渣油加氢催化剂表征及失活行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渣油加氢过程对于提高石油利用效率,缓解我国的能源紧张形势具有重要意义。催化剂在该过程中起着重要的作用,它对反应体系的物料分配、流体力学、床层压降、传质及传热等有重要的影响。由于催化剂颗粒较小,易造成流体阻力增大,破坏正常操作;颗粒过大易降低催化剂内表面活性位的利用率,故在床层中填充单一规格的催化剂易造成床层压力增大,不利于渣油经过床层,造成上层催化剂焦结,下层催化剂利用率低,因而需要采用不同形貌的催化剂进行级配装填,有利于降低床层间传质阻力,提高催化剂的利用率,有利于充分发挥催化剂活性,因此对不同形貌的催化剂进行研究非常有意义。
     按照中石油石化研究院的要求以大庆油田常减压渣油为原料,利用NiMo型催化剂,以浆态床为反应器,实施实验方案设计。通过改变反应时间、反应压力、氢油比等操作条件,确定了反应条件:原料油:50.0g,催化剂:10.0g(剂油比为1:5),反应温度:370℃,反应压力:7MPa,氢油比为:400:1,反应时间:1h,反应后急冷。
     在该条件下对不同直径的催化剂进行活性评价,评价结果显示催化剂在直径较小或较大时均不利于杂质的脱除,综合考虑所有杂质的脱除率知,直径为1.2mm时催化剂的总体活性较好。
     结合XRD、BET、TG/DSC、TPO、SEM/EDS等表征手段对催化剂活性下降原因进行进一步研究,结果显示渣油中沥青、含金属的卟啉结构等大分子生成焦炭、金属硫化物等附聚物和沉积物,这些物质沉积在催化剂表面及孔道中降低了催化剂的活性,导致杂质的脱除率下降。
It is of great significance for improving Oil utilization efficiency andeasing the tense situation of China's energy to conduct residuehydroprocessing. Catalyst plays an important role on residue hydroprocessing.The effect of catalyst covers every aspect in the reaction system, such aslogistics distribution, hydrodynamics, mass transfer and heat transfer. It willincrease the fluid resistance and disrupt the normal operation if the particlesize is very small. But on the contrary, the activities in the catalyst surface willbe not fully utilized. It will be increase the pressure drop, which will lead tocoke on the bed, if we fill the bed with catalyst of a single specification. So weshould fill the bed with catalyst which have different morphologies. It willdecrease the resistance between beds and increase the utilization of catalysts,which will contribute to exert the activity. It is very meaningful to study the different morphology of the catalyst.
     The slurry bed hydroprocessing was conducted with the NiMo catalystbased on the mixture of atmospheric and vacuum residue from Daqing Oilfield,in accordance with the requirements of the Petroleum and PetrochemicalInstitute. It is the following operating conditions that has been confirmed bycontrast experiments:50.0g/Oil,10.0g/catalyst,370℃/temperature,7.0MPaof total pressure,400of H2-to-Oil,1h of reaction time and cooling downrapidly after reaction.
     It has been carried out to evaluate the activity of catalysts with differentdiameters in this condition. The result shows that there is a better rate inimpurities removing. The total activity of catalyst which has a1.2mmdiameter is much better. And then we conducted the further study of catalystdeactivation with XRD, BET, TG/DSC, TPO and SEM/EDS. The result showsthat there are several reasons for catalyst deactivation. There are manydeposits found in the catalyst surface such as asphalt, metalloporphyrins, cokeand metal sulfides. It could cover the active sites and reduce the catalyticactivity, which results in the drop of impurities removing
