含硫氟代可自交联聚酰亚胺光波导材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用设计合成的单体2,2’-二三氟甲基-4,4’-二胺基二苯基硫醚与等摩尔量的二酐单体进行反应。合成的新型聚酰亚胺在通常的溶剂中具有良好的溶解性。它们具有良好的热性能:玻璃化转变温度在221-275℃之间;5%热失重温度在531℃以上。这些含硫氟代聚酰亚胺在加热的情况下可以发生交联反应,交联的机理是硫-硫键交联。交联后的聚合物显示了更加良好的热稳定性;另外这些聚合物交联后在常见的溶剂中不溶解,这也解决了器件加工时的层间互溶问题。聚合物膜具有良好的光学透明性,另外它们在1310nm和1550nm处的光通讯窗口具有较小的吸收。通过控制聚合物中氟原子的含量我们可以控制聚合物的折光指数在1.5626-1.638之间。这些聚合物还具有较小的吸水率,约为0.8%左右。我们还利用所合成的聚合物进行波导器件的制作,制成多种波导器件例如山脊形波导、阵列式波导光栅(AWG)等,由红外摄像机可监测到波导的近场光斑。证明所合成聚合物可用作光波导材料。
The continual trend toward high transmission speed, data capacity, and data density in integrated circuits demands a solution to the bottleneck resulting from the limited data rate of electrical interconnects. One approach to this problem is the use of optical interconnection operating with polymer waveguides. Polymer optical waveguides have attracted considerable attention for their possible application as optical components in optical interconnects and optical communication systems because of their potential ease of manufacture at low temperature, and the low cost of processing.
     The key issues on the polymer waveguide materials include four aspects: (1) low propagation losses at the optical communication wavelengths, (2) high thermal stability to provide compatibility with high-performance electronic device fabrication, (3) low birefringence in optical materials is an important issue which can reduce the polarization dependent loss (PDL) (4) controllability of refractive index for the easy control of the waveguide dimension to match the mode size with fibers, and good adhesion to the silicon substrate. However, hydrocarbon polymers have a high optical loss in the infrared communication region due to carbon–hydrogen (C–H) bondvibrational absorption. By modifying a molecule via the substitution of fluorine or deuterium for hydrogen in the C–H greatly reduces optical loss. Many organic polymers such as deuterated or fluorinated poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(carbonate) (PC) are used as materials for a variety of optical components. However, these polymers do not have sufficient thermal stability at high temperature, for the fabrication temperature of the optical devices is 260 ?C, and the short time temperature is up to 400 ?C. Polyimides are more accessible than these polymers because of their molecular structure. In addition, they have good thermooxidative stability, outstanding mechanical properties, fire resistance and so on. However, conventional polyimide materials possess bad solubility, high moisture adsorption and relatively high dielectric constant, which limit their availability in many field. Many soluble fluorinated polyimides have been synthesized in recent years. Further sul-containing aromatic polymers have great thermal stability for the existence of 3d orbit sulfur atom.
     In this study, we introduced the sulfur atom to the famous fluorinated polyimide monomer 2,2’-bis-(trifluoromethyl)-4,4’-diaminobiphenyl (TFDB), and hope the new material can keep the advantage of the famous polyimide. Novel sul-containing fluorinated polyimides have been synthesized by the reaction of 2,2’-bis-(trifluoromethyl)-4,4_-diaminodiphenyl sulfide (TFDAS) with 1,4-bis-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 2,2’-bis-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 4,4’-oxydiphthalicanhydride (ODPA) or 3,4,3’,4’-biphenyl-tetracarboxylic acid dianhydride (s-BPDA). The sulfide groups in polymers were introduced to improve adhesion to the Si substrates. The fluorinated polyimides, prepared by a one-step polycondensation procedure, have good solubility in many solvents, such as N-methyl-2-pyrrolidinone (NMP), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), cyclohexanone, tetrahydrofuran (THF) and m-cresol. The molecular weights (Mn’s) and polydispersities (Mn/Mw’s) of polyimides were in the range of 1.24×105 to 3.21×105 and 1.59–2.20, respectively. The polymers exhibit excellent thermal stabilities, with glass-transition temperatures (Tg) at 221–275 ?C and the 5% weight-loss temperature are above 531 ?C.
     The sul-containing fluorinated polyimides can be heated to crosslink. Considering the thermal decomposition, we choose the lower temperature (400 oC) as crosslinking temperature. The probable crosslinking reaction is the reaction between sulfur and sulfur after the polymer cured above a special temperature. After crosslinking, these polymers show higher thermal stability. Furthermore, these polymers are insoluble in common solvent, which can satisfy the need of the interbedded technology of the devices. The sulfide crosslinking will not introduce C–H bond compared to the other common crosslinking groups, thus it can decrease the C–H bond vibrational absorption and lower optical loss will be expected.
     The films of polymers have high optical transparency. The novel sul-containing fluorinated polyimides also have low absorption at both 1310 and 1550 nm wavelength windows. The reduction of the refractive indices of the polymers can attribute to the increasing of the fluorine and accretion of the free volume, so it can control the refractive indices of the polymers in the range of 1.5626–1.638 at 1550 nm. They also have a low water absorption rate about 0.8%. TheΔn less than 0.011 was measured in all the polymers. This result is lower (or the same) compared to the conventional fluorinated polyimides. The lowest birefringence of 0.0047 was measured for polyimide 2 film. This may be due to the existence of sulfur atoms and more CF3 groups which decreased the moleculer alignment. Rib-type optical waveguide device was fabricated using the fluorinated polyimides and the near-field mode pattern of the waveguide was demonstrated.
