersion and co-dispersion behavior of ZrB_2and SiC nanopowders inethanol solution was studied by sedimentation test, particle size measurement andtransmission electron microscope (TEM) analysis. The dispersion behavior of ZrB_2and SiC nanopowders in ethanol solution was strongly dependent on the pH values,types and amounts of dispersant. The well co-dispersed ZrB_2and SiCnanocomposite powders can be achieved by using1wt.%or more PEI below pH10.
     The effect of sintering temperature on microstructure and properties ofZrB_2-SiC_(np)-G has been studied. The results showed that when the sinteringtemperature is1800℃,the ZS_(np)G ceramic can not be fully dense and the relativedensity decreased with the increasing of graphite content. When the sinteringtemperature increased to1840℃, the ZS_(np)G ceramic achieved near full density andthe relative density did not changed with the changing of graphite content. Theflexural strength and fracture toughness of ZS_(np)G ceramic decreased with theincrease of sintering temperature before1880℃.
     The effect of graphite content on microstructure and properties ofZrB_2-SiC_(np)-G have been investigated. The results showed that when the sinteringtemperature was1880℃, the flexural strength and fracture toughness of ZS_(np)Gceramic generally decreased as the graphite volume fractions increased, but therelative density values kept100%. The increase of graphite content can improve theability of thermal shock resistance and residual strength of ZS_(np)G ceramic. The ΔTcof ZS_(np)G210, ZS_(np)G220and ZS_(np)G230was about375℃,425℃and430℃,respectively. The residual strength of ZS_(np)G210, ZS_(np)G220and ZS_(np)G230was about 90MPa,120MPa and150MPa, respectively.
     The effect of graphite diameter on microstructure and properties ofZrB_2-SiC_(np)-G have been studied. The results showed that the ZS_(np)G ceramicsachieved near full density when the graphite diameter increased from5to10μm andthe further increasing of graphite diameter to20μm resulted in a reduction of therelative density (98.7%). The flexural strength of ZS_(np)G ceramics firstly increasedand then decreased with increasing the diameter of graphite, whereas the fracturetoughness did not change significantly. The critical temperature differences ofZS_(np)G ceramics containing graphite with different diameters were almost the same,but the thermal shock behavior was different. The calculated thermal shockparameters confirmed that the graphite with finer starting diameter had beneficialeffects on the blocking of crack initiation and the graphite with larger diameter canrestrain crack propagation of ZS_(np)G ceramics.
     The strengthening and toughening mechanisms of ZrB_2-SiC_(np)-G ceramic havebeen discussed. The results showed that the higher rising R-curves exhibited thehigh resistance to crack growth and damage tolerance of ZS_(np)G than ZSG. Thereason for the high performance of ZS_(np)G ceramic can be summarized as thecombination of the strengthening and toughening mechanism of intragranular andlayer structure. The formation of the intragranular nano-SiC will causetransgranular fracture, which caused the high flexural strength of ZS_(np)G. Theimprovement in toughness was resulted from the multiple toughening mechanismssuch as crack deflection, crack bridging and relaxation type absorption of crack tipowing to the addition of graphite.
     The ablation behavior of ZrB_2-SiC_(np)-G ceramic has been studied. The resultsshowed that the wind tunnel was used to evaluate the oxidation resistance and thethermal shock resistance of the ZrB_2-SiC-G composite. In the high-frequencyplasma wind tunnel experiments, after the ablation of425s at low state, the surfacetemperature of the specimen maintained at a temperature of about1700℃, the oxideon the surface of the specimen is mainly SiO2glass. After ablation the integrity ofthe sample is still good, no cracks taked place.
     The present study showed that the traditional single-step sintering was notsuitable for the preparation of nano ZrB_2ceramic. The controlling of nano ZrB_2grain growth can be achieved by multi-step sintering. The onset temperature ofdensification of nano ZrB_2was at about1300℃, which is much lower than microsized ZrB_2. The application of MSS2led to remarkable small grain sizes. Therelative density of nano ZrB_2sintered in the MSS2regime is about80%, while theflexural strength and fracture toughness were599.45MPa and4.1MPa·m1/2, respectively, which was resulted from grain refinement.
     The sintring of nano-ZrB_2powders has been studied. The results showed thatthe activation energy for sintering of nano-ZrB_2particle was studied by the mastersintering curve theory. The result showed that the activation energy for sintering ofnano-ZrB_2particle was863kJ/mol, which was much lower than that of micro-ZrB_2particle.
     The in situ observation of nano-ZrB_2sintering showed that the grain did notgrow under1000℃. When the sintering temperature increased to1100℃, the masstransfer begun, which followed the orientation of hexagonal-structure. The grainboundary became disappear and the neck format, when the temperature increased to1350℃. After dwell for500s, the grain boundary and the neck format was almostdisappeared.
     ZrB_(2np)-SiC_(np)ceramic was prepared by the MSS2method. The flexural strength,fracture toughness and relative density of ZrB_(2np)-SiC_(np)ceramic was521.20MPa,3.92MPa·m1/2and80%, respectively. The performance of ZrB_(2np)-SiC_(np)ceramicneed be further improved by the improvement of sintering method and theapplication of third phase.
引文
[1] Post B, Glaser F W, Moskowitz D. Transition Metal Diborides[J]. Acta Metallurgica,1954(2):20-25.
    [2] Levine S R, Opila E J, Halbig M C, et al. Evaluation of Ultra High TemperatureCeramics for Aeropropulsion Use[J]. Journal of the European Ceramic Society,2002(22):2757-2767.
    [3] Morz C. Annual Mineral Review: Zirconium Diboride[J]. American Ceramic SocietyBulletin,1994(73):141-142.
    [4] Upadhya K Y, Hoffmann W P. Materials for Ultrahigh Temperature StructuralApplications[J]. American Ceramic Society Bulletin,1997(76):51-56.