引文
[1]王英杰,张忠祥,张玉,等.国内外渣油加氢处理技术的分析[J].当代化工,2007,36(3):221-223
    [2]于彦校. Al2O3载体改性及对渣油加氢催化剂性能的影响研究[D].北京:北京化工大学,2011
    [3]孙昱东.原料组成对渣油加氢转化性能及催化剂性质的影响[D].上海:华东理工大学,2011
    [4]李志强.我国减压渣油的特点及加工技术路线探讨[J].石油炼制与化工,1996,27(3):1-7
    [5]边钢月,张福琴.渣油加氢技术进展[J].石油科技论坛,2010,6:13-17
    [6] Yang Li, Wenyue Guo, Houyu Zhu, etc. Initial Hydrogenations of Pyridine on MoP(001): ADensity Functional Study[J]. Langmuir,2012,28:3129-3137
    [7]夏恩冬,吕倩,王刚,等.加氢技术在渣油处理中的应用[J].化工中间体,2008,8:4-8
    [8]贾丽,栾晓东.悬浮床与固定床渣油加氢改质技术的区别[J].当代化工,2007,36(5):447-450
    [9]王宏.塔河劣质原油加工方案探讨[J].当代石油石化,2008,16(1):36-43
    [10]尹忠辉.沸腾床与固定床加氢工艺的技术经济比较[J].石油化工技术与经济,2010,26(6):13-17
    [11]黄风林.渣油深加工的组合工艺[J].石油与天然气化工,2000,29(2):68-71
    [12]方向晨.国内外渣油加氢处理技术发展现状及分析[J].化工进展,2011,30(1):95-104
    [13]王纲,方维平,韩崇仁.常压渣油加氢脱硫催化剂的研制及试生产[C].石油炼制与化工编辑部,重油加工新技术,北京:中国石化出版社,2007:252-256
    [14]蒋立敬.渣油加氢反应动力学及组合工艺研究[D].大连:大连理工大学,2011:23-50
    [15]刘建锟,杨涛,贾丽,等.不同渣油加氢技术的对比研究[C].洪定一,炼油与石化工业技术进展,北京:中国石化出版社,2009:123-130
    [16]吴锐,袁胜华,韩照明,胡长禄. S-RHT渣油加氢处理技术工业应用及新进展[C].洪定一,炼油与石化工业技术进展,北京:中国石化出版社,2009:116-123
    [17]许先焜.渣油加氢—催化裂化组合工艺反应动力学模型研究[D].上海:华东理工大学,2005
    [18]方磊,郭金涛,吴显军,等.渣油悬浮床加氢研究现状及发展趋势[J].化工中间体,2008(9):4-8
    [19]夏恩冬,吕倩,王刚,等.国内外渣油加氢技术现状与展望[J].2008,9(8):42-46
    [20]贾丽,杨涛,胡长禄.国内外渣油沸腾床加氢技术的比较[J].2009,39(4):16-19
    [21]王军,张忠清,黎元生,等.渣油悬浮床加氢工艺研究[J].工业催化,2003,11(7):7-11
    [22]刘元东,郜亮,宗保宁.浆态床重油改质技术新进展[J].化工进展,2010,29(9)1589-1596
    [23]王纲,方维平,韩崇仁.常压渣油加氢脱硫催化剂的开发研制[J].工业催化,2000,8(1):27-31
    [24]张会成,颜涌捷,齐邦峰,等.渣油加氢处理中氮分布与脱除规律的研究[J].石油炼制与化工,2007,38(4):43-46
    [25]张会成,颜涌捷,赵荣林,等.渣油加氢处理过程中金属分布和脱除规律的研究[J].石油炼制与化工,2006,37(11):7-10
    [26]刘勇军,刘晨光.渣油加氢脱金属过程中催化剂表面的金属沉积[J].工业催化,2009,17:247-250
    [27]张数义,邓文安,阙国和,等.渣油悬浮床加氢裂化反应机理[J].石油学报,2009,25(2):145-149
    [28]刘纪端,赵愉生,方维平,等.渣油加氢保护剂和脱金属催化剂的开发及应用[J].1999,29(8):79-81
    [29]刘佳,胡大为,杨清河,等.活性组分非均匀分布的渣油加氢脱金属催化剂的制备及性能考察[J].石油炼制与化工,2011,42(7):21-27
    [30]尚猛,李传,邓文安,等.渣油悬浮床加氢裂化油溶性催化剂的性能[J].石油学报,2011,27(3):361-366
    [31]陈士锋,陈海,杨朝合.渣油加氢转化过程结焦催化剂的表征[J].石油学报,2002,12(3):8-12
    [32] Manuel Nunez Isaza, Zarith Pachon, Viatcheslaw Kafarov, et al. Deactivation of Ni-Mo/Al2O3catalysts aged in a commercial reactor during the hydrotreating of deasphalted vaccumresiduum[J]. Applied Catalysis A:General,2000.1999:263-273
    [33]李衍滨,韩崇仁,刘纪瑞,等.渣油加氢工业废催化剂的剖析[J].石油化工,2003,32(2):142-145
    [34]孙素华,刘靖,付会娟,等.渣油加氢催化剂失活原因探讨及再生性能研究[J].当代化工,2006,35(5):326-328
    [35] Marcos Millan, Cristina Adell, Cecilia Hinojosa, et al. Effect of Catalyst Deactivation andReaction Time on Hydrocracking Heavy Hydrocarbon Liquids[J]. Energy&Fuels,2007,21:1370-1378
    [36] Esmond Newson. Catalyst Deactivation Due to Pore-Plugging by Reaction Products[J]. Ind.Eng. Chem., Process Des. Develop.,1975,14(1):27-33
    [37]李天游,葛海龙.渣油加氢处理催化剂失活的探讨[J].广州化工,2008,36(6):28-30
    [38]宋朝霞.委内瑞拉超重原油加氢处理研究[D].北京:中国石油大学,2010:23-40