引文
1. Louay Eldada. Advances in telecom and datacom optical components. Opt. Eng., 2001, 40, 1165.
    2. Robert A. Norwood, Renyuan Gao, Jaya Sharma, and C. C. Teng. Sources of loss in single-mode polymer optical waveguides. Proc. SPIE., 2001, 4439, 19.
    3. S. Ermer, J. R. Reynolds, J. W. Perry, A. K.-Y. Jen, Z. Bao. Electrical, Optical, and Magnetic Properties of Organic Solid-State Materials V. Materials Research Society, Pittsburgh, PA 2000, 598
    4. Alan J. Heeger. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angew. Chem. Int. Ed., 2001, 40, 2591
    5. Takahashi H., Suzuki S. , Kato K. , Nishi I.. Arrayed-waveguide grating for wavelength divisionmulti/demultiplexer with nanometre resolution Electronics Letters, 1990, 26, 87
    6. Chen Wei, Xie Chu-Fang, Zhang Shan-Mou. Accurate pattern synthesis of parallel dipole arrays and itsapplication to unequal elements. Electronics Letters, 1988, 24, 386
    7. Tzong-Yow Tsai, Zhi-Cheng Lee, Yen-Cheng Fang and Ming-Hong Cha. A novel compact wavelength-division multiplexer using highly dispersive waveguide-to-waveguide coupling, Optics Communications, 2006, 263, 197
    8. Tsai TY, Lee ZC, Gan CS, Chen FS, Chen JR, Chen CC. A novelwavelength-division multiplexer using grating-assisted two-mode interference. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16, 2251
    9. Shin YW, Eknoyan O, Madsen CK, Taylor HF. Rapidly tunable optical add-drop multiplexer utilising relaxed beam splitters, ELECTRONICS LETTERS, 2007, 43, 1428
    10. Yupapin PP, Suwancharoen W. Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer. OPTICS COMMUNICATIONS, 2007, 280, 343
    11. Zhong S, Chen W, Yang XH, Chen YJ. Transparent optical path and crosstalk monitoring scheme for arrayed waveguide grating-based optical cross connect, 2000, 12, 1249
    12. Harada K, Shimizu K, Sugano N, Kudou T, Ozeki T. Optical path cross-connect system using matrix wavelength division multiplex scheme. IEICE TRANSACTIONS ON ELECTRONICS, 1999, E82C, 292
    13. Marston Taylor Bogert, Roemer Rex Renshaw. 4-AMINO-0-PHTHALIC ACID AND SOME OF ITS DERIVATIVES. J. Am. Chem. Soc.; 1908; 30; 1135.
    14. 杨阳。聚酰亚胺/SiO2-TiO2 杂化膜的制备与表征。哈尔滨理工大学硕士学位论文,1。
    15. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards, K. L. Olivier. Aromatic polypyromellitimides from aromatic polyamic acids, Journal of Polymer Science Part A: General Papers, 1965, 3, 1373
    16. 邱凤仙,周钰明,刘举正,张旭苹。聚酰亚胺/SiO_2 杂化材料的硅核磁共振波谱和电光性质的研究。感光科学与光化学,2006,24,55。
    17. 宋晓峰。聚酰亚胺的研究与进展。纤维复合材料,2007,3,33。
    18. K. Xie, S. Y. Zhang, J. G. Liu, M. H. He, S. Y. Yang. Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39, 2581
    19. K. Xie, J. G. Liu, H. W. Zhou, S. Y. Zhang, M. H. He and S. Y. Yang. Soluble fluoro-polyimides derived from 1,3-bis(4-amino-2-trifluoromethyl- phenoxy) benzene and dianhydrides. Polymer, 2001, 42, 7267.
    20. Cheng-Lin Chung, Chin-Ping Yang, Sheng-Huei Hsiao. Organosoluble and colorless fluorinated poly(ether imide)s from 1,2-bis(3,4-dicarboxyphenoxy)benzene dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 3092.
    21. Sheng-Huei Hsiao, Yu-Min Chang, Hwei-Wen Chen, Guey-Sheng Liou. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups, Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 4579.
    22. Jingjing Lin and Xiaodong Wang. Novel low-κ polyimide/mesoporous silica composite films: Preparation, microstructure, and properties, Polymer, 2007, 48, 318.
    23. T. T. Serafini, P. Delvigs, G. R. Lightsey. Thermally stable polyimides from solutions of monomeric reactants. Journal of Applied Polymer Science, 1972, 16, 905.
    24. Putthanarat, S; Tandon, GP; Schoeppner, GA. Influence of polishing time on thermo-oxidation characterization of isothermally aged PMR-15 resin.POLYMER DEGRADATION AND STABILITY, 2007, 92, 2110
    25. A. Walch, H. Lukas, A. Klimmek, W. Pusch. Structure and hyperfiltration properties of polyimide membranes. Journal of Polymer Science: Polymer Letters Edition, 1974, 12, 697.