    [5] Fahrenholtz W G, Hilmas G E, Chamberlain A L, et al. Processing andCharacterization of ZrB2-based Ultra-High Temperature Monolithic and FibrousMonolithic Ceramics[J]. Chemistry Materials Science,2004(39):5951-5957.
    [6] Bronson Y T, Ma R M. Compatibility of Refractory Metal Boride/Oxide Compositesat Ultrahigh Temperatures[J]. Journal of the Electrochemical Society,1992(139):3183-3196.
    [7] Opeka M M, Talmy I G, Zaykoskl J A. Oxidation-Based Materials Selection for2000℃Hypersonic Aerosurfaces: Theoretical Considerations and HistoricalExperience[J]. Journal of Materials Science,2004(39):5887-5904.
    [8] Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory Diborides of Zirconiumand Hafnium[J]. Journal of the American Ceramic Society,2007(90):1347-1364.
    [9] Monteverde F, Guicciardi S, Bellosi A. Advances in Microstructure and MechanicalProperties of Zirconium Diboride Based Ceramics[J]. Materials Science andEngineering A,2003(346):310-319.
    [10] Chamberlain A L, Fahrenholtz W G, Hilmas G E. High-Strength ZirconiumDiboride-Based Ceramics[J]. Journal of the American Ceramic Society,2004(87):1170-1172.
    [11] Monteverde F. Beneficial Effects of an Ultra-fine-SiC Incorporation on theSinterability and Mechanical Properties of ZrB2[J]. Applied Physics A,2006(82):329-337.
    [12] Monteverde F, Bellosi A. Oxidation of ZrB2-Based Ceramics in Dry Air[J]. Journalof the Electrochemical Society,2003(150): B552-B559.
    [13] Monteverde F, Bellosi A. Development and Characterization ofMetal-Diboride-Based Composites Toughened with Ultra-Fine SiC Particulates[J].Solid State Sciences,2005(7):622-630.
    [14] Monteverde F, Bellosi A, Scatteia L. Processing and Properties of Ultra-highTemperature Ceramics for Space Applications[J]. Materials Science andEngineering A,2008(485):415-421.
    [15] Yan Y, Zhang H, Huang Z, et al. In Situ Synthesis of Ultrafine ZrB2-SiCComposite Powders and the Pressureless Sintering Behaviors[J]. Journal of theAmerican Ceramic Society,2008(91):1372-1376.
    [16] Zhang G J, Ando M, Yang J F, et al. Boron Carbide and Nitride as Reactants for inSitu Synthesis of Boride-containing Ceramic Composites[J]. Journal of theEuropean Ceramic Society,2004(24):171-178.
    [17] Zhang G J, Deng Z Y, Kondo N, et al. Reactive Hot Pressing of ZrB2-SiCComposites[J]. Journal of the American Ceramic Society,2000(83):2330-2332.
    [18] Zimmermanna J W, Hilmas G E, Fahrenholtz W G, et al. Fabrication and Propertiesof Reactively Hot Pressed ZrB2-SiC Ceramics[J]. Journal of the European CeramicSociety,2007(27):2729-2736.
    [19] Zhu S, Fahrenholtz W G, Hilmas G E. Influence of Silicon Carbide Particle Size onthe Microstructure and Mechanical Properties of Zirconium Diboride-SiliconCarbide Ceramics[J]. Journal of the European Ceramic Society,2007(27):2077-2083.
    [20] Watzke H J,Fendler J H. Quantum Size Effects of In Situ Generated colloidal CdSParticles in Dioctadecyldimethylammonium Chloride Surfactant Vesicles[J].Journal of Physical Chemistry,1987(91):854-860.
    [21] Kobo R. Electronic Properties of Metallic Fine Particles[J]. Journal of the PhysicalSociety of Japan,1962(17):975-986.
    [22] Crowen J A, Stolzzman B. Magnetic Phase Transitions in NanocrystallineErbium[J]. Journal of Applied Physics,1987(61):3317-3321.
    [23]张立德.国内外纳米材料和纳米结构研究的最新进展[J].功能材料,2001,9-13.
    [24]张立德,牟季美.纳米材料学[M].辽宁:科学技术出版社,1994:76-77.
    [25] HalPerin W P. Quantum Size Effect in Metal Particles [J]. Reviews of ModernPhysics,1986(58):533-606.
    [26] Kubo R, Kawabata A, Kobayashi S. Electronie Properties of Small Particles [J].Annual Review of Materials Science,1984(14):49-66
    [27]李世普.特种陶瓷工艺学[M].武汉:工业大学出版社,1990(5):98-109.
    [28] Monteverde F, Guicciardi S, Bellosi A. Processing and Properties of ZirconiumDiboride-Based Composites[J]. Journal of the European Ceramic Society,2002(22):279-288.
    [29]王相田,胡黎明等.超细颗粒分散过程分析[J].化学通报,1995(5):13-17.
    [30]高濂,孙静,刘阳桥.纳米粉体的分散与表面改性[M].北京:化学工业出版社,2003(1):59,149.
    [31]王瑞刚,吴厚政,陈玉如等.陶瓷浆料稳定分散进展[J].陶瓷学报,1999(l):35-36.
    [32] Song J G, Zhang L M, Li J G, et al. Effect of Conditions on the Dispersibility ofZrB2Particles[J]. Journal of Dispersion Science and Technology,2007(28):1072-1076.
    [33] Lee S, Sakka Y, Kagawa Y. Dispersion Behavior of ZrB2Powder in AqueousSolution[J]. Journal of the American Ceramic Society,2007(90):3455-3459.
    [34] Huang T S, Hilmas G E, Fahrenholtz W G. Dispersion of Zirconium Diboride in anAqueous, High-Solids Paste[J]. International Journal of Apply Ceramic Technololy,2007(4):470-479.
    [35] Lü Z H, Jiang D L, Zhang J X, et al. Aqueous Tape Casting of ZirconiumDiboride[J]. Journal of the American Ceramic Society,2009(92):2212-2217.
