掺铒有机聚合物光波导放大器的理论研究与实验制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文阐述了采用两种掺杂稀土铒的有机材料制备1.55μm波段光通信用波导放大器(EDWA)器件的详细过程,完成了包括材料的合成及表征、器件结构设计、理论模拟、工艺制备及性能测试方面的系列工作,本论文的主要创新点为:
     1、在国际上首次制备出LaF_3:Er, Yb纳米颗粒掺杂的有机-无机复合型EDWA器件。输入1550 nm波长的信号光时,在20mm长的器件上,获得6.8dB的光增益。
     合成了表面油酸修饰的LaF_3:Er,Yb纳米颗粒,成功地解决了Er3+盐类在有机材料中溶解度低的问题,这是首次报道。针对材料,提出并设计了一种嵌入条形波导结构,为器件工艺制备提供了理论指导。
     2、首次制备出铒配合物Er(DBM)3Phen掺杂甲基丙烯酸甲酯和甲基丙烯酸环氧丙酯共聚物(PMMA-GMA)的聚合物光波导放大器,在1cm长的器件上观测到0.4 dB的增益。理论计算了放大器的增益值为0.9dB/cm,在误差范围内与实验结论基本吻合。
     3、首次观测到在LaF_3:Er, Yb纳米颗粒掺杂的有机-无机复合型光波导放大器中通道波导和平板波导中Er~(3+)离子的上转换发光现象。实验确定了材料中的主要上转换机制为能量转移和激发态吸收;分析了上转换发光对LaF_3:Er, Yb纳米颗粒掺杂的有机-无机复合型光波导放大器增益性能的影响。
     4、首次从粒子数反转的角度讨论了发光量子效率对EDWA增益性能的影响,得到EDWA能够产生增益的最低荧光寿命应为十微秒量级,发光量子效率需达到0.6%以上的结论,并通过实验验证了理论计算的可靠性,为掺铒聚合物材料的实验研究提供了理论指导依据和实用参考价值。
Erbium-doped waveguide amplifiers (EDWA) have received increasing attention in the past few years due to the small size and potential applications to integrate with other optical devices, such as splitters, couplers, and switches. Usually, inorganic host materials, such as glasses and crystals, are used to fabricate EDWA. The pertinent fabrication technologies have been well developed, and erbium-doped inorganic waveguide amplifiers have a typical gain value of 7 dB/cm. Compared to inorganic hosts, polymers or organic-inorganic hybrid materials (OIHMs) can also be used to fabricate EDWA. They have many advantages, such as simple processing methods, low cost, and good thermal stability. However, few successful EDWAs have been demonstrated using erbium-doped polymers or OIHMs. A bottleneck is the insolubility of Er3+ ions in polymers and OIHMs. One of the solutions is to synthesize erbium organic compounds. Another choice is to synthesize lanthanide ion doped LaF_3 nanoparticles with organic ligands.
     In this thesis, two kinds of EDWAs were demonstrated. One is the Erbium complex -doped polymer EDWA, the other is LaF_3:Er,Yb nanoparticle- doped OIHM waveguide amplifier. The main contents and innovations are as follow- ing:
     1. LaF_3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguides were demonstrated for the first time. A relative optical gain of about 6.8dB was obtained at 1550 nm in a 20-mm-long waveguide.
     We have successfully synthesized Er3+, Yb3+-doped LaF_3 nanoparticles with organic ligands. The concentration of nanoparticles in OIHM was up to 50 wt%, which was reported for the first time. Transmission electron micro- scope (TEM) and X-ray powder diffractometertion (XRD) were used to characterize the LaF_3 :Er,Yb nanoparticles. The absorption and photo lumines- cence spectra were observed. The absorption spectrum consists of four absorption bands, corresponding to the transitions from the ground state 4I15/2 to the excited states: 2H11/2, 4F9/2, 4I11/2, and 4I13/2. A peak of the emission spectrum at 1535 nm was assigned to the 4I13/2→4I15/2 transition of Er3+. The FWHM of the peak was about 83 nm. The radiative lifetime of excited 4I13/2 state of Er3+ was 72μs.
     Using X-ray photoelectron spectroscopy (XPS) analysis, we found that the existence of LaF_3 was an obstacle when we fabricate waveguides using chemical dry etching technique. The AFM images of etched surface morphology at different concentrations of nanoparticles also testified this conclusion. So the waveguides with embedded structure were designed and the optical field propagation was simulated using beam propagation method. LaF_3: Er, Yb nanoparticle-doped organic-inorganic hybrid material waveguides with embedded structure were demonstrated utilizing reactive ion etching technology . The photolithography and reactive ion etching process were described in detail. The conformations of waveguides were characterized by SEM.