    26. 刘金刚,何民辉,王丽芳,杨海霞,李彦峰,范琳,杨士勇。 含氟聚酰亚胺及其在微电子工业中的研究发展Ⅰ含氟单体及聚酰亚胺的合成,高分子通报,2003,3,1。
    27. Sterescu DM, Stamatialis DF, Wessling M. Boltorn-modified polyimide gas separation membranes. JOURNAL OF MEMBRANE SCIENCE, 2008, 310, 512.
    28. Islam MN, Zhou WL, Honda T, Tanaka K, Kita H, Okamoto K. Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides. JOURNAL OF MEMBRANE SCIENCE, 2005, 261, 17.
    29. de Abajo J, de la Campa JG, Lozano AE, Espeso J, Garcia C. Designing aromatic polyamides and polyimides for gas separation membranes. MACROMOLECULAR SYMPOSIA, 2003, 199, 293.
    30. Xiao, Youchang, Chung, Tai-Shung, Guan, Huai Ming, Guiver, Michael D., Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation. JOURNAL OF MEMBRANE SCIENCE, 2007, 302, 254.
    31. Kim IC, Kim JH, Lee KH, Tak TM. Preparation of soluble polyimides and ultrafiltration membrane performances. JOURNAL OF APPLIED POLYMER SCIENCE, 2000, 75, 1.
    32. Kim, IC; Park, KW; Tak, TM. Synthesis and characterization of solublepolyimides and its ultrafiltration membrane performances. JOURNAL OF APPLIED POLYMER SCIENCE, 1999, 73, 907.
    33. A. Iwama and Y. Kazuse. New polyimide ultrafiltration membranes for organic use. Journal of Membrane Science, 1982, 11, 297.
    34. Mohammad N. Sarbolouki. Properties of asymmetric polyimide ultrafiltration membranes. I. Pore size and morphology characterization. Journal of Applied Polymer Science, 1984, 29, 743.
    35. Mark W. Becker, Linda S. Sapochak, Rima Ghosen, Chengzeng Xu, Larry R. Dalton, Yongqiang Shi, William H. Steier, Alex K.-Y. Jen. Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore. Chem. Mater.; 1994; 6; 104.
    36. S. D. Bruck. Thermal degradation of an aromatic polypyromellitimide in air and vacuum III—Pyrolytic conversion into a semiconductor. Polymer, 1965, 6, 319.
    37. Takanobu Noguchi and Masaaki Hirooka, Toshihiro Ohnishi, Ichiki Murase. Preparation of graphite film by pyrolysis of polymers. Synthetic Metals, 1987, 18, 497.
    38. J. Davenas, X. L. Xu and G. Boiteux. New conducting and optical properties induced in polyimide by ion beam irradiation. Synthetic Metals, 1988, 24, 81.
    39. Mark W. Becker, Linda S. Sapochak, Rima Ghosen, Chengzeng Xu, Larry R. Dalton, Yongqiang Shi, William H. Steier, Alex K.-Y. Jen. Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore. Chem. Mater.. 1994, 6,104.
    40. Sui Y, Yin J, Hou ZJ, Zhu N, Lu JX, Liu YG, Zhu ZK, Wang ZG. A facile approach to prepare soluble side-chain polyimides for second-order nonlinear optics. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39, 2189.
    41. Chauvin J, Nakatani K, Delaire JA, Faure S, Mercier R, Sillion B. Subglass transition and relaxation of oriented chromophores in polyimides for second order nonlinear optics. SYNTHETIC METALS, 2000, 115, 245.
    42. Davey MH, Lee VY, Wu LM, Moylan CR, Volksen W, Knoesen A, Miller RD, Marks TJ. Ultrahigh-temperature polymers for second-order nonlinear optics. Synthesis and properties of robust, processable, chromophore-embedded polyimides. CHEMISTRY OF MATERIALS, 2000, 12, 1679.
    43. Liu YG, Sui Y, Yin J, Gao J, Zhu ZK, Huang DY, Wang ZG. Synthesis and characterization of side-chain polyimides for second-order nonlinear optics via a post-azo-coupling reaction. JOURNAL OF APPLIED POLYMER SCIENCE, 2000, 76, 290.
    44. Rumiko Hayase, Naoko Kihara, Naohiko Oyasato, Shigeru Matake, Masayuki Oba. Positive photosensitive polyimides using polyamic acid esters with phenol moieties. Journal of Applied Polymer Science, 1994, 51, 1971.
    45. Hasegawa, Masatoshi, Nakano, Jun, Miyazaki, Tatsuya, Tanaka, Yuma. Hydroxyamide-containing positive-type photosensitive polyimides. JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2007, 20, 175.
    46. Watanabe Y, Shibasaki Y, Ando S, Ueda M. New negative-type photosensitive alkaline-developable semi-aromatic polyimides with low dielectric constants based on poly(amic acid) from aromatic diamine containing adamantyl units and alicyclic dianhydrides, a cross-linker, and a photoacid generator. POLYMER JOURNAL, 2005, 37, 270.
    47. Miyagawa T, Fukushima T, Oyama T, Iijima T, Tomoi M. Photosensitive fluorinated polyimides with constant based on reaction development a low dielectric patterning. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41, 861.