    [36] Zhang H, Yan Y J, Huang Z R, et al. Preparation and Characterization of StableZrB2-Based Ultra-High Temperature Ceramics Slurry by Aqueous Gelcasting[J].Key Engineering Materials,2008(368-372):1756-1757.
    [37] Sun J, Gao L. Dispersing SiC Powder and Improving Its Rheological Behaviour[J].Journal of the European Ceramic Society,2001(21):2447-2451.
    [38] Zhang J X, Xu Q, Ye F et al. Effect of Citric Acid on the Adsorption Behavior ofPolyethylene Imine (PEI) and the Relevant Stability of SiC Slurries[J]. Colloids andSurfaces A,2006(276):168-175.
    [39] Xiao C X, Gao L, Lu M J, et al. Effect of Polyvinylpyrrolidone on Rheology ofAqueous SiC Suspensions with Polyethylene Glycol as Binder[J]. Colloids andSurfaces A,2010(368):53-57.
    [40] Li W, Chen P, Gu M Y, et al. Effect of TMAH on Rheological Behavior of SiCAqueous Suspension[J]. Journal of the European Ceramic Society,2004(24):3679-3684.
    [41] Saravanan L, Subramanian S, Vishu Kumar A B, et al. Surface Chemical Studies onSiC Suspension in the Presence of Chitosan[J]. Ceramics International,2006(32):637-646.
    [42] Krishnan B, Natarajan R. Dispersion and Tape Casting of Silicon Carbide ThroughAqueous Route[J]. Journal of Material Science,2005(40):5511-5516.
    [43] Zhou R C, Jiang Y Q, Liang Y, et al. Dispersion Behaviour of Laser-SynthesizedNanometric SiC Powders in Aqueous Medium with Ammonium Polyacrylate[J].Ceramics International,2002(28):847-853.
    [44] Singh B P, Jena J, Besra L, et al. Dispersion of Nano-Silicon Carbide (SiC) Powderin Aqueous Suspensions[J]. Journal of Nanoparticle Research,2007(9):797-806.
    [45] Paik U, Park H C, Choi S C, et al. Effect of Particle Dispersion on Microstructureand Strength of Reaction-Bonded Silicon Carbide[J]. Materials Science andEngineering A,2002(334):267-274.
    [46] Ferreira J M F, Diz H M M. Effect of Solids Loading on Slip-Casting Performanceof Silicon Carbide Slurries[J]. Journal of the American Ceramic Society,1999(82)1993-2000.
    [47] Xiao C X, Gao L, Lu M J, et al. Synergistic Effect of Copolymer and Poly(vinylpyrrolidone) Mixtures on Rheology of Aqueous SiC Suspensions[J]. Colloidsand Surfaces A,2010(355):104-108.
    [48] Majidian H, Ebadzadeh T, Salahi E. Stability Evaluation of AqueousAlumina-Zircon-Silicon Carbide Suspensions by Application of DLVO Theory[J].Ceramics International,2011(37):2941-2945.
    [49] BoucléJ, Herlin-Boime N, Kassiba A. Influence of Silicon and Carbon Excesses onthe Aqueous Dispersion of SiC Nanocrystals for Optical Application[J]. Journal ofNanoparticle Research,2005(7):275-285.
    [50] Zhang J X, Jiang D L, Lin Q L. Poly (Vinyl Pyrrolidone), a Dispersant forNon-Aqueous Processing of Silicon Carbide[J]. Journal of the American CeramicSociety,2005(88):1054-1056.
    [51] Xu X, Mei S, Ferreira J M F. Fabrication of Si3N4-SiC Nano-Composite CeramicsThrough Temperature-Induced Gelation and Liquid Phase Sintering[J]. Journal ofthe European Ceramic Society,2006(26):337-341.
    [52]王瑞刚,吴厚政,陈玉如,等.陶瓷料浆稳定分散进展[J].材料科学与工程,1999(17):66-70.
    [53]郭小龙,陈沙鸥,戚凭,等.纳米陶瓷粉末分散的微观过程和机理[J].青岛大学学报,2002(15):78-88.
    [54] Tan Q Q, Zhang Z T, Tang Z L, et al. Rheological Properties of NanometerTetragonal Polycrystal Zirconia Slurries for Aqueous Gel Tape Casting Process[J].Materials Letters,2003(57):2375-2381.
    [55] Dietrich A, Neubrand A. Effects of Particle Size and Molecular Weight ofPolyethylenimine on Properties of Nanoparticulate Silicon Dispersions[J]. Journalof the American Ceramic Society,2001(84):806-812.
    [56] Medri V, Capiani C, Bellosi A. Properties of Slip-Cast and Pressureless-SinteredZrB2-SiC Composites[J]. International Journal of Apply Ceramic Technololy,2011(8):351-359.
    [57] Lü Z H, Jiang D L, Zhang J X, et al. Processing and Properties of ZrB2-SiCComposites Obtained by Aqueous Tape Casting and Hot Pressing[J]. CeramicsInternational,2011(37):293-301.
    [58] Ni D W, Zhang G J, Kan Y M, et al. Highly Textured ZrB2-based UltrahighTemperature Ceramics Via Strong Magnetic Field Alignment[J]. Scripta Materialia,2009(60):615-618.
    [59] Zhang S C, Hilmas G E, Fahrenholtz W G. Mechanical Properties of SinteredZrB2-SiC Ceramics[J]. Journal of the European Ceramic Society,2011(31):893-901.
    [60]王新刚,刘吉轩,阚艳梅,等. ZrB2-SiC陶瓷的注浆成型与无压烧结[J].无机材料学报,2009(24):831-835.
    [61] Garmendia N, Santacruz I, Moreno R, et al. Slip Casting of Nanozirconia/MWCNTComposites Using a Heterocoagulation Process[J]. Journal of the EuropeanCeramic Society,2009(29):1939-1945.
