基于介孔碳载体的高容量超级电容器复合电极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种新型的绿色储能器件,其储能性能介于二次电池和传统电容器之间。超级电容器的主要优点是充放电速率快、效率高;其主要缺点是能量密度低。如何提高超级电容器的能量密度已迫在眉睫。根据E=1/2CV2可知,提高超级电容器的能量密度可以通过两种有效的途径:一个是提高电极材料的电容值(C)。已进行的研究表明,高性能的超级电容器需要高性能的电极材料,电极材料不仅要求具有一般材料所具备的固体氧化还原性能,而且要求孔结构与比表面积的匹配性。基于此,本论文将具有多孔结构、大比表面积的介孔碳CMK-3作为载体,成功制备出Ni(OH)_2/CMK-3、Co(OH)_2/CMK-3和聚吡咯/CMK-3三种新型复合材料。三种新型复合材料拥有独特的多孔结构和大的有效比表面积,得到了高的比电容值;另一个提高超级电容器的能量密度的途径是增大电容器的工作电压(V)。为了进一步优化三种新型复合材料的电位窗口以提高能量密度,将复合材料与介孔碳组成混合型电容器。具体开展的研究内容如下:
     (1)将成功制备出的介孔碳CMK-3作为载体,利用简单的液相沉淀方法合成Ni(OH)2/CMK-3和Co(OH)2/CMK-3复合电极材料。利用XRD、SEM、TEM和BET等技术对电极材料的微观结构和形貌进行了分析。研究表明:Ni(OH)_2/CMK-3和Co(OH)2/CMK-3复合电极材料均具有大比表面积和分级多孔结构。复合材料的分级多孔结构分别存在微孔、介孔、大孔,三种不同尺度的孔结构。其中,大孔结构是由活性材料的纳米片堆砌而成,形成“离子缓冲水池”,为活性离子提供了快速进出电极表面的扩散通道;介孔结构是来自于CMK-3本身的孔结构,为活性离子扩散到电极的体相提供了导电通路,有利于降低离子扩散阻抗,使得离子扩散速率加快;此外,CMK-3介孔壁间的微孔结构可提供更大的双电层电容。复合材料中纳米片状结构具有较大的比表面积,有利于充分利用电极材料的电活性位发生氧化还原反应,使得该系列复合材料具有非常高的比电容值。在5mA/cm~2的电流密度下,Ni(OH)_2/CMK-3 (15wt%CMK-3)和Co(OH)2/CMK-3 (20wt%CMK-3)复合物分别具有2570和753F/g的超高比电容值。
     (2)在(1)的基础上,将制备出的CMK-3在不同浓度的HNO_3溶液中进行表面修饰,通过化学氧化聚合的方法,将修饰后的CMK-3(m-CMK-3)作为载体与导电聚合物聚吡咯(PPy)结合,制备得到PPy/m-CMK-3复合材料。SEM研究结果表明,PPy薄层在载体m-CMK-3的碳纤维束上包覆,该复合物结构疏松,呈三维多孔结构,孔隙率增加,渗透性改善,有利于促使电解液中的活性离子扩散到电极表面和体相当中,发生氧化还原反应,产生大的法拉第赝电容。m-CMK-3的含量为18 wt%时,PPy/m-CMK-3复合材料比容量高达427 F/g。m-CMK-3的三维多孔结构、大比表面积和表面活性在优化PPy/m-CMK-3复合材料的结构上起了重要作用,使活性物质PPy更分散,提高了PPy的利用率。此外,良导体m-CMK-3载体会使得PPy/m-CMK-3复合电极材料的电阻系数减小,进一步提高了电极的大功率特性和电化学循环稳定性。
     (3)介孔碳CMK-3在浓HNO_3溶液中进行表面修饰,表面含氧官能团对CMK-3的比电容有明显提升作用,由145F/g增加到200 F/g。引入含氧官能团的CMK-3更适合于高功率超级电容器应用。考虑到金属氧化物和导电聚合物电位窗口均较窄,其功率特性尚需进一步提高。结合CMK-3材料自身优良的导电特性,提出以介孔碳基纳米复合物为正极,表面修饰过的介孔碳为负极组装混合型超级电容器。经过测试,基于Ni(OH)2/CMK-3、Co(OH)2/CMK-3和PPy/m-CMK-3复合电极的混合电容器的电位窗口得到大幅度的提高,三种电容器在5mA的充放电电流下,其比容量分别为92.5F/g、122F/g和57F/g。电化学性能的改善得益于以较大比表面积和适当孔径分布的CMK-3为负极,可以促使纳米复合物在较为宽的电位窗口内通畅地进行法拉第反应,维持其优异的电容性能。另一方面,电位窗口的提高,极大程度上改善电容器的功率密度和能量密度,尤其在较大的电流密度下更有优势。此外,三种混合电容器的都有具有优越的循环稳定性,1000次循环后比电容量均保持在90%以上。
Supercapacitors have been recognized as unique energy storage devices which can fill the gap between conventional dielectric capacitors and batteries. It has the advantages such as quick charge-discharge ability and high charge-discharge efficiency. Meanwhile its defects such as low energy density can not be ignored. Therefore it is urgent to study the way of improving the energy density of supercapacitors. According to E=1/2CV~2, there are two methods that can improve the energy density effectively: One is to improve the specific capacitance of electrode materials. Studies on supercapacitors are mainly focused on the preparation of high performance electrode material. The electrode material must show not only the redox characteristic that is not possessed by general bulk material, but also the characteristic matching of the pore structure and the surface area. In this dissertation, the mesoporous carbon CMK-3 is used as the support materials, which yields mesoporous structure and large specific surface area. We have proposed a new strategy to synthesize a series of CMK-3-based nanocomposite, such as Ni(OH)_2/CMK-3, Co(OH)_2/CMK-3 and PPy/CMK-3 nanocomposite. The active materials with porous structure and large surface area on the surface of CMK-3 support can increase the utilization of active materials greatly, which could be attributed to its structure that allows the active material to be readily accessible for electrochemical reactions. Furthermore, the nano-size reduces the distance within the active materials over which the electrolyte must transport ions. The other of enhancing the energy density is to improve the cell potential of hydrid capacitor. In order to improve the power and energy performances, three new composite electrodes are made to be applied in hydrid supercapacitor. The main studies are as follows:
     (1) Mesoporous carbon CMK-3s are successfully synthesized by using hard template method. We have proposed a new strategy to synthesize a series of CMK-3-based metal hydroxides nanocomposite (Ni(OH)2/CMK-3 and Co(OH)_2/CMK-3), which uses the CMK-3 as the support, and have applied these materials in the fields of supercapacitors. The microstructures and morphologies of these materials were investigated by XRD、SEM、TEM and BET measurements. Results have shown both Ni(OH)_2/CMK-3 and Co(OH)_2/CMK-3 nanocomposite yield large specific surface area and hierarchically porous structure. There are three types of pores with different nanoscales in both of composites. They are micropore, mesopore and macropore. In the composite, macropore formed by interconnected nickel hydroxide nanoflakes would provide a fast diffusion channel for electrolyte and act as the ion-buffering reservoirs to reduce the diffusion distances to the interior surfaces. Meanwhile, the mesoporous structure, mainly originated from CMK-3 mesopore wall, can provide low-resistant pathways for the ions through the porous structure, as well as a shorter diffusion route because of the ordered mesoporous channels. In addition, the micropores located within the mesopore wall are sopposed to be most efficient in a double-layered formation. The large specific surface area of the composite is very helpful for making full use of the electroactive sites for the faradic reactions, which can also contribute to the excellent capacitive characteristics. For example, the nanocomposite of Ni(OH)_2/CMK-3 (15wt% CMK-3) and Co(OH)_2/CMK-3(20wt% CMK-3) shows the specific capacitance of 2570 F/g and 753 F/g under a current density of 5mA/cm~2, respectively. The strategy has revealed great potential of the CMK-3-based nanocomposite materials, and obtained the best electrochemical capacitive values of supercapacitors.
     (2) Based on the results (1), chemically modified CMK-3 is prepared by wet-oxidative method in HNO_3 solution with different concentrations. A novel PPy/m-CMK-3 nanocomposite is successfully prepared by in-situ chemical oxidative polymerization. The thin layer of PPy on m-CMK-3 with large space between ordered nanowires can be effective to obtain fully reversible and fast redox behavior, which contribute to the pseudo-capacititance. Electrochemical tests show that m-CMK-3/PPy nanocomposite with 82wt% PPy loading electrode reaches the maximum SC of 427 F/g under a current density of 5mA/cm~2. As the support of m-CMK-3, its unique porous structure, large specific surface area and surface activity have played an important role in optimizing the structure of PPy/m-CMK-3 nanocomposite, making active materials more dispersed as well as improving the availability of PPy. In addition, the introduction of m-CMK-3 makes the composite have higher conductivity, lower charge-transfer resistance, more active sites for faradaic reaction better rate capability, and better cycle performance.