     The experimental setup for the optical gain measurement is established. The output near-field profile, optical gain, waveguides’propagation loss and system loss were measured. The relative gain as functions of waveguides’dimension, pump and signal powers were discussed. When the pump power is 120 mW and the signal power is 0.05 mW, a maximum gain of approximately 4.7 dB was observed at 1535nm in a 22-mm-long waveguide. When the waveguide dimension increased to 12μm×8μm, a relative gain of 6.8 dB can be obtained at 1550 nm in a 20-mm-long waveguide.The propagation loss was 3.2 dB/cm by cutback method.
     These research work mentioned above was published in the journal of Applied Physics Letters (2007.91. (161109), the first author, IF: 3.977) and the patent application is ongoing.
     2. Er (DBM)3Phen (DBM : dibenzoylmethane; Phen:1,10-phenanthroline) -doped PMMA-GMA (poly-methyl-methacrylate -glyciclylmethacrylate) copolymer waveguide amplifier with Rectangular structure was demonstrated for the first time. A relative optical gain of about 0.4 dB was obtained at 1535 nm in a 10-mm-long waveguide.
     The absorption, photoluminescence spectra and quantum efficiency were observed. The spectra consists of 5 absorption bands, corresponding to the transitions from the ground state 4I15/2 to the excited states4I13/2, 4I11/2,4 I9/2,4F9/2 and 4H11/2. The full width at half maximum (FWHM) was about 85 nm centred around 1535 nm. The radiative lifetime of excited 4I13/2 state of Er3+ was measured to be 17.9μs.
     Using the Judd-Ofelt theory, we calculated the spontaneous transition probability, radiative lifetime, absorption cross-sections, and the emission cross-sections of this polymer material. According to the material’s refractive index , single-mode waveguides were designed to meet the 1535 nm and 980 nm laser propagation. The fundamental rate equations and power propagation equations for erbium-doped waveguide amplifiers were introduced. The relationship between the gain and these parameters were demonstrated. With the waveguides’cross-section dimensions and radiative lifetime we calculated, the gain of EDWA was simulated to be 0.9dB/cm.Considering the propagation loss in the waveguide, this conclusion could agree with the experimental result in substance.
     In experiments, the photolithography and reactive ion etching process were used to fabricate Er (DBM)3Phen-doped PMMA-GMA polymer waveguide amplifier. The waveguides’conformation were characterized by Scanning electron microscopy (SEM). The output near-field profile and a relative optical gain of about 0.4dB were measured at 1535 nm in a 10-mm-long waveguide.
     These research work mentioned above was published in the journal of Optics Communications (2007.278. (90-93), the first author, IF: 1.480). 3. The influence of photoluminescent quantum yield (PLQY) on the gain for EDWA was discussed for the first time.The relationships between the fluorescence lifetime and pump power, optical gain were analyzed. The calculated results show that in order to get the optical gain , the PLQY should be up to 0.6%. The sequential experiments testified the veracity of this conclusion.
     These research work mentioned above was published in the journal of Nanoscience & Nanotechnology (2007.8. (1-5), the first author, IF: 2.194). 4. The upconversion luminescence of Er3+ was observed in the LaF_3: Er, Yb nanoparticles-doped OIHM channel waveguides for the first time.
     Because of the special structure of the waveguide, the same phenomenon was also observed in planar waveguides. The possible upconversion mechanisms were discussed and the emission bands at 405nm, 520nm, 544nm and 650nm were mainly caused by energy transfer and excited state absorption processes between Er3+ and Yb3+ ions. The dependence of upconversion emission intensity on excitation power under 976nm excitation confirms a three-photon process contributes to the upconversion of the emission band 405nm and two-photon processes for the green and red emission bands. The influence of upconversion luminescence on the optical gain for the EDWA was discussed.
     These research work mentioned above was accepted by the Chinese Journal of Physics (the first author, IF: 1.242).
     Many factors, such as depletion of some relevant levels of Er3+, upconv- ersion effects, the waveguide length, and the propagation loss, could influence the gain of the waveguide amplifier. A higher gain can be expected by optimi- zing the waveguide length or by improving a relatively homogeneous distribu- tion of Er3+ in the polymer material.