    [62] Biswas M, Raichur A M. Electrokinetic and Rheological Properties of NanoZirconia in the Presence of Rhamnolipid Biosurfactant[J]. Journal of the AmericanCeramic Society,2008(91):3197-3201.
    [63] Santacruz I, Anapoorani K, Binner J. Preparation of High Solids ContentNanozirconia Suspensions[J]. Journal of the American Ceramic Society,2008(91):398-405.
    [64] Zuo K H, Jiang D L, Zhang J X, et al. Forming Nanometer TiO2Sheets byNonaqueous Tape Casting[J]. Ceramics International,2007(33):477-481.
    [65] Rad M F, Ghorbani M. Electrophoretic Deposition of Titania Nanoparticles inDifferent Alcohols: Kinetics of Deposition[J]. Journal of the American CeramicSociety,2011(94):2354-2361.
    [66] Inam F, Yan H, Reece M J, et al. Dimethylformamide: an Effective Dispersant forMaking Ceramic-Carbon Nanotube Composites[J], Nanotechnology,2008(19):195710.
    [67] Li X F, Zhu D S, Wang X J. Evaluation on Dispersion Behavior of the AqueousCopper Nano-Suspensions[J]. Journal of Colloid and Interface Science,2007(310):456-463.
    [68] Ying K L, Hsieh T E, Hsieh Y F. Colloidal Dispersion of Nano-Scale ZnO PowdersUsing Amphibious and Anionic Polyelectrolytes[J]. Ceramics International,2009(35):1165-1171.
    [69] Shin Y J, Su C C, Shen Y H. Dispersion of Aqueous Nano-sized AluminaSuspensions Using Cationic Polyelectrolyte[J]. Materials Research Bulletin,2006(41):1964-1971.
    [70] Guo Z X, Xiong J, Yang M, et al. Dispersion of Nano-TiN Powder in AqueousMedia[J]. Journal of Alloys and Compounds,2010(493):362-367.
    [71] Zhou R C, Chen Y Z, Liang Y, et al. Dispersion Behavior of Laser-SynthesizedSi3N4Nanopowders in N-N-dimethylformamide[J]. Ceramics International,2002(28):705-709.
    [72] Liu Q, Han W B, Han J C. Influence of SiCnp Content on Microstructure andMechanical Properties of ZrB2-SiC Nanocomposite[J]. Scripta Materialia,2010(63):581-584.
    [73] Hwang S S, Vasiliev A L, Padture N P. Improved Processing andOxidation-Resistance of ZrB2Ultra-High Temperature Ceramics Containing SiCNanodispersoids[J]. Materials Science&Engineering. A,2007(464):216-224.
    [74] Guo S Q, Yang J M, Tanaka H, et al. Effect of Thermal Exposure on Strength ofZrB2-Based Composites with Nano-sized SiC Particles[J]. Composites Science andTechnology,2008(68):3033-3040.
    [75] Guo Z Q, Blugan G D, Kirchner R, et al. Microstructure and Electrical Propertiesof Si3N4-TiN Composites Sintered by Hot Pressing and Spark Plasma Sintering[J].Ceramics International,2007(33):1223-1229.
    [76] Zhao J, Ai X, Lü Z J. Preparation and Characterization of Si3N4-TiCNanocomposite Ceramics[J]. Materials Letters,2006(60):2810-2813.
    [77]晏建武,周继承,张志华等.烧结温度对A12O3-SiC(n)纳米复相陶瓷性能的影响[J].工具技术,2004(38):12-15.
    [78] Wang H Z, Gao L, Guo J K. The Effect of Nano-scale SiC Particles on theMicrostructure of A12O3ceramies[J]. Ceramic International,2000(26):391-396.
    [79] Zhang W K, Gao L Z, Lei Y, et al. TiAl/B4C Composite Fabricated by High EnergyBall Milling and Hot Press Sintering Processes and Its Mechanical Properties[J].Materials Science and Engineering A,2010(527):7436-7441.
    [80] Tian C Y, Jiang H, Liu N. Thermal Shock Behavior of Si3N4-TiNNano-Composites[J]. International Journal of Refractory Metals and Hard Materials,2011(29):14-20.
    [81] Zhao X J, Zhang N, Rua H Q, et al. Mechanical Properties and TougheningMechanisms of Silicon Carbide Nano-Particulate Reinforced Alon Composites[J].Materials Science and Engineering A,2012(538):118-124.
    [82] Tian C Y, Liu N, Lu M H. Thermal Shock and Thermal Fatigue Behavior ofSi3N4-TiC nano-composites [J]. International Journal of Refractory Metals&HardMaterials,2008(26):478-484.
    [83]张久兴,刘科高,周美玲.放电等离子烧结技术的发展及应用[J].粉末冶金技术,2002(20):129-134.
    [84] Cao M R, Wang S B, Han W B. Influence of Nanosized SiC Particle on theFracture Toughness of ZrB2-based Nanocomposite Ceramic[J]. Materials Scienceand Engineering A,2010(527):2925-2928.
    [85] Gao L, Wang H Z, Hong J S, et al. Mechanical Properties and Microstructure ofNano-SiC-Al2O3Composites Densified by Spark Plasma Sintering[J]. Journal ofthe European Ceramic Society,1999(19):609-613.
    [86] Shimada S, Kato K. Coating and Spark Plasma Sintering of Nano-Sized TiN onY-a-Sialon[J]. Materials Science and Engineering,2007(443):47-53.
    [87] Chae J H, Kim H K, Choa Y H, et al. Microstructural Evolution of A12O3-SiCNanocomposites During Spark Plasma Sintering[J]. Journal of Alloys andCompounds,2006(413):259-264.
    [88] Wang H L, Wang C A. Processing and Mechanical Properties of ZirconiumDiboride-Based Ceramics Prepared by Spark Plasma Sintering[J]. Journal of theAmerican Ceramic Society,2007(90):1992-1997.