     (3) After chemically modified CMK-3 in HNO_3 solution, the surface oxide groups could enhance the specific capacitance of CMK-3, whose specific capacitance is up to 200 F/g from 145 F/g. Mesoporous carbons introduced oxygen functional groups by oxidation treatment were more suitable for the application of high power density supercapacitor. In view of the low window potential of active material (Ni(OH)_2, Co(OH)_2, PPy), the power density is hard to increase, which may limit the applications in the energy storage fields. Combined with the mesoporous carbon CMK-3 of good characteristics, a hybrid capacitor has been designed, using CMK-3-based nanocomposite and modified-CMK-3 (m-CMK-3) as positive and negative electrode, respectively. For example, as the Ni(OH)_2/CMK-3, Co(OH)_2/CMK-3 nanocomposite and PPy/m-CMK-3 composite electrode, results have shown that the asymmetric supercapacitor has excellent capacitance of 92.5F/g, 122F/g and 57F/g, respectively. The corresponding potential window has increased from 0.4 to 1.6V. All these profit from using the CMK-3 as the negative electrode materials with large surface and proper pore distribution, which ensures that the CMK-3-based nanocomposite proceed with the faradic reaction in the larger applied potential range. The hybrid supercapacitor exhibits improved power and energy performances by the increased potential window, particularly in the larger current density. Furthermore, the CMK-3-based nanocomposite and m-CMK-3 hybrid capacitor could be produced quickly and it possessed high charge-discharge efficiency and good cycle performance.
引文
[1] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?. Chemical Reviews,2004,104(10):4245-4269
    [2] Conway B E. Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York, 1999,1-200
    [3] Faggioli E, Rena P, V Danel, et al. Supercapacitors for the energy management of electric vehicle. Journal of Power Sources,1999,84(2):261-269
    [4] Bonnefoi L, Simon P, Fauvarque J F, et al. Electrode compositions for carbon power supercapacitors. Journal of Power Sources,1999,80(1-2):149-155
    [5] Pell W G, Conway B E, Adams W A, et al. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid HEV applications. Journal of Power Sources,1999, 80(1-2):134-141
    [6] Gutmann G. Hybrid electric vehicles and electrochemical storage systems-a technology push-pill couple. Journal of Power Sources,1999,84(2):275-279
    [7] Lam L T, Newnham R H, Ozgun H, et al. Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles. Journal of Power Sources,2000,88(1):92-97
    [8]张治安,邓梅根,胡永达,等.电化学电容器的特点及应用.电子元件与材料,2003,22(11):1-5
    [9]张琦,王金全.超级电容器及应用探讨.电气技术,2007,8:67-70.
    [10]周强,王金全,杨波.超级电容器:性能优越的储能器件.电气技术,2006,6:64-68
    [11] Burke A F. Ultracapacitors: Why, how and where is the technology. Journal of Power Sources,2000,91(1):37-50
    [12] Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letter,2006,6(12):2690-2695
    [13] Becker J H. U.S.Patent 2800616(to General Electric),1957
    [14] Boos D I. U.S.Patent 3 536 963(to Standard Oil,SOHIO),1970
    [15] Conwey B E. Transition from“Supercapacitor”to“Battery”Behavior in Electrochemical Energy Storage. Journal of the Electrochemical Society,1991,138(6):1539-1548
    [16] Bard A J,Faulkner L R(谷林瑛等译).电化学原理方法及应用.北京:化学工业出版社,1986,373-400
    [17]李荻.电化学原理.北京:北京航空航天大学出版社,1999,59-60
    [18]查全性.电极过程动力学导论.北京:科学出版社,2002,33-34
    [19]唐致远,徐国祥.电子导电聚合物在电化学电容器中的应用.化工进展,2002, 21(9):652-655
    [20]朱磊,吴伯荣,陈晖等.超级电容器研究及其应用.稀有金属,2003,27(3):385-390
    [21]李荐,钟晖,钟海云等,超级电容器应用设计.电源技术,2003,26(8):3883-3885
    [22] Halpin S M, Spyker R L, Nelms R M, et al. Application of double-layer capacitor technology to static condensers for distribution system voltage control. IEEE Transactions on Power Systems,1996,11(4):1899-1904
    [23] Oxley J E. Proceedings of the 34th international power sources symposium. New Jersey: JES Press, 1991:346-350
    [24] Tanahashi I, Yoshida A, Nishino A. Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors. Carbon,1990,28(4):477-482
    [25] Yoshida A, Tanahashi I, Nishino A. Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon,1990,28(5):611-615