引文
[1] 高景生,掺 Yb/Er-Al2O3 光波导放大器制备及光学性质研究,大连理工大学硕士论文, 2004
    [2] 陈海燕,宽带掺 Er 光波导放大器关键技术研究,电子科技大学博士学位论文,2004,P2
    [3] 李毅刚,新型掺铒光学材料及光波导的制备与光学性质研究,复旦大学博士学位论文,2004,P10
    [4] 杨晓红,有机聚合物波导和光调制器的基础研究,中国科学院半导体研究所博士论文,2002
    [5] 赵禹,聚合物光波导和阵列波导光栅的基础研究,吉林大学博士论文,2004,P1-10
    [6] 王菲,硅基聚合物阵列波导光栅波分复用器的研制,吉林大学博士学位论文,2005,P1-15
    [7] D. J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series, 1983, 233
    [8] J. Zyss, Nonlinear organic materials for integrated optics: a review, J. Molecular Electro, 1985, 1, 25
    [9] Stephen T. Kowel, Liangxiu Ye et al., Organic and polymeric thin films for nonlinear optics, Opt. Eng, 1987, 26(2), 107
    [10] Charles A. Eldering and P. F. Brinkley et al., Electrooptic polymer materials and devices for global optical interconnects, Appl. Opt, 1990, 29(8), 1142
    [11] Emmanuel Van Tomme and Paul E. Lagasse et al., Integrated optic devices based on nonlinear optical polymers, IEEE. J. Quantum Electronics, 1991, 27(3), 778
    [12] Anthony Garito, Ruifang Shi and Marvin Wu, Nonlinear optics of organic and polymer materials, Physics Today, 1994, 5, 51
    [13] Donald M. Burland and Cecilia A. Walsh, Second-order nonlinearity inpoled-polymer systems, Chem. Rev, 1994, 94, 31
    [14] Larry R. Dalton, Aaron W. Harper et al., Polymeric electro-optic modulators: materials synthesis and processing, Adv. Mater, 1995, 7(6), 519
    [15] Larry R. Dalton, Polymeric electro-optic modulators, Chemistry & Industry, 1997, 7, 510
    [16] Y. Hida, Y. Inoue and S. Imamura, Polymer arrayed-waveguide grating multiplexer operating around 1.3um, Electron. Lett, 1994, 30, 959
    [17] M. B. J. Diemeer, R. R. Amsamoedj and M. K. Smit, Polymeric phased arrayed wavelength multiplexer operating around 1550nm, Electron. Lett, 1996, 32, 1132
    [18] T. Watanabe, Y. Inoue, A. Kaneko and T. Kurihara, Polymer arrayed-waveguide grating multiplexer with wide tuning range, Electron. Lett, 1997, 33, 1547
    [19] Junya Kobayashi, Yasuyuki Inoue and Tohru Maruno, Tunable and polarization-intensitive arrayed-waveguide grating multiplexer fabricated from fluorinated polyimides, IEICE Trans. Electron, 1998,E81-C(7), 1020
    [20] C. C. Teng, Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth, Appl.Phys.Lett, 1992, 60(13), 1538
    [21] Wenshen Wang, Harold R. Fetterman, Pei-ming D. Chow and Larry R. Dalton et al, Optical heterodyne detection of 60 GHz electro-optic modulation from polymer waveguide modulators, Appl.Phys.Lett, 1995, 67(13), 1806
    [22] Datong Chen, Harold R. Fetterman, Wenshen Wang and Larry R. Dalton et al., Demonstration of 110 GHz electro-optic polymer modulators, Appl.Phys. Lett, 1997, 70(25), 3335
    [23] D. G. Girton and R. S. Lytel et al, 20 GHz electro-optic polymer Mach-Zehnder modulator, Appl. Phys. Lett, 1991, 58(16), 22
    [24] Dechang An, Zan Shi, Suning Tang, Ray T. Chen, William H. Steier and Larry R. Dalton et al, Polymeric electro-optic modulator based on 1×2 Y-fed directional coupler, Appl. Phys. Lett , 2000, 76(15), 1972
    [25] Yongqiang Shi, James H. Bechtel, Hua Zhang, Cheng Zhang, William H. Steier and Larry R. Dalton et al, Low (Sub-1-Volt) halfwave Voltage polymeric electro-optic modulators achieved by controlling chromophore shape, Science, 2000, 288(7), 119
    [26] Yoshito Shuto and Michiyuki Amano et al, Optical intensity modulators using diazo-dye-substituted polymer channel waveguides, IEEE J. Quantum Electron., 1995, 31(8), 1451
    [27] A. Donval, E. Toussaere, and J. Zyss, Polarization insensitive electro- optic polymer modulator, J. Appl. Phys, 2000, 87(7), 3258