    48. Lee, Yoon Jung, Kim, Yong Woon, Du Ha, Jae, Oh, Jae Min, Yi, Mi Hye. Synthesis and characterization of novel polyimides with 1-octadecyl side chains for liquid crystal alignment layers. POLYMERS FOR ADVANCED TECHNOLOGIES, 2007, 18, 226.
    49. Hahm, Suk Gyu, Lee, Seung Woo, Suh, Jinsuk, Chae, Boknam, Bin Kim, Seung, Lee, Seong Joon, Lee, Kyung Hoon, Jung, Jin Chul, Ree, Moonhor. Rubbed thin films of well-defined brush polyimides for flat-panel liquid crystal displays: Surface morphology, molecular orientation, and liquid crystal alignability. HIGH PERFORMANCE POLYMERS, 2006, 18, 549.
    50. Liu JG, Li ZX, Wu JT, Zhou HW, Wang FS, Yang SY. New liquid-crystal alignment agents based on fluorinated polyimides with trifluoromethyl-substituted benzene or diphenylether in the side chain. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40, 1583.
    51. Lee SJ, Ha CS, Lee JK. Syntheses and characteristics of polyimides for the applications to alignment film for liquid crystal display. JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 82, 2365.
    52. 王朋朋, 黄丽萍,王晓东,黄培。多苯氧基型聚酰亚胺的合成与表征。绝缘材料,2008,41,23。
    53. 黄培,耿洪斌,刘俊英,时钧,马志荣。长链聚酰亚胺的制备。与表征南京工业大学学报(自然科学版),2003,25,11。
    54. 陈志明,邵利。聚异丁烯丁二酰亚胺合成新工艺。高校化学工程学报,1999, 13,533。
    55. 李炳海,张淑萍,刘鑫业。由双(氯代酞酰亚胺)与双酚盐的亲核取代缩聚合成聚酰亚胺的研究。应用化学,1986,3,1。
    56. 李炳海。由双(氯代酞酰亚胺)与双酚盐的亲核取代缩聚合成聚酰亚胺的研究。应用化学。1985,2,94。
    57. 57.陈建升,左红军,赵伟栋,范琳,杨士勇。耐 316℃聚酰亚胺研究进展,宇航材料工艺,2006,5,1.
    58. 王海平,王标兵,胡国胜,陈利,杨云峰。聚酰亚胺的研究进展及应用。胶体与聚合物,2007,11,104。
    59. 丁孟贤,何天白。聚酰亚胺新型材料。科学出版社,1998,第一版,144。
    60. 刘金刚,杨海霞,王凯,赵晓娟,范琳,杨士勇。无色透明耐高温聚酰亚胺薄膜的制备与性能研究。功能材料。2006,37,1496。
    61. 刘金刚,杨海霞,王凯,赵晓娟,范琳,杨士勇。高透明性不对称聚酰亚胺的合成与性能研究。航空材料学报,2007,60。
    62. 徐炽焕。作为光学材料的含氟聚酰亚胺。化工新型材料。1998,2,10。
    63. 王贵宾。含氟聚芳醚酮的研究。博士论文。吉林大学化学学院,2000, 38。
    64. G. Maier. Low dielectric constant polymers for microelectronics. Progressin Polymer Science, 2001, 26, 8.
    65. Hasegawa, M. Semi-aromatic polyimides with low dielectric constant and low CTE. HIGH PERFORMANCE POLYMERS, 2001, 13, S93.
    66. Amutha N, Sarojadevi M. Synthesis and characterization of organosoluble polyimides containing pyridyl moiety with ether linkages. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2007, 44, 1013.
    67. Watanabe Y, Shibasaki Y, Ando S, Ueda M. Synthesis and characterization of novel low-k polyimides from aromatic dianhydrides and aromatic diamine containing phenylene ether and perfluorobiphenyl units. POLYMER JOURNAL, 2006, 38, 79.
    68. Preparation and properties of high-pretilt-angle polyimides based on an alicyclic dianhydride and long alkyloxy side-group-containing diamines. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2000, 38, 1943.
    69. 杨晶晶,周宏伟,党国栋,陈春海。聚酰亚胺硅氧烷/聚酰亚胺两面异性复合膜的制备及性能研究。高等学校化学学报。2006,27,1579。
    70. 卢彦斌,苏桂仙, 宋媛,王锦艳,蹇锡高。可溶性耐高温聚酰亚胺压电复合材料的制备与性能。塑料工业,2007,35,66。
    71. 姜峰,林润雄。可溶性含氟聚酰亚胺三元共聚物的合成。合成化学,2007,15,150。
    72. Mathews AS, Kim I, Ha CS. Fully aliphatic polyimides from adamantane-based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant. JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102, 3316.
    73. Ye YS, Chen WY, Wang YZ. Synthesis and properties of low-dielectric-constant polyimides with introduced reactive fluorine polyhedral oligomeric silsesquioxanes. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44, 5391.
    74. Yang CP, Hsiao SH, Wu, KL. Organosoluble and light-colored fluorinated polyimides derived from 2,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and aromatic dianhydrides. POLYMER, 2003, 44, 7067.