    [26] Xu B, Wu F, Chen S, et al. Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochimica Acta,2007,52(131):4595-4598
    [27] Lee J G, Kim J Y, Kim S H. Effects of microporosity on the specific capacitance of polyacrylonitrile-based activated carbon fiber. Journal of Power Sources, 2006,160(2):1495-1500
    [28] Hsieh C T, Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon,2002,40(5):667-674
    [29] Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. Journal of Power Sources,2005, 142(1-2):382-388
    [30] Tanahashi I, Yoshida A, Nishino A. Electrochemical characterization of activatedcarbon-fiber cloth polarizable electrodes for electric double-layer capacitors. Journal of the Electrochemical Society,1990,137(10):3052-3057
    [31] Miura K, Nakagawa H, Okamoto H. Production of high density activated carbonfiber by a hot briquetting method. Carbon,2000,38(1):119-125
    [32] Shi H. Activated carbons and double layer capacitance. Electrochimica Acta,1994,41(10):1633-1639
    [33] Chmiola J, Yushin G, Gogotsi Y , et a1. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science,2006,313:1760-1763
    [34] Nakagawa H, Shudo A, Miura K. High capacity electric double layer capacitor with high density activated carbon fiber electrodes. Journal of Electrochemical Society,2000,147(1):38-42
    [35] Tanahashi I, Yoshida A, Nishino A. Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors. Carbon,1990,28(4):477-482
    [36]吴海芳,胡中华,活性碳纤维制备双电层电容器.炭素技术,2004,23(1):1-3
    [37] Toyeda M, Tani Y, Soneda Y. Exfoliated carbon fibers as all electrode for electric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte. Carbon,2004,42(2):2833-2837
    [38]程祥珍,肖加余,谢征芳等,活性炭纤维研究与应用进展.材料科学与工程学报,2003,21(2):283-288
    [39] Merino C, Soto E, Vilaplana-Ortego E. Carbon nanofibers and activated carbon nanofibers as electrodes in supercapacitor. Carbon,2005,43(3):551-557
    [40]侯朝辉,李新海,何则强,等.炭凝胶的制备及其电化学电容性能.中南大学学报(自然科学版),2004,34(4):581-586
    [41]孟庆函,刘玲,宋怀河,等炭气凝胶为电极的超级电容器的研究.功能材料,2004,3(4):457-459
    [42]蒋伟阳,孙颖,唐永建,等.碳气凝胶作为电双层电容器电极材料的研究.高电压技术,1997,23(1):95-96
    [43] Mayr S T, Pekala R W, Kaschimitter J L. The aerocapacitor: an electrochemical double-layer-energy-storage device. Journal of the Electrochemical Society, 1993,140(2):446-451
    [44] Iijima S. Helical microtubules of graphic carbon. Nature,1991,354:56-62
    [45] Niu C, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon namotube electrodes. Applied Physics Letters, 1997,70(11):1480-1482
    [46]马仁志,魏秉庆,许才录,等,基于纳米炭管的超级电容器,中国科学(E),2000,84(7):1186-1188
    [47]马仁志,魏秉庆,许才录,等,应用于超级电容器的纳米炭管电极的几个特点,清华大学学报(自然科学版),2000,40(8):7-10
    [48] Frackowiak E, Metenier K, Bertagna V et al. Supercapacitor electrodes from multiwailed carbon nanotubes. Applied Physics Letters,2000,77(15):2421-2423
    [49] Dash R, Chmiola J, Yushin G, et a1. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon,2006,44(12):2489-2497
    [50] Prabaharan S R S, Vimala R, Zainal Z, Nanostructured mesoporous carbon as electrodes for suprecapacitors. Journal of Power Sources,2006,161(1):730-736
    [51] Chmiola J, Yushin Q, Dash R, et al. Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources,2006,158(1):765-766
    [52] Wu F C, Tseng R L, Hu C C, et al. The capacitive characteristics of activated carbons-comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance. Journal of Power Source,2006,159(2):1532-1542
    [53] Hulienva D, Kodama M, Hatori H. Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chemistry of Materials,2006,18(9):2318-2326
    [54] Liu C G,Fang H T, Li E, et al. Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors. Journal of Power source,2006,160(1):758-761
    [55] Jurewicz K, Babd K, Pietrzak R, et a1. Capacitance properties of multi-walled nanotubes modified by activation and ammoxidation. Carbon,2006,44(12):2368-2375
    [56] Frackowiak E, Bdguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon,2001,44(12):937-950
    [57] Softer A, Folman M. The electrical double layer of high surface porous carbon electrode. Journal of Electroanalytical Chemistry,1972,38(1):25-43
    [58] Komsh J, Softer A. Stereo. Seleetivity in ion electroadsorption and in double-layer charging of molecular sieve carbon electrodes. Journal of Electroanalytical Chemistry,1983,147(1-2):223-234