    [28] S.-W. Ahn, S.-Y. Shin and S.-S. Lee, Polymeric digital optical modulator based on asymmetric branch, Electron. Lett, 2001, 37(3), 172
    [29] J. I. Thackara, J. C. Chon, G. C. Bjorklund et al, polymeric electro-optical Mach-Zehnder switches, Appl. Phys. Lett, 1995, 67(26), 3874
    [30] N. Keil, H. H. Yao, C. Zawadzki, (2×2) digital optical switch realized by low cost polymer waveguide technology,Electron.Lett,1996, 32(16), 1470
    [31] N. Keil, H. H. Yao, C. Zawadzki, Polymer waveguide optical switch with <-40 dB polarisationindependent crosstalk, Electron. Lett, 1996, 32 (7), 655
    [32] N. Keil, H. H. Yao, C. Zawadzki. Technology, Infrastructure, WDM Networks, Eds Faulkner D W. Harmer A L. NOCexperiment using a high finesse waveguide-type double ring resonator. [J]. IEEE Photon. Eechnol. Lett, 1994, 6(8), 1031
    [36] H. P. Lee, J. J. Park, H. H. Ryoo et al, Resonance characteristics of waveguide-coupled polyimide microring resonator,Optic.Materials, 2002, 21, 535
    [37] S. C. Hagness et al. FDTD micro-cavity simulations:design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators, IEEE J. Lightwave Tech, 1997, 15(11), 2154-2164
    [38] D. V. Tishinin, P. D. Dapkus, A. E. Bond et al, Vertical resonant couple with precise coupling efficiency control fabricate by wafer bonding. [J]. IEEE Photon. Technol. Lett, 1994, 11(8), 1003
    [39] 沈玉金,潘裕斌,钟宝璇,有机/聚合物光电子学器件的应用与研究进展,功能材料,2000,31(1),P1-4
    [40] 禹忠,汪敏强,姚熹,光通信波段聚合物光波导材料的研究进展,化学通报,2001,第一卷,P5-10
    [41] L. H. Slooff, A. Polman, M. P. Oude Wolbers, F.C.J.M. van Veggel, D.Reinhoudt and J. W. Hofstraat, Optical properties of erbium-doped polydentate organic cage complexes, J. Appl. Phys, 1998, 83, 497
    [42] Gaetano Mancino, Andrew J. Ferguson, Andrew Beeby, Nicholas J. Long, Tim S. Jones,Dramatic Increases in the Lifetime of the Er3+ Ion in a Molecular Complex Using a Perfluorinated Imidodiphosphinate Sensitizing Ligand,J. AM. CHEM. SOC, 2005, 127, 524-525
    [43] G. A. Kumar and Richard E. Riman,L. A. Diaz Torres and O. Barbosa Garcia,Santanu Banerjee, Anna Kornienko, and John G. Brennan, Chalcogenide-Bound Erbium Complexes: Paradigm Molecules for Infrared Fluorescence Emission,Chem. Mater, 2005, 17, 5130-5135
    [44] Jan W. Stouwdam and Frank C. J. M. van Veggel, Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles, M.Nano Letters, 2002, 2, 733-737
    [45] Pi DB, Wang F, Fan XP, Wang MQ, Zhang Y, Luminescence behavior of Eu3+ doped LaF3 nanoparticles, Spectroc. Acta Pt. A-Molec, Biomolec. Spectr, 2005, 61, 2455-2459
    [46] R.Dekker, D.J.W.Klunder, A.Borreman, M.B.J.Diemeer, J.W.Stouwdam, F.C.J.M.van Veggel, Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides, Applied Physics Letters, 2004, 85, 6104-6106
    [47] Jian-Xin Meng, , Mao-Feng Zhang, Ying-Liang Liu, Shi-Qing Man, Hydrothermal preparation and luminescence of LaF3:Eu3+ nanoparticles,Spectrochimica Acta Part A , 2007, 66, 81–85
    [48] Yang Wei, Fengqi Lu, Xinrong Zhang and Depu Chen,Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals,Materials Letters , 2007, 61(6), 1337-1340
    [49] 王怀善,钱国栋,王民权,通讯窗口稀土钕掺杂有源光波导的进展,材料导报,2002,16 卷,P44-46
    [50] H.Ennen, J.Schneider, G.Pomrenke and A.Axmann, 1.54μm luminescence of erbium-implanted Ⅲ-Ⅴsemiconductors and silicon, Appl.Phys.Lett, 1983, 43(10), 943
    [51] Kitagawa T., Hattori K., Shimize M. et al., Guided-wave laser based on erbium-doped silica planar light-wave circuit, Electron. Lett, 1991, 27(3), 334