    [39] Hiroyuki Seki, Masao Yoshimoto. Deactivation of HDS catalyst in two-stage RDS Process Ⅱ,Effect of crude Oil and deactivation mechanism[J]. Fuel Processing Technology,2001,69:229-238
    [40] Liu Dong, Guo aijun, Ma Kuiju, et al. Investigation on Dispersed Catalyst for slurry BedHydroprocessing of Heavy Oil[J]. China Petroleum Processing and Petrochemical Technology,2006,4:55-59
    [41] Jie Chang, Kaoru Fujimoto, Noritatsu Tsubaki, et al. Effect of Initiative Additives onHydro-Thermal Cracking of Heavy Oils and Model Compound[J]. Energy&Fuels2003,17:457-461
    [42]刘涛,张学辉,彭绍忠,等. FRIPP催化裂化原料油加氢预处理技术及新进展[J].炼油技术与工程,2010,40(8):1-4
    [43]郝锐,钱伯章.面向21世纪的重质油和渣油改质技术[J].石油化工,1993,26:257-267
    [44]杨刚.新型渣油加氢处理系列催化剂的研制开发[D].杭州:淅江大学,2004:1-50
    [45]梁文杰,阙国合,陈月珠.我国原油渣油的化学组成与结构Ⅰ减压渣油的化学组成[J].石油学报,1991,7(3):1-7
    [46]黄福堂.大庆油田原油的物理化学性质、组成与特征[J].大庆石油学院学报,1983,(2):54-66
    [47]柴永明,相春娥,孔会清,等.馏分油浆态床加氢处理研究Ⅰ催化剂制备方法[J].2008,36(6):720-725
    [48]刘东,金环年,袁存显,等.水溶性Mo催化剂在悬浮床加氢过程中的低温硫化[J].燃料化学学报,2007,35(1):41-46
    [49]赵野,胡胜,于春梅.加氢催化剂预硫化技术评述[J].精细石油化工进展,2005,6(8):49-52
    [50]高晓东,石玉林,孙明永,等.加氢催化剂预硫化工艺的研究[J].石油炼制与化工.1995,26(2):40-46
    [51] Wei-Ping Dow, Ta-Jen Huang. Effect of chlorine on TPR and TPO behavior of an YSZ/γ-Al2O3supported copper oxide catalyst[J]. Applied Catalysis A: General,1996,2(141):17-29
    [52]赵地顺等.催化剂评价与表征[M].北京:化学工业出版社,赵地顺等编著,2011:105-109
    [53]赵辉.渣油加氢转化规律的研究[D].北京:中国石油大学,2009:32-40
    [54]韩保平,晋梅.渣油催化加氢装置反应温度操作初探[J].石油炼制与化工,2003,34(8):16-19
    [55] J Ancheyta, G Betancourt, G Centeno, G Marroquin. Catalyst Deactivation duringHydroprocessng of Maya Heavy Crude Oil.(Ⅱ) Effect of Temperature duringTime-on-Stream[J]. Energy&Fuels,2003,17:462-467
    [56] Haohua Gao, Gang Wang, Hao Wang, etc. A Conceptual Catalytic Cracking Process to TreatVacuum Residue and Vacuum Gas Oil in Different Reactors[J]. Energy&Fuels,2012,26:1970-1879
    [57]王钥,齐邦峰,何凤友,等.渣油加氢结焦反应条件的研究[J].石油化工高等学校学报,2009,22(2):41-44
    [58] Kohjiroh Aimoto, Ikusei Nakamura, and Kaoru Fujimoto, et al. Transfer Hydrocracking ofHeavy Oil and Its Model Compound[J]. Energy&Fuels.1991,5:139-744
    [59]朱凯.添加物对渣油加氢反应的影响及机理研究[D].山东:中国石油大学,2011
    [60]李庶峰,王继乾,文萍.含硫渣油悬浮床加氢裂化性能釜式反应评定[J].齐鲁石油化工,2005,33(2):85-87
    [61] Kohjiroh Aimoto, Ikusei Nakamura, Kaoru Fujimoto. Transfer Hydrocracking of Heavy Oil andIts Model Compound[J]. Energy&Fuels,1991,5:739-744
    [62]常杰,戴立顺,刘建生,等.渣油加氢脱金属催化剂初期失活的研究[J].石油炼制与化工,1997,28(12):25-28
    [63] Rui Ren, Zongxian Wang, Cuishi Guan, et al. Study on the sulfurization of molybdate catalystsfor slurry-bed hydroprocessing of residuum[J]. Fuel Processing Technology,2004,86:169-178
    [64] Xiaowei Zhou, Tao Chen, Bolun Yang, et al. Kinetic Model Considering Reactant OrientedSelective Deactivation for Secondary Reactions of Fluid Catalytic Cracking Gasoline[J].Energy&Fuels.2011,25:2427–2437
