微泡沫的制备及其在重油悬浮床加氢催化剂分散上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮床加氢水溶性催化剂在分散方面存在诸多问题,需要开发新型的分散工艺。微泡沫——包括胶质气体泡沫(CGA)和胶质液体泡沫(CLA)——因其特殊的结构和性质在水溶性催化剂在分散方面有较好的应用前景。
     实验中,根据悬浮床加氢催化剂的分散要求对微泡沫发泡体系进行了筛选,并对微泡沫的制备条件进行了优化分析,通过光学显微镜及动态光散射仪等对其结构和性质进行了探讨。以辽河常渣和委内瑞拉常渣为原料对微泡沫分散催化剂的效果进行了光学显微镜观察和高压釜悬浮床加氢反应评价。
     针对悬浮床加氢水溶性催化剂分散过程中存在的问题,实验进行了纯水、单一及复配水溶性催化剂前体水溶液中CGA发泡体系的筛选及制备条件的优化分析,主要考察了发泡剂种类及浓度、金属离子种类及浓度、温度、搅拌速率、搅拌时间等对CGA泡沫量及稳定性的影响,研究发现:10℃、搅拌速率9000rpm、搅拌时间3min条件下在复配催化剂水溶液中CTAB(3.4 g/L)与SDS(1.1g/L)复配效果较好,制备的CGA泡沫量3850 mL/L,半衰期2140s;经光学显微镜观察其形状呈多层透明球状;经动态光散射仪测试,其粒径集中分布在10~100μm之间;体系中液晶相的产生有助于提高CGA稳定性。
     根据悬浮床加氢油溶性催化剂与水溶性催化剂的经验配比确定了CLA的制备方案,研究发现油水体积比(PVR)等于2时,所得产物呈咖啡色乳液状,可存储长达三个月之久,未见有明显的相分离发生,十分稳定。经光学显微镜观察其形状呈正多面体或球状;经动态光散射仪测试,其粒径集中分布在1~3μm之间;体系中液晶相的形成有助于CLA的稳定性的改善。
     通过光学显微观察发现以微泡沫形态加入到原料油中的催化剂分散效果明显好于剪切分散形式。经釜反应评定,与剪切分散分散方式相比,采用微泡沫分散催化剂的辽河常渣和委内瑞拉常渣油样,悬浮床加氢反应生焦率都有明显的降低;馏分油收率都有所增加。
There are some problems in the dispersion of catalysts for slurry-bed hydroprocessing, so it is necessary to develop a new dispersion technology. Because of the special structure and nature of microfoam which includes colloidal liquid aphron(referred to as CLA) and colloidal gas aphron(referred to as CGA), it is of a great potential in this aspect.
     At the first of this experiment, the prescription to prepare microfoam was determined according to the need to disperse the catalysts for slurry-bed hydroprocessing, optimization analysis of conditions to prepare microfoam was then carried on, structure and stability of it was also discussed by optical microscopy, dynamic light scattering and so on. Liao-he and Venezuela residual oil were taken as base oil to study on the dispersion condition of catalysts in the form of microfoam, microscope observation and autoclave reaction were used to evaluate the dispersion state.
     In this experiment, aimming at problems of the dispersion of water-soluble catalysts for slurry phase hydroprocessing, foam system is filtered and optimization analysis of conditions to prepare CGA was then carried on under pure water, single and mixed metal ion catalyst solution, mainly seeing about the impact of frother concentration, the type and concentration of metal ions, temperature, stirring rate and stirring time. Solution of catalysts is used as solvent with foaming agent as solute to prepare CGA. The results showed that under the conditions: 3min stirring time and 9000rpm stirring rate、pH=2~3, the output and half-life of CGA made of combination of SDS(1.1g/L) and CTAB (3.4g/L) is 1150ml and 2140s; CGA shows a shape with a transparent multi-layer spherical under the optical microscope; and its diameter concentrated in 10~100μm tested by dynamic light scattering instrument. The formation of liquid crystal in the system can help to improve the stability of CGA.
     The prescription to prepare CLA was determined according to the experiential ratio of oil-soluble and water-soluble catalysts.When PVR is 2, the products presented as brown emulsion and can be stored for up to three months, and no obvious phase separation occurs, which is very stable. It shows a shape of regular polyhedron or spherical under the optical microscope; the diameter of CLA concentrated between 1~3μm tested by dynamic light scattering instrument. The formation of liquid crystal in the system can help to improve the stability of CLA.