    [52] Honkanen S., Najafi S., Poyhonen P.. Silver-film ion-exchanged singlemode waveguides in Er doped phosphate glass, Electron.Lett, 1991, 27(23), 2167
    [53] Shmulovich J., Wong A., Wong Y. H., et al. Er3+ glass waveguide amplifier at 1.5 μm on silicon, Wlecctron. Lett, 1992, 28(13), 1181
    [54] Kitagawa T., Hattori K., Hibino Y. et al.Erbium-doped composite glass waveguide amplifier, Electron. Lett, 1993, 29(1), 131
    [55] Nykolak G., Hnner M., Hibino Y. et al, Systems emaluation of an Er3+-doped planar waveguide amplifier, IEEE photon. Technol. Lett, 1993,5(10), 1185
    [56] Ghosh,R.N.,Shmulovich,J.,Kane,C.F. et al, 8-mV threshold Er3+-doped planar waveguide amplifier, IEEE photonics Technology Letters, 1996, 8(4), 518
    [57] Shmulovich,J.,Ghosh R.N.,Kane,etal..Planar Er waveguide amplifier with 8-mW threshold, Optical Fiber Communications (OFC’96), 1996,250
    [58] Cheng Chun Li,Hong Koo Kim, Michele Migliuolo, Er-doped glass ridge-waveguide amplifiers fabricated with a collimated sputter deposition technique, IEEE Photon.Technol.Lett, 1997, 9(9), 1223
    [59] Barbier D.,Bruno P.,Cassagnettes C. et al., Net gain of 27 dB with a 8.6-cm-long Er/Yb-doped glass-planar-amplifier, Opt. Fiber Commun. Con, OFC’98 Technical Digest, 1998, 45
    [60] Choi Y. B, Cho S. H, Moon D. C, Er-Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering, Opt. Lett, 2000, 25(4), 263
    [61] H.S. Han, S.Y. Seo, and J.H. Shin, Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide, Appl.Phys. Lett, 2001, 79, 4568
    [62] S.F. Wong,E.Y.B. Pun, P.S. Chung, Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange, IEEE photon.Techn. Lett, 2002, 14(1), 80
    [63] G.Jose, G..Sorbello, S.Taccheo et al., Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses, Non-Crys.Solides, 2003, 322, 256
    [64] Ke Liu and Edwin Y. B. Pun ,K+-Na+ ion-exchanged waveguides in Er3+-Yb3+ codoped phosphate glasses using field-assisted annealing,Applied Optics, 2004, 43, 3179-3184
    [65] Delavaux J-M. P., Granumd S., Mizuhara O., et al., Integrated optics Erbium-Ytterbium amplifier system in 10Gb/s fiber transmission experiment, IEEE photon, Technol. Lett, 1997, 9(2),247
    [66] Iannone C., Reichmann K. C., birk M,et al,A 160-km transparent metro WDM ring network featuring cascaded erbium-doped waveguide amplifiers. OSA Optical Fiver Communication (OFC) Proceedings, CA 2001, 17-22
    [67] 谢大弢,吴瑾光,徐端夫等,掺 Er 凝胶玻璃中 Er 离子发光性质的研究, 光谱学与光谱分析,1998,18(2),177
    [68] 雷红兵,杨沁清,王启明等,离子注入掺铒硅发光中心的光致发光研究, 半导体学报,1998,9(5),332
    [69] 万均,盛湖,陆肪等, 掺铒 SiOx 的光致发光特性.物理学报,1998 ,47(10),1741
    [70] Song Feng, Chen Xiaobo, Feng Yan,LD 泵浦的共掺 Er3+、Yb3+磷酸盐玻璃激光器,中国激光,1999,A26(9),790
    [71] 陈淑芬,卢文杰,胡维晟,掺铒铌酸锂光波导放大器增益特性的理论分析,光学技术,1999,3,44
    [72]张龙,林凤英,祁长鸿等,用于 1.5μm 光波导放大器的高浓度 Er3+掺杂玻璃, 光学学报,2000 ,20(12),1692
    [73] 柳祝平,戴世勋,胡丽丽,Yb3+、Er3+共掺磷酸盐玻璃光谱性质研究, 中国激光,2001 ,28(5),467
    [74] 秦冠仕,稀土掺杂的紫色和紫外上转换激光材料及热镊空泡研究 ,中国科学院长春光学精密机械与物理研究所博士论文,2004
    [75] 王颖,杨天新,孙伟成等, 条形掺铒波导放大器的理论分析,光通信技术,2003,9,42
    [76] 田贺斌,杨天新,王颖,等. Er3+:Yb3+共掺玻璃波导放大器及其应用,光通信技术,2003,1,34
    [77] 宋峰,孟凡臻,丁欣等, 1.54μm Er3+-Yb3+共掺玻璃激光器的速率方 程及数值分析, 物理学报,2002 ,51(6),1233
    [78] 陈海燕,刘永智,戴基智等, Er3+-Yb3+共掺磷酸盐玻璃(LGS-L)波导放大器设计, 光学学报,2003 ,23(6),697
    [79] 慕桓,陆加佳,金国良等,掺铒玻璃 Ag+-Na+离子交换光波导的分析, 上海交通大学学报,2004,38(2),248
    [80] 董斌,稀土掺杂氧化铝粉末的上转换发光特性研究,大连理工大学博士学位论文,2007
    [81] 熊前进,掺铒光波导放大器的理论与设计,大连理工大学硕士学位论文,2000,P43-44
    [82] W. H. Wong ,E. Y. B. Pun,K. S. Chan,Er3+–Yb3+ codoped polymeric optical waveguide amplifiers, Applied Physics Letters, 2004, 84,176-178