    75. Yang CP, Chen RS, Chen KH. Light-colored and soluble fluorinated polyimides based on 2-trifluoromethyl-4,4'-diaminodiphenyl ether and various aromatic dianhydrides. COLLOID AND POLYMER SCIENCE, 2003, 281, 505.
    76. Hasegawa, Masatoshi, Nakano, Jun, Miyazaki, Tatsuya, Tanaka, Yuma. Hydroxyamide-containing positive-type photosensitive polyimides. JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2007, 20, 175.
    77. Hasegawa M, Horii S. Low-CTE polyimides derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride. POLYMER JOURNAL, 2007, 39, 610.
    78. Zhao Xiao-Juan, Liu Jin-Gang, Rui Jia-Ming, Fan Lin, Yang Shi-Yong. Synthesis and characterization of organosoluble polyfluorinated polyimides derived from 3,3 ',5,5 '-tetrafluoro-4,4 '-diaminodiphenylmethane and various aromatic dianhydrides. JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 103, 1442.
    79. Choi SM, Kim KJ, Choi KY, Yi MH. Synthesis and characterization ofnegative-type photosensitive polyimides based on cyclobutane-1,2,3,4-tetracarboxylic dianhydride. JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 96, 2300.
    80. Hong MA, Alex K. Y. Jen, and Larry R. Dalton. Polymer-Based Waveguide: Materials Processing and Devices. Advanced Materials, 2002, 14, 1339.
    81. R. Reuter, H. Franke, and C. Feger. Evaluating polyimides as light guide materials. Applied Optics, 1988, 27, 4565.
    82. 胡娟。含氟聚脂和光刻胶波导材料的分子设计与性能研究。硕士学位论文,吉林大学化学学院,2007,3.
    83. Hecht, Jeff.. An introduction to optical networking, Laser Focus World, Jan2001, 37, 115.
    84. 王建忠,张萍,马洪江,刘永智。光互联网的抗毁性设计研究。应用光学,2006,27,92。
    85. 李会士,黄河振。基于双折射晶体的光交叉波分复用器。光学技术,2001,27,455。
    86. 周志,邹喜华,肖波,张伟利。带光纤光栅的 MZI 型全功能光分插复用器的研究。光通信技术,2007,2,28。
    87. 邓文渊,鄂书林,孙德贵,张鹰,许武。基于 Interleave 和微谐振环的
    32 信道波分复用器特性。光电子.激光,2008,19,21。
    88. 冯金顺,何晓东,李公羽,胡贵军,王媛媛。光通信窗口的光子晶体光开关特性。光通信技术,2007,5,24。
    89. 张慧剑,左萌,钟锦舜,顾畹仪。高速密集波分复用系统中的二级调制格式研究。中国激光,2005,32,815。
    90. 吴旭明,王小东,何国荣,王青,曹玉莲,谭满清。一种长波长 MOEMS可调谐滤波器的结构设计和分析。半导体学报,2007,28,117。
    91. 李鹰,江晓清,李锡华,王明华。新型聚合物光可变衰减器阵列。光学仪器,2002,24,59。
    92. 王春丽,王喆。DWDM 密集波分复用系统光放大器种类及应用探析。铁路通信信号工程技术,2007,4,62。
    93. 赵禹。聚合物光波导和阵列波导光栅的基础研究。博士学位论文,吉林大学,9.
    94. G. Hougham, G. Tesoro, A. Viehbeck, J. D. Chapple-Sokol. Polarization Effects of Fluorine on the Relative Permittivity in Polyimides. Macromolecules, 1994, 27, 5964.
    95. Hougham G. , Tesoro G. , Viehbeck A.. Influence of Free Volume Change on the Relative Permittivity and Refractive Index in Fluoropolyimides. Macromolecules, 1996, 29, 3453.
    96. Renaud G. , Fuoss P.H. , Ourmazd A., Bevk J. , Freer B.S.. Hahn. P. 0. Native oxidation of the Si(001) surface: Evidence 1or an interfacial phase. Applied Physics Letters, 1991, 58, 1043.
    97. D. Boese, H. Lee, D. Y. Yoon, J. D. Swalen, J. F. Rabolt. Chain orientation and anisotropies in optical and dielectric properties in thin films of stiff polyimides. Journal of Polymer Science Part B: Polymer Physics, 1992, 30, 1321.
    98. Jieun Ghim, Deug-Sang Lee, Bu Gon Shin, Doojin Vak, Dong Kee Yi, Mi-Jeong Kim, Hwa-Sub Shim, Jang-Joo Kim, and Dong-Yu Kim. Optical Properties of Perfluorocyclobutane Aryl Ether Polymers for Polymer Photonic Devices. Macromolecules, 2004, 37, 5724.
    99. 张劲松,陶志勇,韵湘。光波分复用技术。北京邮电大学出版社,2002,第一版,30。
    100. Andrew Skumanich and Christopher R. Moylan. The vibrational overtone spectrum of a thin polymer film. Chemical Physics Letters, 1990, 174, 139.
    101. Werner Groh. Overtone absorption in macromolecules for polymer optical fibers. Macromolecular Chemistry and Physics, 1988, 189, 2861.
    102. Boutevin B, Bosc D, Rousseau A. Desk Reference of Functional Polymers: Syntheses and Applications, American Chemical Society, 1997, 489.