     It is observed by optical microscopy that the effect of catalyst material dispersed to base oil in form of micro-foam is better than traditional forms. The result of autoclave reaction showed that compared to traditional dispersion technology, slurry-bed hydro-processing coke yield of Liao-he residual oil dispersed by CGA reduced from 1.25% to 0.98%, coke yield of Venezuela residual oil reduced from 1.31% to 1.06%, coke yield of Liao-he residual oil dispersed by CGA reduced from 2.39% to 1.67%, coke yield of Venezuela residual oil reduced from 2.78% to 2.05%; with yield of light oil increased to some extent.
引文
[1]梁文杰.石油化学[M].东营:石油大学出版社,1995
    [2]梁文杰.重质油化学[M].东营:石油大学出版社,2000
    [3]程之光.重油加工技术[M].北京:中国石化出版社,1994
    [4]张树义,邓文安,阙国和,等.悬浮床加氢技术新进展[J],炼油技术与工程,2007-2, 37(2) :1-6
    [5]贾丽,王军,李鹤鸣,等.微乳法制备系分散渣油悬浮床加氢催化剂,工业催化,2004-2, 12(2) :46-49
    [6] Dohler W,Kretschmar K,Merz L,et a1.Veba-Vombi-Cracking—A technology for upgrading of heavy oils and bitumen[J].Div Petrol Chem,ACS,1987,32(2):484-489
    [7] Chandra P,Khulbe.Hydro-cracking of heavy oils/fly ash slurries [P]. US 4299685,1981-2
    [8] Sakabe T,Yagi T.Crack residum with spent HDS catalyst.Hydrocarbon Processing,1979,58(12):103-108
    [9] Drago G D,Guhian J.The development of HDH process——a refiner tool for residual upgrading[J].Div Petrol Chem,ACS,1990,35(4):584-592
    [10] Gatsis,John G.Hydrocarbon hydro-refining process utilizing a non—stoichiometric vanadium sulfide catalyst.USA ,USP4194967[P],1980-9
    [11] Roby.Hydro-conversion of heavy hydrocarbons [P].US 4134825,1979-5
    [12] Bearden.Catalyst for the hydro-conversion of heavy hydrocarbons[P].US 4226742,1980-7
    [13] Lott R K.(HC)3 process-A slurry hydro-cracking technology designed to convert bottoms and heavy oils[C].Proceedings of 7th UNITAR International Conference on Heavy Crude and Tar Sand,1995,2:261
    [14] Lott R K,Cyr T,Lap K,et a1.Process for reducing Coke Formation during Hydroconversion of heavy hydrocarbons[P].CA2004882,1991-6
    [15] Lott R K,Lee L K.Ebullated bed hydro-processing methods and systems and methods of upgrading an existing ebullated bed system [P].US 20050241991,2005-2
    [16] Lott R K,Lee L K.Hydro-processing method and system for upgrading heavy oil using a colloidal or molecular catalyst[P].US 20050241993,2005-2
    [17] Montanari R, Marchionna M, Panariti N, et a1.Process for the conversion of heavyfeed-stocks such as heavy crude oils and distillation residues[P].WO 2004056946,2004-5
    [18] Marchionna M,Delbianco A,Panariti N,et a1. Process for the conversion of heavy charges such as heavy crude oils and distillation residues[P].US 20030089636,2003-8
    [19] Jacquin,Yves,Davidson,et a1.Process for hydro-treating heavy hydrocarbons in liquid phase in the presence of a dispersed catalyst[P].US 4285804, 1981
    [20] Cyr.Hydro-cracking process involving colloidal catalyst formed in situ[P].US 5578197,1996-8
    [21] Strausz.Process for hydro-cracking heavy oil [P].US 6068758,2000-9
    [22]沈瑞华,赵会吉,刘晨光,等.用油溶性双金属催化剂加氢裂化处理辽河减压渣油[J].石油炼制与化工,1998,29(11):l0-l2
    [23]董志学.用油溶性催化剂加氢裂化孤岛减压渣油的研究[J].工业催化,2003,ll(4):27-29.