    [59] Shi H. Activated carbons and double layer capacitance. Electrochimica Acta,1996,41(10):1633-1639
    [60] Qu D Y, Shi H. Studies of activated carbons used in double-layer capacitors. Journal of Power Source,1998,74(1):99-107
    [61] Sarangapani S, Tilak B V, Chen C P, et al. Materials for electrochemical capacitors. Journal of the Electrochemical Society,1996,143(11):3791-3799
    [62] Kim K, Chu X. Carbon for supercapacitors in electrochemical capacitors. The Electrochemical Society Proceedings Series,Pennington,1996,135:121
    [63] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science,2006,313(5794):1760-1763
    [64] Kim C H, Pyun S I, Shin H C. Kinetics of double-layer charging/discharging of activated carbon electrodes-Role of surface acidic functional groups. Journal of the Electrochemical Society,2002,149(2):A93-A98
    [65] Nakamura M, Nakanishi M, Yamamoto K, Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors. Journal of Power Sources,1996,60(2):225-231
    [66] Momma T, Liu X, Osaka T, et al. Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor. Journal of Power Sources,1996,60(2):249-253
    [67] Kim C H, Pyun S I, Shin H C. Kinetics of double-layer charging/discharging of activated carbon electrodes-Role of surface acidic functional groups. Journal of the Electrochemical Society,2002,149(2):A93-A98
    [68] Ishikawa M, Sakamoto A, Morita M, et a1. Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon pcrlormance of electric double layer capacitance. Journal of Power Sources,1996,60(2):233-238
    [69] Hsieh C T, Teng H. Influence of oxygen treatment on electric double-1ayer capacitance of activated carbon fabrics. Carbon,2002,40(5):667-674
    [70] Qu D Y. Studies of the activated carbons used in double-layer supercapacitors. Journal of Power Sources,2002,109(2):403-411
    [71] Jurewicz K, Babel K, Ziolkowski A, et a1. Alnmoxidation of active carbons for improvement of supercapacitor characteristics. Electrochimica Acta,2003,48(11):1491-1498
    [72] Raiistrick I D. The electrochemistry of semiconductors and electronics processes anddevices. New Jersey:Luduing FNoyes,1992
    [73] Zheng J P, Jow T R. High energy and high power density electrochemical capacitor. Journal of Power Sources,1996,62(2):155-159
    [74] Chang K H, Hu C C, Chou Y C. Textural and pseudocapacitive characteristics of sol–gel derived RuO2·xH2O: Hydrothermal annealing vs. annealing in air. Electrochimica Acta,2009,54(3):978-983
    [75] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society,1995,142(8):2699-2703
    [76] Yuan C Z, Chen L, Gao B, et al. Synthesis and utilization of RuO2·xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. Journal of Materials Chemistry,2009,19(2):246-252
    [77] Qin X, Durbach S, Wu G T. Electrochemical characterization on RuO2·xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors. Carbon,2004,42(2):451-453
    [78] Miller J M, Dunn B. Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir,1999,15(3):799-806
    [79] Hu C C, Chen W C. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors. Electrochimica Acta,2004,49(21):3469-3477
    [80] Takasu Y, Nakamura T, Murakami Y. Dip-coated Ru-Mo-O/Ti electrodes for electrochemical capacitors. Chemistry Letters,1998,27(12):1215-1216
    [81] Kameyama K, Shohji S, Onoue S, et al. Preparation of ultrafine RuO2-TiO2 binary oxide particles by a sol-gel process. Journal of the Electrochemical Society,1993,140(4):1034-1037
    [82] Takasu Y, Nakamura T, Ohkawauchi H, et al. Dip-coated Ru-V oxide electrodes for electrochemical capacitors. Journal of the Electrochemical Society,1997,144(8):2601-2606
    [83] Murakam Y, Ito M, Kaji H, et al. Surface characterization of ruthenium-tin oxide electrodes. Applied Surface Science,1997,121-122(2):314-318
    [84] Gupta V, Kusahara T, Toyama H, et al. Potentiostatically deposited nanostructuredα-Co(OH)2: A high performance electrode material for redox-capacitors. Electrochemistry Communications,2007,9(9):2315-2319