    [83] W. H. Wong,K. S. Chan ,E. Y. B. Pun, Ultraviolet direct printing of rare-earth-doped polymer waveguide amplifiers, Applied Physics Letters, 2005, 87, 011103
    [84] Anh Quoc Le Quang, Rolland Hierle, Joseph Zyss, Isabelle Ledoux,Giuseppe Cusmai, Raffaella Costa, Angelo Barberis, and Silvia Maria Pietralunga, Demonstration of net gain at 1550 nm in an erbium-doped polymer single mode rib waveguide, Applied Physics Letters, 2006, 89, 41124
    [85] Dan Zhang, Cong Chen, Changming Chen, et al. "Optical gain at 1535nm in LaF3: Er, Yb nanoparticle doped organic-inorganic hybrid materials Waveguide", Applied Physics Letters, 2007, 91,161109
    [86] 杨祥林,光放大器及其应用,电子工业出版社,2000 年,第一版,P4
    [87] B.R. Judd, Optical Absorption Intensities of Rare-Earth Ions, Phys Rev, 1962, 127, 750
    [88] G.S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys, 1962, 37, 511
    [89] D. K.Sardar, J.B.Gruber, B. Zandi, J.A. Hutchinson , C.W.Trussell, Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass, J.Appl.Phys, 2003, 93, 2041
    [90] H.Lin, E.Y.B.Pun, X.R. Liu, Er3+-doped Na2O-Cd3Al2Si3O12 glass for infrared and upconversion applications, J.Non-Cryst.Solids, 2001, 283 27-33
    [91] 马春生,刘式墉,光波导模式理论,吉林大学出版社,2001,第一版,P194-196
    [92] 马春生,刘式墉,光波导模式理论,吉林大学出版社,2001,第一版, P181-192
    [93] Dan Zhang, Yu Wang, Aihua Wu, et al, Influencing factors on Erbium doped Polymer Waveguide Amplifier, Journal of Nanoscience & Nanotechnology, 2007, 8, 1-5
    [94] 陈海燕,宽带掺 Er 光波导放大器关键技术研究,电子科技大学博士学位论文,2004,P25
    [95] 陈海燕 刘永智 官周国 黄小莉 张少先, 掺铒光波导放大器的速率方程分析,光学学报,2002,22 卷,P174-177
    [96] 王洁红 慕桓 金国良 胡丽丽, 掺铒磷酸盐玻璃波导放大器的特性研究,光学学报,2005,25 卷,P99-104
    [97] L.R. Melby, N.J. Rose, E. Abramson, J.C. Caris, Synthesis and fluorescence of some trivalent lanthanide complexes, J. Am. Chem. Soc, 1964, 86, 5117-5125
    [98] 胡娟,用于阵列式波导光栅聚合物的合成与表征,吉林大学本科生毕业论文,2004
    [99] Mccumber D E, Theory of phonon—terminated optical masers, [J].Phys Rev, 1964, 134(2A): A299-A306
    [100] 张希珍,1.55μm 波段聚合物光波导放大器的基础研究,吉林大学博士学位论文,2007,P60
    [101] 赵士龙, 掺铒玻璃平面光波导材料的研究,中国科学院上海光学精密机械研究所博士论文,2005, P66
    [102] 禹忠,韦玮,侯洵,掺铒聚合物光波导放大器的数值分析,光学与光电技术,2005,第 3 卷,P12-15
    [103] 张晓军,陈海燕,刘勇智,重叠因子对光波导放大器增益特性的影响,电子科技大学学报,2001,第 30 卷,P250-252
    [104] 黄光焰,杨亚培,戴基智,李晓惠,刘震,成娟娟,激光技术,增益玻璃波导光场的数值模拟,2005,第 29 卷,P35-37
    [105] 陈淑芬,卢文杰,胡维晟,掺铒铌酸锂波导放大器增益特性的理论分析,光学技术,1999,第 3 期,P44-46
    [106] L.N.Sun, H.J.Zhang, L.S.Fu, F.Y .Liu, Q.G.Meng, C.Y .Peng,and J.B.Y u, A New Sol-Gel Material Doped with an Erbium Complex and Its Potential Optical-Amplification Application, adv. Funct. Mater, 2005, 15, 1041-1048
    [107] L. H. Slooff, A. Polman, M. P. Oude Wolbers, F.C.J.M. van Veggel, D. Reinhoudt and J. W. Hofstraat, Optical properties of erbium-doped polydentate organic cage complexes , J. Appl. Phys, 1998,83, 497
    [108] Andrew J. Ferguson, Andrew Beeby, Nicholas J. Long, and Tim S. Jones,Dramatic Increases in the Lifetime of the Er3+ Ion in a Molecular Complex Using a Perfluorinated Imidodiphosphinate Sensitizing Ligand Gaetano Mancino, J. AM. CHEM. SOC, 2005, 127, 524-525
    [109] Shi. Y, Steier W. H., Yu L. P, Chen M. and Dalton L. R,Large stable Photo induced refractive index change in a n onlinear optical polyester polymer with disperse red side groups,Appl. Phys. Lett, 1991, 58,1131
    [110] W.H.Wong,K.S.Chan,and E.Y.B.Pun, Ultraviolet direct printing of rare-earth-doped polymer waveguide amplifiers,Appl.Phys.Lett, 2005, 87, 011103
    [111] Larry R. Dalton, Aaron W. Harper et al, Polymeric electro-optic modulators: materials synthesis and processing, Adv. Mater, 1995, 7(6), 519