    103. 沈玉金,潘裕斌,钟宝璇。有机/聚合物光电子学器件的应用与研究进展。功能材料,2000,31,1。
    104. 禹忠,汪敏强,姚熹。光通信波段聚合物光波导材料的研究进展。化学通报,2001,1,5。
    105. R. C. N. Dagani. Chemical and Engineering News, March, 1996, 4, 22.
    106. Ming-Hsin Wei, Chia-Hua Lee, Chao-Ching Chang, Wen-Chang Chen. Tunable Near-Infrared Optical Properties Based on Poly(methyl Methacrylate)–Oxide Waveguide Materials. Journal of Applied Polymer Science, 2005, 98, 1224.
    107. Soo-Jin Park, Ki-Sook Cho and Choon-Gi Choi. Effect of fluorine plasma treatment on PMMA and their application to passive optical waveguides. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2003, 258, 424.
    108. Yoshimura R., Hikita M. , Tomaru S., Imamura S.. Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate. Journal of Lightwave Technology, 1998, 16, 1030.
    109. Kim Ho June, Kim Kwangsok, Chin In-Joo. Synthesis and characterization of methacrylate-based UV-crosslinkable copolymers for polymeric optical waveguides. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2007, 463,101.
    110. Guenthner Andrew J., Wright Michael E., Fallis Stephen, Yandek, Gregory R., Petteys Brian J., Cash Jessica J., Zang De-Yu, Gaeta Celestino, Zounes Maryann. Multi-functional polyimides for tailorable high-performance electro-optical devices - art. no. 66530N. Conference on Linear and Nonlinear Optics of Organic Materials VII, Date: AUG 28-30, 2007 San Diego CA, LINEAR AND NONLINEAR OPTICS OF ORGANIC MATERIALS VII, 2007, 6653, N6530.
    111. Itatani T, Gorwadkar S, Shiotani A, Igusa M, Yonei K, Maeda J, Itatani H.. Block-copolymerized polyimides for optical waveguides. Conference on Advances in Resist Technology and Processing XXII, Date: FEB 28-MAR 02, 2005 San Jose CA. ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXII, 2005, 5753. 949.
    112. Ando S.. Optical properties of fluorinated polyimides and their applications to optical components and waveguide circuits. JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2004, 17, 219.
    113. Matsuura T.. Optical waveguides using perfluorinated polyimides and their optical device applications. Conference on Linear and Nonlinear Optics of Organic Materials IV, Date: AUG 02-03, 2004 Denver CO. LINEAR AND NONLINEAR OPTICS OF ORGANIC MATERIALS IV, 2004, 5517, 73.
    114. Baek SH, Kang JW, Li XD, Lee MH, Kim JJ. Zero-birefringence photosensitive polyimides for optical waveguides. OPTICS LETTERS, 2004, 29, 301.
    115. Mochizuki A, Mune K, Naitou R, Fukuoka T, Tagawa K. New photosensitive polyimide materials and their application to low-loss optical waveguides. JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2003, 16, 243.
    116. Miyadera N, Kuroda T, Takahashi T, Yamamoto R, Yamaguchi M, Yagi S, Koibuchi S. Fluorinated polyimides and its application to optical waveguides. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2003, 406, 233.
    117. Yen, CT; Chen, WC. Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides. MACROMOLECULES, 2003, 36, 3315.
    118. Lee MH, Li XD, Kim JY, Kang J, Paek S, Kim JJ. Facile fabrication of polymer waveguide by using photosensitive polyimides. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 377, 7.
    119. Sharon Wong, Hong Ma, and Alex K.-Y. Jen. Perfluorocyclobutane-Based Polyester(arylene ether)s for Applications in Integrated Optics. Macromolecules, 2004, 37, 5578.
    120. Yu Zhao, Fei Wang, Aize Li, Baijun Liu, Zhongwen Wu, Daming Zhang, Shiyong Liu and Maobin Yi. Cross-linkable fluorinated poly(ether ether ketone) polymers for optical waveguide devices. MATERIALS LETTERS, 2365, 58, 2365.
    121. Yinghua Qi, Jianfu Ding, Michael Day, Jia Jiang and Claire L. Callender. Cross-linkable highly halogenated poly(arylene ether ketone/sulfone)s with tunable refractive index: Synthesis, characterization and optical properties. POLYMER, 2006, 47, 8263.
    122. XU FEI, JUAN HU, HAIMING ZHANG, PENGYU SHA, JICHENG PIAO, ZHANCHEN CUI, DAMING ZHANG. Synthesis of Crosslinkable Fluorinated Polyesters for Optical Waveguide Devices. Journal of PolymerScience: Part A: Polymer Chemistry, 2007, 45, 5923.
    123. Yuan Song, Jinyan Wang, Guanghui Li, Qingmin Sun, Xigao Jian, Jie Teng, and Hongbo Zhang. Synthesis, characterization and optical properties of cross-linkable poly(phthalazinone ether ketone sulfone). POLYMER, 2008, 49, 724.
    124. Eunkyoung Kim, Song Yun Cho, Dong-Min Yeu, and Sang-Yung Shin. Low Optical Loss Perfluorinated Methacrylates for a Single-Mode Polymer Waveguide. Chem. Mater., 2005, 17, 962.