    [85] Prabaharan S R S, Vimala R, Zainal Z, et al. Nanostructured mesoporous carbon as electrodes for suprecapacitors. Journal of Power Sources,2006,161(1):730-736
    [86] Takasu Y, Murakami Y. Design of oxide electrodes with large surface area. Electrochimica Acta,2000,45(25-26):4135-4141
    [87] Sugimoto W, Iwata H, Yasunaga Y, et al. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage.Angewandte Chemie International Edition,2003,42(34):4092-4096
    [88] Shinomiya T, Gupta V, Miura N. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochimica Acta,2006,51(21):4412-4419
    [89] Broughton J N, Brett M J. Investigation of thin sputtered Mn films for electrochemical capacitors. Electrochemica Acta,2004,49(25),4439-4446
    [90] Djurfors B, Broughton J N, Brett M J, et al. Electrochemical oxidation of Mn/MnO films: formation of electrochemical capacitor. Acta Materialia,2005,53(4):957-965
    [91] Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. Journal of Solid State Chemistry,1999,144(1):220-223
    [92] Wang Y G, Yu L, Xia Y Y. Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2/carbon nanotube composites and activated carbon. Journal of the Electrochemical Society,2006,153(4):A743-A748
    [93] Liu K C, Anderson M A. Porous nickel oxide/nickel film for electrochemical capacitors. Journal of the Electrochemical Society,1996,143(1):124-131
    [94] Zhang F B, Zhou Y K, Li H L. Nanocrystalline NiO as an electrode material for electrochemical capacitor. Materials Chemistry and Physics,2004,83(2-3):260-264
    [95] Wang Y G, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesoporous carbons synthesized by template SBA-15. Electrochlmica Acta,2006,51(16):3223-3227
    [96] Yuan C Z, Zhang X G, Su L H, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry,2009,19(2):5772-5777
    [97]原长洲,张校刚,高博,多孔Co(OH)2的制备及其超电容特性.应用化学,2006,23(3):456-458
    [98] Cao L, Lu M, Li H L. Preparation of mesoporous nanocrystalline Co3O4 and its application of porosity to the formation of electrochemical capacitance. Journal of the Electrochemical Society,2005,152(5):A871-A875
    [99] Cao L, Xu F, Liang Y Y, , et al. Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Advanced Materials,2004,16(20):1853-1857
    [100]王兴磊,何宽新,张校刚.层状的Co3O4制备及其电化学电容行为.无机材料学报,2006,22(6):1019-1022
    [101] Xue T, Xu C L, Zhao D D, et al. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. Journal of Power Sources,2007,164(2):953-958
    [102] Pang S C, Anderson M A, Chapman T W. Novel materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society,2000,147(2):444-450
    [103] Zhang H, Cao G P, Wang Z Y, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Letter,2008,8(9):2664–2668
    [104] Xu C L, Zhao Y Q, Yang G W. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chemical Communications,2009,7575-7577
    [105] Prasad K R, Miura N. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochemistry Communications,2004,6(8):849-852
    [106] Wu N L. Nonocrystalline oxide supercapacitors. Materials Chemistry and Physics,2002,75(1-3):6-11
    [107] Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in KCl aqueous solution. Journal of Solid State Chemistry,1999,148(1):81-84
    [108] Su L H, Zhang X G. Effect of carbon entrapped in Co-Al double oxides on structural restacking and electrochemical performances. Journal of Power Sources,2007,172(2):999-1006
    [109] Su L H, Zhang X G, Yuan C Z, et a1. Symmetric self-hybrid supercapacitor consisting of multiwall carbon nanotubes and Co-Al layered double hydroxides. Journal of the Electrochemical Society,2008,155(2):A110-A114
    [110] Kuo S L, Wu N L. Electrochemical capacitor of MnFe2O4 with NaCl electrolyte. Electrochemical and Solid-State Letter,2005,8(10):A495-A499
    [111] Kuo S L, Lee J F, Wua N L. Study on pseudocapacitance mechanism of aqueous MnFe2O4 supercapacitor. Journal of the Electrochemical Society,2007,154(1):A34-A38
    [112] Tao F, Zhao Y Q, Zhang G Q, et a1. Electrochemical characterization on cobaltsulfide for electrochemical supercapacitors. Electrochemistry Communications,2007,9(6):1282-1287
    [113] Choi D W, Kumta P N, et al. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. Journal of the American Ceramic Society,2007,90(10):3113-3120