    [89] Shearwood C, Fu Y Q, Yu L, et al. Spark Plasma Sintering of TiNiNano-Powder[J]. Scripta Materialia,2005(52):455-460.
    [90] Li W, Gao L. Fabrication of HAp-ZrO2(3Y) Nano-Composite by SPS[J].Biomaterials,2003(24):937-940.
    [91] Wang L J, Jiang W, Chen L D. Fabrication and Characterization of Nano-SiCParticles Reinforced TiC/SiC Nano Composites[J]. Materials Letters,2004(58):1401-1404.
    [92] Xu X, Nishimur T, Hirosaki N, et al. Fabrication of a Nano-Si3N4/Nano-CComposite by High-Energy Ball Milling and Spark Plasma Sintering[J]. Journal ofthe American Ceramic Society,2007(90):1058-1062.
    [93] Yang Y, Wang Y, Tian W, et al. In Situ Alumina/Aluminum Titanate Bulk CeramicComposites Prepared by SPS from Different Structured Composite Powders[J].Journal of Alloys and Compounds,2009(481):858-862.
    [94] Wan J L, Duan R G, Mukherjee A K. Spark Plasma Sintering of SiliconNitride/Silicon Carbide Nanocomposites with Reduced Additive Amounts[J],Scripta Materialia,2005(53):663-667.
    [95] Zhou X Z, Hulbert D M, Kuntz J D, et al. Superplasticity ofZirconia-Alumina-Spinel Nanoceramic Composite by Spark Plasma Sintering ofPlasma Sprayed Powders[J]. Materials Science and Engineering A,2005(394):353-359.
    [96] Gao L, Li W, Wang H Z, et al. Fabrication of Nano Y-TZP Materials by SuperhighPressure Compaction[J]. Journal of the European Ceramics Society.2001(21):135-138.
    [97] Anya C C, Robert S G. Pressureless Sintering and Elastic Constants of A12O3-SiCNano Composites[J]. Journal of the European Ceramic Society,1997(17):565-573.
    [98] Gustafsson S, Falk L K L, Liden E, et al. Pressureless Sintered A12O3-SiCNanoeomposites[J]. Ceramic International,2007(34):1609-1615.
    [99] Wu W W, Zhang G J, Kan Y M, et al. Reactive Hot Pressing of ZrB2-SiC-ZrCComposites at1600℃[J]. Journal of the American Ceramic Society,2008(91):2501-2508.
    [100] Chamberlain A L, Fahrenholtz W G, Hilmas G E. Low-Temperature Densificationof Zirconium Diboride Ceramics by Reactive Hot Pressing[J]. Journal of theAmerican Ceramic Society,2006(89):3638-3645.
    [101] Wang C J, Huang C Y, Wu Y C. Two-Step Sintering of Fine Alumina-ZirconiaCeramics[J]. Ceramics International,2009(35):1467-1472.
    [102] Guo S Q, Kagawa Y, Nishimura T. Mechanical Behavior of Two-StepHot-Pressed ZrB2-Based Composites with ZrSi2[J], Journal of the EuropeanCeramic Society,2009(29):787-794.
    [103] Zamora V, Ortiza A L, Guiberteau F, et al. In Situ Formation of ZrB2-ZrO2Ultra-High-Temperature Ceramic Composites from High-Energy Ball-MilledZrB2Powders[J]. Journal of Alloys and Compounds,2012(518):38-43.
    [104]李达,陈沙鸥,邵渭泉,等.先进陶瓷材料固相烧结理论研究进展[J].2007(21):6-8.
    [105] Chu M Y, Rahmana N N, Brook R J, et al. Effct of Heating Rate on Sintering andCoarsening[J]. Journal of the American Ceramic Society,1991(74):1217-1225
    [106] Thummler F, Thomma W. Sintering Process[J]. Metals Mater,1967(l):69-108
    [107] Tan H L, Yang W. Toughness Mechanism of Nano-Composite Cermaies[J].Mechanics of Materials,1998(30):111-123
    [108] Reimanis I E. A Review of lssues in the Fracture of Interafacial Ceramics andCeramic Composites[J]. Material Science and Engineering A,1997(237):159-167.
    [109] Pezzotti G, Muller W H. Strengthening Mechanisms in A12O3/SiC NanoComposites[J]. Computational Materials Science,2001(22):156-168.
    [110] Jeong Y K, Niihara K. Microstructure and Mechanical Properties of PressurelessSintered A12O3/TiC Nanocomposites[J]. Nanostructure Materials,1997(9):193-196.
    [111] Kusunose T, Sekino T, Choa Y H, et al. Machinability of Silicon Nitride-BoronNitride Nanocomposites[J]. Journal of the American Ceramic Society,2002(85):2689-2695.
    [112] Xu C H, Sun D M. Formation of Intragranular Nano-Structures in Micro-SizedCeramic Composite Materials[J]. Materials Science and Engineering: A,2008(491):338-342.
    [113] Singh J P, Satyamurthy K, Thomas J R, et al. Analysis of Thermal StressResistance of Partially Absorbing Ceramic Plate Subjected to AsymmetricRadiation, I: Convective Cooling at Front Surface[J]. Journal of the AmericanCeramic Society,1981(64):169-171.
    [114] Wissuchek D J. Residual Stresses Due to Refractory Inclusions in Silica Glass[J].Journal of Non-Crystalline Solids,1998(239):203-209.
    [115] Rabinovich G S F, Endrino J L, Beake B D, et al. Impact of Annealing onMicrostructure, Properties and Cutting Performance of an AlTiN Coating[J].Surface and Coatings Technology,2006(201):3524-3529.
    [116] Wang Z, Wang S, Zhang X H, et al. Effect of Graphite Flake on Microstructure aswell as Mechanical Properties and Thermal Shock Resistance of ZrB2-SiC MatrixUltrahigh Temperature Ceramics[J]. Journal of Alloys and Compounds484(2009):390-394.