    125. Knoche T. , Muller L. , Klein R., Neyer A.. Low loss polymer waveguides at 1300 and 1550 nm using halogenated acrylates. Electronics Letters, 1996, 32,1284.
    126. HYUNG-JONG LEE, EUN-MI LEE, MYUNG-HYUN LEE, MIN-CHEOL OH, JOO-HEON AHN, SEON GYU HAN, HAE GEUN KIM. Crosslinkable Fluorinated Poly(arylene ethers) Bearing Phenyl Ethynyl Moiety for Low-Loss Polymer Optical Waveguide Devices. Journal of Polymer Science: Part A: Polymer Chemistry, 1998, 36, 2881.
    127. HYUNG-JONG LEE, MYUNG-HYUN LEE, MIN-CHEOL OH, JOO-HEON AHN, SEON GYU HAN. Crosslinkable Polymers for Optical Waveguide Devices. II. Fluorinated Ether Ketone Oligomers Bearing Ethynyl Group at the Chain End. Journal of Polymer Science: Part A: Polymer Chemistry, 1999, 37, 2355.
    128. Jae-Wook Kang, Tae-Pil Kim, Won-Young Lee, Joon-sung Kim, Jae-Suk Lee, and Jang-Joo Kim. Low-loss Fluorinated poly(arylene ether sulfide) waveguide with high thermal stability. Journal of Lightwave Technology, 2001, 19, 872.
    129. Yinghua Qi, Jianfu Ding, Michael Day, Jia Jiang, and Claire L. Callender. Cross-Linkable Highly Fluorinated Poly(Arylene Ether Ketones/Sulfones) for Optical Waveguiding Applications, Chem. Mater., 2005, 17, 676.
    130. Tohru Matsuura, Noriyoshi Yamada, Shiro Nishi, and Yoshinori Hasuda. Polyimides Derived from 2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl. 3. Property Control for Polymer Blends and Copolymerization of Fluorinated Pol yimides. Macromolecules, 1993, 26, 419.
    131. Tohru Matsuura, Shinji Ando, Shigekuni Sasaki, and Fumio Yamamoto. Polyimides Derived from 2,2’-Bis(trifluoromethyl)-4,4’-diaminobipheny1. 4. Optical Properties of Fluorinated Polyimides for Optoelectronic Components. Macromolecules, 1994, 27, 6665.
    132. Tohru Matsuura, Maki Ishizawa, Yoshinori Hasuda, and Shiro Nishi. Polyimides Derived from 2,2'-Bis (trifluorome t hyl) -4,4'-diamino bip heny 1. 2. Synthesis and Characterization of Polyimides Prepared from Fluorinated Benzenetetracarboxylic Dianhydrides. Macromolecules, 1992, 25, 3540.
    133. Tohru Matsuura, Yoshinori Hasuda, Shiro Nishi, and Noriyoshi Yamadat. Polyimide Derived from 2,2’-Bis(trifluoromethyl)-4,4’-diaminobiphenyl.1 . Synthesis and Characterization of Polyimides Prepared with 2,2-Bis(3,4-dicarboxyphenyl)hexafluoropropane Dianhydride or Pyromellitic Dianhydride. Macromolecules, 1991, 24, 5001.
    134. Shinji Ando, Tohru Matsuura, Shigekuni Sasaki. Perfluorinated polyimide synthesis. Macromolecules, 1992, 25, 5858.
    135. T. Matsuura, S. Ando, S. Sasaki and F. Yamamoto. LOW LOSS, HEAT- R ESISTANT OPTICAL WAVEGUIDES USING NEW FLUORINATEDPOLY I M IDES. ELECTRONICS LETTERS, 1993, 29, 269.
    136. T. Matsuura S., Ando S., Matsui S., Sasaki and F. Yamamoto. Heat-resistant singlemode optical waveguides using fluorinated polyimides. ELECTRONICS LETTERS, 1993, 29, 2107.
    137. Cristina Badarau and Zhi Yuan Wang. Synthesis and Optical Properties of Thermally and Photochemically Cross-Linkable Diacetylene-Containing Polymers. Macromolecules, 2004, 37, 147.
    138. Levermore P. A., Xia R., Lai W., Wang X. H., Huang W., Bradley D. D. C.. Deep-blue light emitting triazatruxene core/oligo-fluorene branch dendrimers for electroluminescence and optical gain applications. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40, 1896.
    139. Balogh LP, Minc LD, Berka M. Novel synthesis of radioactive gold/dendrimer composite nanoparticles for the treatment of cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2007, 3, 351.
    140. Liu QC, Zhao P, Chen YM. Divergent synthesis of dendrimer-like macromolecules through a combination of atom transfer radical polymerization and click reaction. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45, 3330.
    141. Hiroaki Yoshioka, Masaru Suzuki, Masaki Mugisawa, Nao Naitoh and Hideo Sawad. Synthesis and applications of novel fluorinated dendrimer-type copolymers by the use of fluoroalkanoyl peroxide as a key intermediate. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 308, 4.
    142. Hirao Akira, Sugiyama Kenji, Tsunoda Yuji, Matsuo Akira, WatanabeTakumi. Precise synthesis of well-defined dendrimer-like star-branched polymers by iterative methodology based on living anionic polymerization. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44, 6659.