    [114] Hunter T B, Tyler P S, Smyrl W H, et a1. Impedance analysis of poly(vinylferrocene) films the dependence of diffusional charge transport and exchange current density on polymeroxidation state. Journal of the Electrochemical Society,1987,134(9):2198-2204
    [115] Marina M, Catia A, Francessa S.Polymer-based supercapacitor. Journal of Power Sources,2001,97-98(1):812-815
    [116] Laforgue A,Simon P, Sarrazin C, et a1. Polythiophene-based supercapacitors. Journal of Power Sources,1999,80(1-2):142-148
    [117] Hu C C, Lin J Y. Effects of the loading and polymerzation temperature on the capacitive performance of polyaniline in NaNO3. Electrochimica Acta,2002,47(25):4055-4067
    [118]王晓峰,孔祥华,谢晶莹,等.高分子聚合物超级电容器研究.电子元件与材料,2001,20(5):24-27
    [119] Liang L, Liu J, Windisch C F, et a1. Direct assembly of large arrays of oriented conducting polymer nanowires. Angewandte Chemie International Edition,2002,41(19),3665-3668
    [120] Gupta V, Miura N. Electrochemically deposited polyaniline nanowire’s network. Electrochemical and Solid-State Letters,2005,8(12):A630-A632
    [121] Wang Y G, Li H Q, Xia Y Y. Ordered whisker-Like polyaniline grown on the surface of mesoporous carbon and its elechochemical capacitance performance. Advanced Materials,2006,18(19):2619-2623
    [122] Zhang X, Ji L Y, Zhang S C. Synthesis of a novel polyaniline-intercalated layered oxide nanocomposite as electrode material for electrochemical capacitor. Journal of Power Sources,2007,173(2):1017-1023
    [123] Zhang H, Cao G P, Wang W K, et a1. Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochimica Acta,2009,54(4):1153-1159
    [124] Manual of symbols and terminology. Pure and Applied Chemistry,1972,31(4):578-599
    [125] Zhao D, Feng J, Huo Q, et al. Nonionic triblock and star diblock copolymer andoligomeric surfactant synthese of highly ordered, hydrothermally stable, mesoporous silica strutures. Science, 1998,279:548-552
    [126] Kónya Z, Puntes V F, Kiricsi I, et al. Synthetic insertion of gold nanoparticles into mesoporous silica. Chemistry of Materials,2003,15(6):1242–1248
    [127] Zhao J, Gao F, Fu Y, et a1. Biomolecule separation using 1arge pore mesoporous SBA-15s a substrate in high performance liquid chromatography. Chemical Communications,2002,7:752-753
    [128] Deere J, Magner E, Wall J G, et a1. Adsorption and activity of cytochromec on mesoporous silicates. Chemical Communications,2001,5:465-465
    [129] Deere J, Magner E, Wall J G, et a1. Mechanistic and structural features of protein adsorption onto mesoporous silicates. Journal of Physical Chemistry B,2002,106(29):7340-7347
    [130] Lei C, Shin Y, Liu J, et a1. Entrapping enzyme in a functionalized nanoporous support. Journal of the American Chemical Society,2002,124(38):11242-11243
    [131]陈蔚萍,王岩,金振声,等.NH3处理温度对N掺杂P25-TiO2的可见光催化活性的影响.中国科学(B):化学,2009,39(5):432-439
    [132] Wang T, Liu X, Zhao D, et a1. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon. Chemical Physics Letter,2004,389(4-6):327-331
    [133] Kruk M, Jaroniec M, Ryoo R. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. Journal of Physical Chemistry B,2000,104(33):7960-7968
    [134] Ryoo R, Joo S H, Kruk M, et a1. Ordered mesoporous carbons. Advanced Materials,2001,13(9):677-681
    [135] Hun J, Joo S H, Ryoo R, et a1. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society,2000,122(43):10712-10713
    [136] Kruk M, Jaroniec M, Kim T W. Synthesis and characterization of hexagonally ordered carbon nanopipes. Chemistry of Materials,2004,15(14):2815-2823
    [137] Kleirz F, Choi S H, Ryoo R. Cubic Ia3d 1arge mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications,2003,17:2136-2137
    [138] Ryoo R, Joo S H, Jun S J. Synthesis template-mediated structural transformationof highly carbon molecular sieves. Journal of Physical Chemistry B,1999,103(37):7743-7746
    [139] Kotz R, Carlen M. Principles and applications of electrochemical capacitors. E1ectrochemica Acta,2000,45(15-16):2483-2498
    [140] Liu H Y, Wang K P, Teng H. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation. Carbon,2005,43(3):559-566