    [117] Liu Z J, Guo Q G, Song J R, et al. Effect of Ti Dopant on Shrinkage andPerformance of MCMB-Derived Carbon Laminations[J]. Carbon,2007(45):146-151.
    [118] Li J L, Peng Q S, Bai G Z, et al. Carbon Scrolls Produced by High Energy BallMilling of Graphite[J]. Carbon,2005(43):2817-2833.
    [119] Zhu Q S, Qiu X L, Ma C W. Oxidation Resistant SiC Coating for GraphiteMaterials[J]. Carbon,1999(37):1475-1484.
    [120] Hsu C H, Lee S C, Wang L L, et al. The High Strain-Rate Fracture Behaviors ofGray Iron Under Compressive Loading[J]. Materials Chemistry and Physics,2002(7):174-178.
    [121] Qu Q Y, Qiu W Q, Zeng D C, et al. Effects of Deposition Parameters onMicrostructure and Thermal Conductivity of Diamond Films Deposited by DCArc Plasma Jet Chemical Vapor Deposition[J]. Transactions of Nonferrous MetalsSociety of China,2009(19):131-137.
    [122] Wang Z, Hong C Q, Zhang X H, et al. Microstructure and Thermal ShockBehavior of ZrB2-SiC-Graphite Composite[J]. Materials Chemistry and Physics,2009(113):338-341.
    [123] Medri V, Capiani C, Gardini D. Slip Casting of ZrB2-SiC Composite AqueousSuspensions[J]. Advanced Engineering Materials,2010(12):210-215.
    [124] Baklouki S, Pagnoux C, Chartier T, et al. Processing of Aqueous-Al2O3,-SiO2,-SiC Suspensions with Polyelectrolytes[J]. Journal of the European CeramicSociety,1997(17):1387-1392.
    [125] Wang L M, Wei W C. Colloidal Processing and Liquid-Phase Sintering of SiC[J].Journal of the Ceramic Society of Japan,1995(103):434-443.
    [126] Zhu X, Tang F, Suzuki T S, et al. Role of The Initial Degree of Ionization ofPolyethylenimine in the Dispersion of Silicon Carbide Nanoparticles[J]. Journal ofthe American Ceramic Society,2003(86):189-191.
    [127] Tang F Q, Huang X X, Zhang Y F, et al. Effect of Dispersants on SurfaceChemical Properties of Nano-Zirconia Suspensions[J]. Ceramics International,2000(26):93-97.
    [128] Kakui T, Miyauchi T, Kamiya H. Analysis of the Action Mechanism of PolymerDispersant on Dense Ethanol Alumina Suspension Using Colloidal Probe AFM[J].Journal of the European Ceramic Society,2005(25):655-661.
    [129] Xie Z P, Ma J T, Xu Q, et al. Effects of Dispersants and Soluble Counter-Ions onAqueous Dispersibility of Nano-Sized Zirconia Powder[J]. Ceramics International,2004(30):219-224.
    [130] Zhou S B, Wang Z, Zhang W. Effect of Graphite Flake Orientation onMicrostructure and Mechanical Properties of ZrB2-SiC-Graphite Composite[J].Journal of Alloys and Compounds,2009(485):181-185.
    [131] Singh M, Asthana R. Joining of Zirconium Diboride-Based Ultra High-Temperature Ceramic Composites Using Metallic Glass Interlayers[J]. MaterialsScience and Engineering A,2007(460):153-162.
    [132] Kisliy P S, Kuzenkova M A, Zaveruha O V. On the Sintering Process ofZirconium Diboride with Tungsten[J]. Physics of Sintering,1971(3):29-44.
    [133] Zhang X H, Wang Z, Sun X, et al. Effect of Graphite Flake on the MechanicalProperties of Hot Pressed ZrB2-SiC Ceramics[J]. Materials Letters,2008(62):4360-4362.
    [134] Aksel C, Warren P D. Thermal Shock Parameters [R, R’’’and R’’’’] ofMagnesia-Spinel Composites[J]. Journal of the European Ceramic Society,2003(23):301-308.
    [135] Lee H, Speyer R F. Pressureless Sintering of Boron Carbide[J]. Journal of theAmerican Ceramic Society,2003(86):1468-1473.
    [136] Hasselman D P H. Elastic Energy at Fracture and Surface Energy as DesignCriteria for Thermal Shock[J]. Journal of the American Ceramic Society,1963(46):535-540.
    [137] Hasselman D P H, Singh J P. Analysis of Thermal Stress Resistance ofMicrocracked Brittle Ceramics[J]. American Ceramic Society Bulletin,1979(58):856-860.
    [138] Zhou Z H, Ding P D, Tan S H, Lan J S. A New Thermal-Shock-Resistance Modelfor Ceramics: Establishment and Validation[J]. Materials Science and EngineeringA,2005(405):272-276.
    [139] Zimmermann J W, Hilmas G E, Fahrenholtz W G. Thermal Shock Resistance ofZrB2and ZrB2-30%SiC[J]. Materials Chemistry and Physics,2008(112):140-145.
    [140]周玉,雷廷权.陶瓷材料学[M].北京:科学出版社,2004:319-320.
    [141] Wang Y, Liang J, Han W B, et al. Mechanical Properties and Thermal ShockBehavior of Hot-Pressed ZrB2-SiC-AlN Composites[J]. Journal of Alloys andCompounds,2009(475):762-765.
    [142] Lin J, Zhang X H, Cao H J, et al. R-Curve Behavior, Mechanical Properties andMicrostructure of Sintered ZrB2-SiCp-ZrO2fCeramics[J]. Journal of the EuropeanCeramic Society,2012(32):1743–1749.
    [143]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001:247-258.