    [112] Yoshito Shuto ,Michiyuki Amano et al, Optical intensity modulators using diazo-dye-substituted polymer channel waveguides, IEEE J.Quantum Electron, 1995, 31(8), 1451
    [113] Zian He, Yigang Li, Yanwu Zhang, Dongxiao Li, Liying Liu, Lei Xu,Er3+/Yb3+ Co-Doped Waveguide Amplifier and Lossless Power Splitter Fabricated by a Two-Step Ion Exchange on a Commercial Phosphate Glass,Journal of Korean Physics Society , 2006, 49, 2159-2163
    [114] P. Babu, Hyo Jin Seo, Kyoung Hyuk Jang, R. Balakrishnaiah, C. K. Jayasankar, Ki-Soo Lim, and V. Lavín, Optical spectroscopy, 1.5μm emission, and upconversion properties of Er3+-doped metaphosphatelaser glassesJOSA B, 2007, 24, 2218-2228
    [115] T. C. Sum, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan and F. Watt, Proton Beam Writing of Erbium Doped Waveguide Amplifiers, Nuclear Instruments and Methods in Physics Research B, 2005, 231, 394 -399
    [116] K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan and F. Watt, Erbium doped Waveguide Amplifiers Fabricated Using Focused Proton Beam Direct-writing, Applied Physics Letters, 2004,84, 684 -686
    [117] K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan and F. Watt, Erbium doped waveguide amplifier fabricated using focused proton beam irradiation, Proceedings of the 16th Annual Meeting IEEE Lasers and Eletro-Optics Society (LEOS 2003), 1,132-133
    [118] K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan and F. Watt, Waveguide amplifiers in Er3+-Yb3+ co-doped phosphate glasses written with focused proton beam, Proceedings of the 4th IEEE Hong Kong AP/MTT and LEOS Postgraduate Conference, 2003, 81- 84
    [119] 沈祥,聂秋华,徐铁峰,高媛,Er3+/Yb3+共掺TeO2-WO3-Bi2O3玻璃的光谱性质,光电子.激光,2005,第16卷,P812-816
    [120] 陈爽 ,刘维民,亲油性 LaF3 纳米粒子的制备及表征,功能材料,2006, 37 卷, P437-439
    [121] Anh Quoc Le Quang , Rolland Hierle,Joseph Zyss, Isabelle Ledoux,Giuseppe Cusmai,Raffaella Costa,Angelo Barberis,Silvia Maria Pietralunga,Demonstration of net gain ar 1550 nm in an erbium-doped polymer single mode rib waveguide, Applied Physics Letters, 2006, 89, 141124
    [122] Hak-Seung Han, Se-Young Seo, Jung H.Shin, Optical gain at 1.54μm in erbium-doped silicon nanocluster sensitized waveguide, Applied Physics Letters, 2001, 79, 4568-4570
    [123] Guang-Shun Yi, Gan-Moog Chow, Colloidal LaF3: Yb, Er, LaF3: Yb,Tm nanocrystals with multicolor upconversion fluorescence, Journalof Materials Chemistry, 2005, 15, 4460-4464
    [124] Jian-Xi Meng, Mao-Feng Zhang, Ying-Liang Liu, Shi-Qing Man, Hydrothermal preparation and luminescence of LaF3: Eu3+ nanoparticles, Spectrochimica Acta Part A, 2007 , 66, 81-85
    [125] Hairong Zheng, X.J.Xiao-jun Wang, M. J. Dejneka, W. M. Yen and R. S. Meltzer,Up-converted emission in Pr3+-doped fluoride anocrystals-based oxyfluoride glass ceramics,Journal of Luminescence, 2004,108, 395-399
    [126] Xiao-jun Wang, S.H. Huang, R. Reeves, W. Wells, M.J. Dejneka, R.S. Meltzer, W.M. Yen Studies of the spectroscopic properties of Pr3+ doped LaF3 nanocrystals/glass, Journal of Luminescence, 2001, 94, 229-233
    [127] S. Tanabe, H. Hayashi, T. Hanada and N. Onodera, Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nano-crystals, Opt. Mater, 2002, 19, 343–349
    [128] Jingfang Zhou, Zhishen Wu, Zhijun Zhang, Weimin Liu and Hongxin Dang, Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin , Wear, 2001, 49, 333-337
    [129] Jan W. Stouwdam and Frank C. J. M. van Veggel, Near-infraredEmission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles, Nano Letters, 2002, 2, 733-737