    [141] Lee J, Yoon S, Hyeon T. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications,1999,21:2177-2178
    [142]侯朝辉,李新海,刘恩辉,等.同步合成模板炭化法制备双电层电容器电极用中孔炭材料的研究.新型炭材料,2004,19(1):11-15
    [143] Zhou H, Zhu S, Hibino M, et a1. E1ectrochemical capacitance of self-ordered mesoporous carbon. Journal of Power Sources,2003,122(2):219-223
    [144] Rajendra P K, Munichandraiah N. Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance polyaniline coated stainless-steel electrodes. Journal of Power Sources,2002,112(2):443-451
    [145] Chen W, Wen T. Electrochemical and capacitive properties of polyaniline-implated porous carbon electrode for supercapacitors. Journal of Power Sources,2003,117(1-2):273-282
    [146] Wu M, Snook G A, Gupta V, et a1. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry,2005,15:2297-2303
    [147] Jang J, Bae J, Choi M, et a1. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon,2005,43(13):2730-2736
    [148] Grigoriants I, Sominski L, Li H, et al. The use of tin-decorated mesoporous carbon as all anode material for rechargeable lithium batteries. Chemical Communications,2005,7:921-923
    [149] Dong X, Shen W, Gu J, et a1. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. Journal of Physical Chemistry B,2006,110(12):6015-6019
    [150] Lee L, Jin S, Hwang Y, et a1. Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon,2005,43(12):2536-2543
    [151] Liu R, Ren Y , Shi Y, et a1. Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titanic frameworks from organic-inorganic-amphiphilic coassembly. Chemistry of Materials,2008,20(3):1140-l146
    [152] Wang D W, Li F, Liy M, et a1. Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation. New Carbon Materials,2007,22(4):307-314
    [153]傅献彩,沈文霞,姚天扬,等.物理化学(下) .北京:高等教育出版社,2006,356-375
    [154]史美伦.交流阻抗谱原理及应用.北京:国防工业出版社,2001,1-100
    [155] Fuertes A B, Pico E, Rojo J M. Influence of pore structure on electric double-layer capacitance of template mesoporous carbon. Journal of Power Sources,2004,133(2):323-336
    [156] Liu X, Yu L. Influence of nanosized Ni(OH)2 addition on the electrochemical performance of nickel hydroxide electrode. Journal of Power Sources,2004,128(2):326-330
    [157] Ohms D, Kohlhase M, Schadlich G. New developments on high power alkaline batteries for industrial applications. Journal of Power Sources,2002,105(2):127-133
    [158] Zhao D D, Bao S J, Zhou W J, et a1. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochemistry Communications,2007,9(5):869-874
    [159] Bish D, Livingstore A. The crystal chemistry and paragenesis of hones site and hydrohonessite: the sulphate analogues of reevesite. Mineralogical Society,1981,44,339-343
    [160] Oliva P, Leonardi, J, Laurent J F, et a1. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources,1982,8(2):229-255
    [161]解玉龙.电化学电容器与Ni/MH电池电极材料的制备及性能研究:[西北师范大学硕士学位论文].兰州:西北师范大学,2009,42-53
    [162] Xu Z P, Zeng H C. Thermal evolution of cobal hydroxides: acomparative study of their various structural phases. Journal of Materials Chemistry,1998,8(11):2499-2506
    [163]杨杰,沈曾民,熊涛.聚苯胺原位包覆碳纳米管材料的制备及性能.新型炭材料,2003,18(2):95-100
    [164]沈广霞,庄燕燕,林昌健.碳纳米管-聚合物复合材料的研究进展.化学进展,2004,16(1):21-25
    [165]漆海波,周啸,姜翠玲,等.碳纳米管/聚吡咯复合材料在超电容器中的应用.电子元件与材料,2002,21(12):30-32
    [166] Zhou Y K, He B L, Zhou W J, et al. Preparation and electrochemistry of SWNT/PANI composite films for electrochemical capacitors. Journal of the Electrochemical Society,2004,151(7):A1052-A1057
    [167] LaforgueA, Simon P, Fauvarque J F, et al. Hybrid supercapacitors based on activated carbons and conducting polymers. Journal of the Electrochemical Society,2001,148(10):A1130-A1134
    [168] Wang Y G, Xia Y Y. A new concept hybrid electrochemical supercapacitor: carbon/LiMn2O4 aqueous system. Electrochemistry Communications,2005,7(11):1138-1142
    [169] Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. Journal of Power Sources,2002,111(1):185-190
    [170] Khomenko V, Raymundo-Piňero E, Beguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. Journal of Power Sources,2006,153(1):183-190
    [171] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature,2001,412:169-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700