    [144] Cook R F, Clarke D R. Fracture Stability, R-Curves and Strength Variability[J].Acta Metallurgica,1988(36):555-562
    [145] Ramachandran N, Shetty D K. Rising Crack-Growth-Resistance (R-Curve)Behavior of Toughened Alumina and Silicon Nitride[J]. Journal of the AmericanCeramic Society,1991(74):2634-2641.
    [146] Anstis G R, Chantikul P, Lawn B R, et al. A Critical Evaluation of IndentationTechniques for Measuring Fracture Toughness. I. Direct Crack Measurements[J].Journal of the American Ceramic Society,1981(64):533-538.
    [147] Kim Y W, Mitomo M. R-curve Behavior and Microstructure of Sintered SiliconNitride[J]. Journal of Materials Science Letters,1995(30):5178-5184.
    [148] Zhu T, Li W J, Zhang X H, et al. Damage Tolerance and R-curve Behavior ofZrB2-ZrO2Composites[J]. Materials Science and Engineering A,2009(516):297-301.
    [149] Hsueh C H, Becher P F, Angelini P. Effects of Interfacial Films on ThermalStresses in Whisker-Reinforced Ceramics[J]. Journal of the American CeramicSociety,1988(71):929-933.
    [150] Sun X D, Li J G, Guo S W, et al. Intragranular Particle Residual StressStrengthening of Al2O3-SiC Nanocomposites[J]. Journal of the American CeramicSociety,2005(88):1536-1543.
    [151] Zhang F C, Luo H H, Wang T S, et al. Stress State and Fracture Behavior ofAlumina-Mullite Intragranular Particulate Composites[J]. Composites Science andTechnology,2008(68):3245-3250.
    [152] Holleck H. Material Selection for Hard Coatings[J]. Journal of Vacuum Scienceand Technology A,1986(4):2661-2669.
    [153] Guo S Q, Kagawa Y, Nishimura T, et al. Elastic Properties of Spark PlasmaSintered ZrB2-ZrC-SiC Composites[J]. Ceramics International,2008(34):1811-1817.
    [154] Tsang D K L, Marsden B J, Fok S L, et al. Graphite Thermal ExpansionRelationship for Different Temperature Ranges[J]. Carbon,2005(43):2902-2906.
    [155] Choi S M, Awaji H. Nanocomposites-A New Material Design Concept[J]. Scienceand Technology of Advanced Materials,2005(6):2-10.
    [156] Faber K T, Evans A G. Crack Deflection Processes-I. Theory[J]. ActaMetallurgica,1983(31):565-576
    [157] Luo J, Stevens R. The Role of Residual Stress on the Mechanical Properties ofAl3O4-5vol.%SiC Nano-Composites[J]. Journal of the European Ceramic Society,1991(17):1565-1512.
    [158] Rezaie A, Fahrenholtz W G, Hilmas G E. Evolution of Structure During theOxidation of Zirconium Diboride-Silicon Carbide in Air Up to1500℃[J]. Journalof the European Ceramic Society,2007(27):2495-2501.
    [159] Han J C, Hu P, Zhang X H, et al. Oxidation Behavior of Zirconium Diboride-Silicon Carbide at1800℃[J]. Scripta Materialia,2007(57):825-828.
    [160] Shimad S, Sato T. Preparation and High Temperature Oxidation of SiCCompositionally Graded Graphite Coated with HfO2[J]. Carbon,2002(40):2469-2475.
    [161] Guo W M, Zhang G J, Kan Y M, et al. Oxidation of ZrB2Powder in theTemperature Range of650-800℃[J]. Journal of Alloys and Compounds,2009(471):502-506.
    [162] Hu P, Wang G L, Wang Z. Oxidation Mechanism and Resistance of ZrB2-SiCComposites[J]. Corrosion Science,2009(51):2724-2732.
    [163] Yang M, Neubauer, C M, Jennings H M. Interparticle Potential and SedimentationBehavior of Cement Suspensions Review and Results From Paste[J]. AdvancedCement Based Materials,1997(5):1-7.
    [164] Wang J, Gao L. Investigation of Interactions Between Polymer-CoatedNano-Y-TZP Particles by AFM[J]. Journal of Materials Science Letters,1999(18):181-183.
    [165] Kearley G J, Eijck L, Well A A. Local Structure in a Polymer-Electrolyte ModelSystem with and without Nanoparticles[J]. Physica B,2004(350):987-990.
    [166] Xu S, Wang G, Liu H M, et al. A DMol3Study on the Reaction BetweenTrans-Resveratrol and Hydroperoxyl Radical: Dissimilarity of AntioxidantActivity Among OH Groups of Trans-Resveratrol[J]. THEOCHEM Journal ofMolecular Structure,2007(809):79-85.
    [167] Zhai Z C, Wang Z Y. Computational Study on the Relative Stability andFormation Distribution of76Polychlorinated Naphthalene by Density FunctionalTheory[J]. THEOCHEM Journal of Molecular Structure,2005(724):221-227.
    [168] Araujo P Z, Morando P J, Blesa M A. Interaction of Catechol and Gallic Acidwith Titanium Dioxide in Aqueous Suspensions.1. Equilibrium Studies[J].Langmuir,2005(21):3470-2474.
    [169] Ankovi I A, aponji Z V, omor M I, et al. Surface Modification of ColloidalTiO2Nanoparticles with Bidentate Benzene Derivatives[J]. Journal of PhysicalChemistry C,2009(113):12645-12652.
    [170] Zürcher S, Graule T. Influence of Dispersant Structure on the RheologicalProperties of Highly-Concentrated Zirconia Dispersions[J]. Journal of theEuropean Ceramic Society,2005(25):863-873.
    [171] Zhou Z, Scales P J, Boger D V. Chemical and Physical Control of the Rheology ofConcentrated Metal Oxide Suspensions[J]. Chemical Engineering Science,2001(56):2901-2920.
    [172] Wu L N, Huang Y D, Liu L, et al. Interaction and Stabilization of DMF-BasedAlumina Suspensions with Citric Acid[J]. Powder Technology,2010(203):477-481.