    [130] Pi DB, Wang F, Fan XP, Wang MQ , Zhang Y, Luminescence behavior of Eu3+ doped LaF3 nanoparticles,Spectroc. Acta Pt. A-Molec. Biomolec. Spectr, 2005, 61, 2455-2459
    [131] R.Dekker, D.J.W.Klunder, A.Borreman, M.B.J.Diemeer, J.W.Stouwdam, F.C.J.M.van Veggel, Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides, Applied Physics Letters, 2004, 85, 6104-6106
    [132] Jianshe Wang, Jin Hu, Daihua Tang, Xinhou Liu, Zhen Zhen, Oleic acid(OA)-modified LaF3:Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications, J. Mater.Chem, 2007, 17, 1597-1601
    [133] Bok Yeop Ahn, Sang Seok, Suk-In Hong, Jae-Seok Oh, Ha-Kyun Jung and Woon Jin Chung, Optical properties of organic/inorganic nanocomposite sol-gel films containing LaPO4:Er,Yb nanocrystals, Optical Materials, 2006, 28, 374-379
    [134] S.F. Wong, E.Y.B. Pun, and P.S. Chun, Er3+/Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange, IEEE Photon. Tech. Lett, 2002, 14, 80
    [135] K. Liu and E.Y.B. Pun, K+-Na+ Ion-Exchanged Waveguides in Er3+-Yb3+ Codoped Glasses Using Field-Assisted Annealing, Appl.Opt, 2004, 43, 3179
    [136] Zhang Xi-Zhen, WANG Fei, ZHANG Hai-Ming, ZHANG Da-Ming, SUN Wei, Fabrication of 32×32 Arrayed Waveguide Grating Using Fluorinated Polymers, Chinese Physics Letters, 2005,22,1955-1957
    [137] Zhang H M, Ma CS, Zhang XZ,33×33 arrayed waveguide grating multiplexer using fluoropolymer PFS-co-GMA, Microwave and Optical Technology Letters, 2005,47, 470-472
    [138] Daming Zhang, Fei Wang, Xizhen Zhang, Wenyuan Deng, Shulin E, Fabrication of 32×32 Polymer Arrayed Waveguide Gratings Using Remelting Technique, Proc. of SPIE, 2006, 6025.
    [139] G.Karve, B.Bihari, R.T.Chen, Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide, Appl.Phys.Lett, 2000, 77, 1253
    [140] 周亚训,聂秋华,徐铁锋,碲基掺铒光纤放大器增益特性的理论研究,量子电子学报,2003年,第20卷,P94-98
    [141] 梁利芳,共掺 Yb3+/Er3+(or Tm3+)稀土氟化物粉体的上转换荧光性能以及一些形貌分析,中山大学博士学位论文,2005
    [142] 贾明理,Y2O3:Eu3+和 Lu2O3:Er3+纳米材料发光性质的研究,中国科学院长春光学精密机械与物理研究所硕士论文,2004
    [143] 王晓乐,稀土掺杂纳米 TiO<,2>的制备及其上转换发光性质研究,大连海事大学硕士论文,2007
    [144] 张丹,刘克,张大明,程传辉,张希珍,张海明,潘裕斌,铒镱共掺磷酸盐玻璃波导放大器及上转换性质研究,半导体学报,2006, 27,121-124
    [145] Hai Lin, Shibin Jiang, Jianfeng Wu, Feng Song, Nasser Peyghambarian, E Y B Pun, Er3+ doped Na2O-Nb2O5-TeO2 glasses for optical waveguide laser and amplifier, Journal of Physics D--Applied Physics, 2003, 36(3), 812
    [146] Xvsheng Qiao, Xianping Fan, and Minquan Wang, Spectroscopic properties of Er3+ doped glass ceramics containing Sr2+GdF7+ nanocrystals, Appl.Phys.Lett, 2006, 89, 111919
    [147] Xvsheng Qiao, Xianping Fan, Jin Wang, and Minquan Wang, Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals, J.Appl.Phys , 2006, 99, 074302
    [148] Maurice,G.Monnom,A.Saissy,D.B.Ostrowsky,G.W.Baxter,Thermalizatio n effects between upper levels of green fluorescence in Er-doped silica fibers, Optics Letters, 1994, 19(13), 990-992
    [149] S.A.Wade,S.F.Collins, G.W,Baxter.Fluorescence intensity ratio technique for optical fiber point temperature sensing,Journal of Applied Physics, 2003, 94(8), 4743-4756
    [150]A.S.S.deCamargo,J.F.Possatto,L.A.de .Nunes,E.R.Botero,E.R.M.Andreeta,D.Garcia,J.A.Eiras,Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics,Solid State Communications, 2006, 137, 1-5
    [151]P.V.dosSantos,M.T.de.Araujo,A.S.Gouveria-Neto,J.A.M.Neto,A.S.B.Sombra.Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass.Applied Physics Letters, 1998, 73(5), 578-560
    [152] 胡海利,稀土掺杂玻璃上转换发光材料的制备与性质研究,中山大学硕士论文,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700