    [65] Yong-Chul Park, Eun-Suok Oh, Hyun-Ku Rhee. Characterization and Catalytic Activity ofWNiMo/Al2O3Catalyst for Hydrodenitrogenation of Pyridine[J]. Ind. Eng. Chem. Res.1997,36:5083-5089
    [66] Hui Luo, Wenan Deng, Jingjie Gao, et al. Dispersion of Water-Soluble Catalyst and Its Influenceon the Slurry-Phase Hydrocracking of Residue[J]. Energy Fuels2011,25:1161–1167
    [67] Akimitsu Matsumuraa, Shinya Satoa, Teruo Kondob, et al. Hydrocracking Marlim vacuumresidue with natural limonite. Part2: experimental cracking in a slurry-type continuousreactor[J]. Fuel,2005,84:417-421
    [68]徐春明,林世雄.渣油加氢裂化反应机理的研究[J].石油炼制与化工,1995,26(9):52-57
    [69] Furimsky E, Massoth F E. Catal. Today1999.52:381
    [70]安晟,王志武,王欣.渣油加氢处理催化剂失活研究[J].当代化工,2010,39(1):49-54
    [71] Per Zeuthen, Barry H. Cooper, Fred T. Clark, et al. Characterization and Deactivation Studies ofSpent Resid Catalyst from Ebullating Bed Service[J]. Ind. Eng. Chem. Res.1995,34:755-762
    [72] A. Marafi et al. deactivation patterns of MoAl2O3, Ni-MoAl2O3[J]. Catalysis&Today,2007,125:192-202
    [73]陈士峰,杨朝合.渣油加氢转化催化剂初期结焦规律的研究[J].燃料化学学报,2001,29(5):8-12
    [74]孙昱东,杨朝合,山红红,等.渣油加氢催化剂构型失活因素综述[J].石化技术与应用,2009,27,(5):464-469
    [75]杨清河,戴立顺,聂红,等.渣油加氢脱金属催化剂RDM-2的研究[J].石油炼制与化工,2004,35(5):1-4
    [76] Ancheyta J, Centeno G, Trejo F, et al. Changes in asphaltene properties during hydrotreating ofheavy crudse[J]. Energy&Fuels,2003.17:1233-1238
    [77] J Ancheyta, G Betancourt, G Centeno, et al. Catalyst Deactivation during Hydroprocessing ofMaya Heavy Crude Oil.1. Evaluation at Constant Operating Conditions [J]. Energy&Fuels,2002,16:1438-1443
    [78] Toulhoat H, Szymanski R, Plumail J C. Interrelations between initial pore structure, morphologyand distribution of accumulated deposits, and lifetimes of hydrodemetallisation catalysts[J].Catalysis Today,1990,7(4):531-568
    [79]刘建宇,孙万付.失活加氢裂化催化剂的研究[J],工业催化.2003,11(2):12-17
    [80]张会成,马波,李景斌,等.渣油加氢处理催化剂积炭分析[J].当代化工,2008,37(3):277-282
    [81]苏继新,杨兆荷,肖天存,等.重油加氢脱硫NiMo/γ-Al2O3催化剂的失活研究[J].分子催化,1999,13(4):297-303
    [82]中国冶金百科全书总编辑委员会《有色金属冶金》卷编辑委员会,冶金工业出版社《中国冶金百科全书》编辑部.中国冶金百科全书[M].·有色金属冶金.北京:冶金工业出版社.1999:922-923
    [83] Fernando Diez, Bruce C. Gates, Jeffrey T. Miller. Deactivation of a Ni-Mo/y-A1203Catalyst:Influence of Coke on the Hydroprocessing Activity[J]. Ind. Eng. Chem. Res.1990,29:1999-2004
    [84]王海涛,肖天存,苏继新,等. SEM-EDS研究NiMo/Al2O3催化剂失活机理[J].电子显微学报,1999,18(6):624-629
    [85]张孔远,燕京,吕才山.重油加氢脱金属催化剂的性能及沉积金属的分布研究[J].石油炼制与化工,2004,35,(8):30-33
    [86]赵迎宪,虞影,危凤.溶剂萃取恢复渣油加氢转化催化剂活性的研究[J].石油炼制与化工,2008,39(11):5-9
    [87] Carruthers J D, brinen J S, Komar D A, et al. Catalyst poisoning during tar-sands bitumenupgrading[J]. Chemical Industry,1994,58(1):175-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700