    [24] Gatsis , John G . Catalyst for the hydro-conversion of asphahene-containing hydro-carbonaceous charge stocks[P].US 5474977,1995-5
    [25] Gatsis , John G . Catalyst for the hydro-conversion of asphahene-containing hydro-carbonaceous charge stocks[P].US 5288681,1994-9
    [26] Roby A,Bearden J,Clyde L,et a1.Hydro-cracking with phosphomolybdic acid and phosphofic acid[P].US 4637870,1987
    [27] Bearden.Hydro-cracking with aqueous phosphomolybdic acid[P].US 4637871,1987-11
    [28] Bearden.Hydro-conversion process using a sulfided molybdenum catalyst concentrates [P].US 4740295,1988-9
    [29] Bearden . Method of preparing a hydro-conversion sulfided molybdenum catalyst concentrates[P].US 4740489,1988-12
    [30] Bearden Hydro-conversion process using a sulfided molybdenum catalyst concentrates[P].US 5039392,1991-6
    [31] Lopez,Jaime,McKinney,et a1.Heavy Oil Processing[P].US 4557821,1985-4
    [32] Lopez,Pasek,Eugene A.Process for preparing heavy oil hydro-processing slurry catalyst[P].US 4710486,1987-4
    [33] Lopez,Jaime,Pasek,et a1.Heavy oil hydro-process including recovery of molybdenum catalyst[P].US 4762812,1988-8
    [34] Lopez,Jaime,Pasek,et a1.Dispersed group VIB metal sulfide catalyst promoted with GroupⅧmeta1[P]. US 4824821,1989-4
    [35] Lopez,Jaime,Pasek,et a1.Heavy oil hydroprocessing with Group VI metal slurry catalyst[P].US 4857496,1989-8
    [36] Pelrine,Bruce P,Comolli,et a1.Iron—based ionic liquid catalysts for hydroprocessing carbonaceous feeds[P].US 6139723,2000-6
    [37]王仙体,黎元生,张忠清,等.渣油悬浮床加氢裂化均相催化剂及工艺研究[J].炼油设计,2000,30(4):50-52
    [38]管翠诗,王宗贤,阙国和,等.渣油悬浮床加氢裂化水溶性催化剂的硫化[J].石油学报(石油加工),2004,20(2):75-80
    [39]刘晨光,阙国和,梁文杰,等.孤岛渣油在分散型催化剂存在下加氢裂化反应的研究(I).分散型催化剂的初步筛选[J].石油炼制,1993,24(3):57-62
    [40]刘晨光,阙国和,梁文杰.分散型磷钼酸铵催化剂下孤岛渣油的加氢裂化反应产物[J].石油大学学报,1993,17(6):92-98
    [41]周家顺,刘东,梁士昌,等.渣油悬浮床加氢裂化催化剂的研究[J].石油大学学报(自然科学版),2000,24(3):26-29
    [42]周家顺,邓文安,刘东,等.尾油循环对渣油悬浮床加氢裂化的影响[J].石油学报(石油加工),2001,17(4):82-85
    [43]王宗贤,管翠诗,阙国和,等.渣油悬浮床加氢裂化水溶性催化剂的硫化[J].石油学报,2004,20(2):75-80
    [44]李庶峰,沐宝泉,阙国和,等.油溶性分散型催化剂在重油加氢裂化中的应用[J].石油炼制与化工,2004, 9(35):22-25
    [45]金环年.重油悬浮床加氢技术新进展.当代化工,2003,32(3):147-148
    [46] Sebba F. An Improved Generater for Micron-Sized Bubbles [J]. Chemistry and Industry,1985-9
    [47] Paula J , Julie V . Colloidal gas aphrons: potential applications in biotechnology [J].T1BTECH,1999.10(1 7):389-395
    [48] Sebba F. Foams and Biliquid Foams-Aphrons[J]. Chichester.Wiley and Sons.1987-9
    [49] Roy D.Separation of organic dyes from wastewater by using CGA[J]. Sep. Sci. Technol. 1992,27(5); 575-588
    [50] Michelsen D L,Ruettimann K W,Hunter KR,Sebba F.Use of predispersed solventextraction/flotation techniques for removal of hazardous organics from contaminated waters[J]:feasibility study,Chem.Eng Comm.49,155-165,(1986B)
    [51] Halsey G S,Yoon R H,Sebba F.Cleaning of fine coal by flotation using colloidal gas aphrons[J],International Powder and Bulk Solids Handling and Prccesing,1982:67-75
    [52] Subramaniam M B et al . Arification of suspensions by colloidal gas aphrons [J].Chem.Technol.Biotechnol.1990.48; 41-60
    [53] Hashim M A,Gupta B S.The application of colloidal gas aphrons in the recovery of fine cellulose fibres from paper mill wastewater[J].Bioresourse Technology 1998.64:199-204