    143. Tsai LR, Chen Y. Hyperbranched copolyfluorene from a 2,4,7-trifunctional fluorene monomer. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45, 5541.
    144. Ding L, Bo ZS, Chu QH, Li J, Dai LM, Pang Y, Karasz FE, Durstock ME. Photophysical and electrolumine scent properties of hyperbranched polyfluorenes. MACROMOLECULAR CHEMISTRY AND PHYSICS, 2006, 207, 870.
    145. Kuo PL, Liang WJ, Wang FY. Hyperbranch-polyethyleniminated functional polymers II: effect of polyethyleniminated polyoxypropylenediamines on copper nanoparticle formation in aqueous solution. COLLOID AND POLYMER SCIENCE, 2006, 284, 435.
    146. Kuo PL, Liang WJ, Wang FY. Hyperbranch-polyethyleniminated functional polymers. I. Synthesis, characterization of novel ABA type of dumbbell-like polyethyleniminated polyoxypropylenediamines, and their complexing properties with copper(II) ions in aqueous solution. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41, 1360.
    147. Hong Ma, Jingdong Luo, Seok Ho Kang, Sharon Wong, Jae Wook Kang, Alex K.-Y. Jen, Rick Barto, Curtis W. Frank. Highly Fluorinated and Crosslinkable Dendritic Polymer for Photonic Applications. Macromol. Rapid Commun., 2004, 25, 1667.
    148. Hong Gao, Dong Wang, Shaowei Guan, Wei Jiang, Zhenhua Jiang, Weinan Gao, Daming Zhang. Fluorinated Hyperbranched Polyimide for Optical Waveguides. Macromol. Rapid Commun., 2007, 28, 252.
    149. Claire Pitois, Dorothea Wiesmann, Mikael Lindgren, and Anders Hult. Functionalized Fluorinated Hyperbranched Polymers for OpticalWaveguide Applications. Adv. Mater., 2001, 13, 1483.
    150. D. W. Smith, Jr., and D. A. Babb. Perfluorocyclobutane Aromatic Polyethers. Synthesis and Characterization of New Siloxane-Containing Fluoropolymers. Macromolecules, 1996, 29, 852.
    151. Sharon Wong, Hong Ma, and Alex K.-Y. Jen. Perfluorocyclobutane-Based Polyester(arylene ether)s for Applications in Integrated Optics. Macromolecules, 2004, 37, 5578.
    152. Jia Jiang, Claire L. Callender, Chantal Blanchetière, Sarkis Jacob, Julian P. Noad, Jianfu Ding, Yinghua Qi and Michael Day. Optimizing fluorinated poly(arylene ether)s for optical waveguide applications. Optical Materials, 2006, 28, 189.
    153. Xiang-Dan Li, Zhen-Xin Zhong, Jang J. Kim, Myong-Hoon Lee. Novel Photosensitive Fluorinated Poly(arylene ether) Having Zero Birefringence. Macromol. Rapid Commun., 2004, 25, 1090.
    154. Xiaoye Ma, Baijun Liu, Dong Wang, Guibin Wang, Shaowei Guan, Zhenhua Jiang. Synthesis and characterization of fluorinated poly(aryl ether ether ketone)s terminated with a phenylethynyl group. Materials Letters, 2006, 60, 1369.
    155. 刘新才。可控交联聚醚醚酮的分子设计与性能研究。博士学位论文,吉林大学,11。
    156. Chen-Chi M. Ma, Lin-Tee Hsiue, Wen-Guey Wu, Wen-Liang Liu. Rheological and morphological properties of thermal-aged poly(phenylene sulfide) resin. Journal of Applied Polymer Science, 1990, 39, 1399.
    157. L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen, K. J. Shea. Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics. Chem. Mater, 1995, 7, 1060.
    158. Larry R. Dalton, Polymeric electro-optic modulators, Chemistry & Industry, No.7, 1997, 510.
    159. Yongqiang Shi, Steier William H.,Luping Yu, Mai Chen, Dalton, Larry R.. Large stable photoinduced refractive index change in a nonlinear optical polyester with disperse red side groups. Applied Physics Letters, 1991, 58, 1131.
    160. 周骏,黄咏娴,潘裕斌, 沈玉全,赵玉霞,贾振红。低偏振相关损耗聚合物光波导(英文)。光子学报,2007,36,205。
    161. Srinivasan R.. Etching polymer films with ultraviolet laser pulses of long (10–400 μs) duration. J. Appl. Phys., 1992, 72, 1651.
    162. Thackara, J. I.; Lipscomb, G. F.; Stiller, M. A.; Ticknor, A. J.; Lytel, R.. Poled electro-optic waveguide formation in thin-film organic media, Appl. Phys. Lett., 1988, 52, 1031.
    163. 朱仁江。离子注入技术及其在 ZnO 薄膜掺杂中的应用。重庆科技学院学报(自然科学版),2007,10,40。
    164. Ahn S.-W., Shin, S.-Y., Lee, S.-S.. Polymeric digital optical modulator based on asymmetric branch. Electronics Letters, 2001, 37,172.
    165. Datong Chena and Harold R. Fetterman. Demonstration of 110 GHz electro-opticpolymer modulators. Appl. Phys. Lett., 1997, 70, 3335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700