    [173] Ren J, Wang W M, Lu S C, et al. Characteristics of Dispersion Behavior of FineParticles in Different Liquid Media. Powder Technology,2003(137):91-94.
    [174] Zhou R C, Chen Y Z, Liang Y, et al. Dispersion Behavior of Laser SynthesizedSi3N4Nanopowders in N-N-dimethylformamide[J]. Ceramics International,2002(28):705-709.
    [175] Chen W, Wang X H. Sintering Dense Nanocrystalline Ceramics WithoutFinal-Stage Grain Growth[J]. Nature,2000(404):168-171.
    [176] Li J G, Ye Y P. Densification and Grain Growth of Al2O3Nanoceramics DuringPressureless Sintering[J]. Journal of the American Ceramic Society,2006(89):139-143.
    [177] Wang W M, Fu Z Y, Wang H, et al. Influence of Hot Pressing SinteringTemperature and Time on Microstructure and Mechanical properties of TiB2ceramics[J]. Journal of the European Ceramic Society,2002(22):1045-1049.
    [178] Yuan C, Vandeperre L J, Stearn R J, et al. The Effect of Porosity in ThermalShock[J]. Journal of Materials Science Letters,2008(43):4099-4106.
    [179] Shen L, Liu M J, Liu X Z, et al. Thermal Shock Resistance of the PorousAl2O3/ZrO2Ceramics Prepared by Gelcasting[J]. Materials Research Bulletin,2007(42):2048-2056.
    [180] Monteverde F, Bellosi A. Beneficial Effects of AlN as Sintering Aid onMicrostructure and Mechanical Properties of Hot-Pressed ZrB2[J]. AdvancedEngineering Materials,2003(5):508-512.
    [181] Su H, Johnson D L, Master Sintering Curve: A Practical Approach to Sintering[J].Journal of the American Ceramic Society,1996(79):3211-3217.
    [182] Su H, Johnson D L, A Practical Approach to Sintering[J]. American CeramicSociety Bulletin,1997(76):72-76.
    [183] Shao Y W, Mao H T. Why a Master Sintering Curve Model Can be Applied to theSintering of Nano-Sized Particles[J]. Journal of Alloys and Compounds,2010(504S): S336-S339.
    [184] Hansen J D,Rusin R P,Teng M H. Combined-Stage Sintering Model[J]. Journal ofthe American Ceramic Society,1992(75):1129-1135.
    [185] Zamora V, Ortiz A L, Guiberteau F, et al. Crystal-Size Dependence of theSpark-Plasma-Sintering Kinetics of ZrB2Ultra-High-Temperature Ceramics[J].Journal of the European Ceramic Society,2012(32):271-276.
    [186] Maca K, Trunec M, Dobsak P. Bulk Zirconia Nanoceramics Prepared by ColdIsostatic Pressing and Pressureless Sintering[J]. Reviews on Advanced MaterialsScience,2005(10):84-88.
    [187] Zhang H, Yan Y J, Huang Z R, et al.. Pressureless Sintering of ZrB2-SiC Ceramics:The Effect of B4C Content[J]. Scripta Materialia,2009(60):559-562.
    [188] Zou J, Zhang G J, Kan Y M. Formation of Tough Interlocking Microstructure inZrB2-SiC-Based Ultrahigh-Temperature Ceramics by Pressureless Sintering[J].Journal of Materials Research,2009(24):2428-2434.
    [189] Zou J, Zhang G J, Kan Y M, et al. Pressureless Densification of ZrB2-SiCComposites with Vanadium Carbide[J]. Scripta Materialia,2008(59):309-312.
    [190] Guo S Q, Kagawa Y, Nishimura T, Tanaka H. Thermal and Electric Properties inHot-Pressed ZrB2-MoSi2-SiC Composites[J]. Journal of the American CeramicSociety,2007(90):2255-2258.
    [191] Opila E, Levine S, Lorincz J. Oxidation of ZrB2-and HfB2-Based Ultra-HighTemperature Ceramics: Effect of Ta Additions[J]. Journal of Materials ScienceLetters,2004(39):5969-5977.
    [192] Peng F, Berta Y, Speyer R F. Effect of SiC, TaB2and TaSi2Additives on theIsothermal Oxidation Resistance of Fully Dense Zirconium Diboride[J]. Journal ofMaterials Research,2009(24):1855-1867.
    [193] Guo S Q, Kagawa Y, Nishimura T, et al. Pressureless-Sintering and PhysicalProperties of ZrB2-Based Composites with ZrSi2Additive[J]. Scripta Materialia,2008(58):579-582.
    [194] Hu C F, Sakka Y, Tanaka H, et al. Microstructure and Properties of ZrB2-SiCComposites Prepared by Spark Plasma Sintering Using TaSi2as SinteringAdditive[J]. Journal of the European Ceramic Society,2010(30):2625-2631.
    [195]高积强.短纤维增强玻璃陶瓷基复合材料制备与机械性能[J].西安交通大学学报,1997(3):97-102.
    [196]王秀峰.碳纤维增强水泥基复合材料的制备及性能[J].西安交通大学学报,1997(3):108-113.
    [197] Yang F Y, Zhang X H, Han J C, et al. Effect of Short Carbon Fiber Addition onthe Mechanical Properties of ZrB2-SiC Ceramic Matix Composites[J]. MaterialsLetters.2008(62):2925-2927.
    [198] Tang S F, Deng J Y, Wang S J, et al. Fabrication and Characterization of anUltra-High-Temperature Carbon Fiber-Reinforced ZrB2-SiC Matrix Composite.Journal of the American Ceramic Society,2007(90):3320-3322.
    [199] Wang Z, Dong S M, Zhang X Y, et al. Fabrication and Properties of Cf/SiC-ZrCComposites[J]. Journal of the American Ceramic Society,2008(91):3434-3436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700