    [54] Chaphakar P G,Valsaraj K T,Roy D.Flotation using microgas dispersions for the removal of pentachlorphenol from aqueous solutions[J].Sep.Sci.Technol.1994,29(7):907-921
    [55] Nobel M J.Protein recovery using gas-liquid dispersions[J].Chromatogr. B.1998.711:31-43
    [56]左凤江,贾东民,郭卫,等.可循环微泡沫钻井液技术研究与应用[J].钻井液与完井液,2002,19(6):83
    [57]王洪军,焦震,郑秀华,等.大庆油田微泡沫钻井液的研究与应用石油钻采工艺[J],2007,29(5):88-92
    [58]燕永利,张宁生,屈撑囤,等.胶质泡沫(CGA)排液动力学研究[J],化学学报Vo1.63.2005 No.18,1686~1692
    [59]王晓燕,刘莉君.胶质气体泡沫(CGA)特性化实验研究[J],环境科学与技术,2006-1,29(1):37-39
    [60] Paula J,Julie V.Colloidal gas aphron:potential applications in biotechnology[J].TIBTECH,1999.10(17):389-395
    [61]燕永利,张宁生,屈撑囤,等.胶质液体泡沫(CLA)的形成及其稳定性研究[J]. 2006, 1(64): 54-60化学学报Vo1.64.2006 No.1,54-60
    [62] Sebba F. Biliquid foams-a preliminary report[J]. J Colloid Interf Sci, 1972,40:468-474
    [63] Sebba F. The behavior of minute oil droplets encasulated in a water film[J]. Colloid Polym Sci,1979,257:392-396.
    [64] Sebba F. Foams and Biliquid Foam, Aphrons [M]. New York:Wiley,1987.
    [65] Sebba F. Preparation and properties of polyaphrons(biliquid foams)[J].Chem Ind, 1984 (10) :367-372
    [66] Bergeron V, Sebba F. An unusual gel without a gelling agent [J]. Langmuir, 1988(3):857-858.
    [67] Princen H M. On―An unusual gel without a gelling agent‖[J]. Langmuir, 1988(4): 486-487.
    [68] Matsushita A H,Moliah D C, Stuchey C, et al. Predispersed solvent extraction of dilute products using colliodal gas aphrons and colliodal liquid aphrons: aphron preparation, stability and size[J].Colliods Surfs,1992,69:65-72
    [69] Lye G J, Stuchey D C. Stucture and stability of colliodal liquid aphrons[J]. Colliod Surf A-Physicochem Eng Asp,1998,131:119-136
    [70] Srivastava P. Characterization of Intrefacial Structure and Properties of Colliodal Liquid Aphrons for Biocatalysis[D].Michigan State Univ,2000
    [71]燕永利,张宁生,屈撑囤,等.胶质液体泡沫(CLA)的微观结构研究[J].化学学报,2005,63(21):1944-1950
    [72]王运东,陈敏,徐丽莲,等.胶质液体和气体泡沫的制备及其性质的研究[J].清华大学学报,1998,38(6):42-45
    [73] Scarpello J T, Stuckey D C.The influence of system parameters on the stability of colliodal liquid aphrons[J].Sep Sci Technol,1996,31:1059-1074
    [74] Lamb S B, Stuckey D C . Factors influencing the stability of a novel enzyme immobilization support - colliodal liquid aphrons(CLAs)[J].J Chem Technol Biotechnol, 2000, 75:681-688
    [75] Lee D W, Hong W H, Lee T Y, et al. Influence of continuous aqueous phase on the preparation and stability of colloidal liquid aphrons [J].Sep Sci Technol,2002,37:1897-1909
    [76] Kim B S,Hong Y K,Hong W H. Effect of pH on the extracttion of negatively complexed copper from water using colliodal liquid aphrons [J]. Korean J Chem Eng, 2002,19:669-672
    [77]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2005
    [78]燕永利,屈撑囤,张宁生,等.单一非离子表面活性剂制备胶质气体泡沫的稳定性[J].高等学校化学学报,2008-l0,10(29): 2044-2048
    [79]刘德生,陈小榆.温度对泡沫稳定性的影响[A].中国海洋平台,2006,21(4):19-22
    [80]燕永利,张宁生,屈撑囤.胶质液体泡沫的研究进展及其在分离工程中的应用[J].日用化学工业,2005-12,6(35),384-387
    [81]张数义,阙国和,邓文安,等.重油悬浮床加氢反应机理研究[J].石油学报2009,25 (2):21-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700