钉螺密度时空模型构建及血吸虫病感染率贝叶斯估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分湖北省钉螺分布的现状及空间聚集性分析
     目的:了解湖北省钉螺分布的现状,探索钉螺空间分布的地理规律及其空间属性,为制定灭螺、控螺规划等血防工作提供科学依据。方法:以1980-2009年每间隔5年的湖北省各县市血防办提供的村级别的查灭螺资料为基础属性数据,与GIS地理空间数据库进行关联,建立湖北省钉螺地理信息基础数据库。采用描述性分析方法观察查灭螺指标、钉螺面积及钉螺密度等指标的动态变化情况,采用全局空间自相关的Moran's I系数及局部空间自相关的Getis-Ord Gi*指标进行钉螺密度的空间聚集性分析。结果:湖北省1980-2009年每间隔5年的钉螺密度总体呈下降趋势,80年代到90年代间钉螺密度较高,1990年以后出现一个下降阶段,2009年的钉螺密度呈最低状况。湖北省研究区域80年代钉螺面积变化显著,增减幅度较大,90年代及以后以钉螺面积基本保持不变或小幅减少为主,2009年江陵、沙市及公安和天门部分地区为钉螺密度较高地区,全局空间自相关分析的Moran's Index表明湖北省钉螺密度具有高度空间自相关,2009年钉螺密度热点分析表明江陵及阳新、公安的部分地区为钉螺密度的异常高值区。结论:湖北省钉螺控制效果显著,30年来钉螺密度呈现下降趋势,钉螺分布主要沿长江中游、汉江两岸以及与两江相通的大小湖泊洪泛区分布,总体沿两江呈明显的粗带状分布。湖北省钉螺密度各年均具有较强的空间聚集性,但是并没有随时间变化而发生更为聚集的趋势。
     第二部分钉螺密度的广义线性混合效应模型及Bayesian时空模型的构建与分析
     目的:探索影响湖北省钉螺密度分布的影响因素并构建钉螺密度的时空模型,并研究钉螺密度随时间、空间变化的规律,从而为湖北省钉螺的预测预警及控制提供一定的理论基础。方法:以湖北省钉螺地理信息基础数据库作为基础,将环境因素资料数据如气候因子、遥感因子并接到钉螺空间数据库中,对数据进行预处理,分别利用2009年和1990-2009年钉螺数据构建了无时间效应的广义线性混合模型和时间效应的广义线性混合模型,通过AIC、AICC及BIC比较不同误差分布和连接函数组合的广义线性混合模型拟合效果,通过多水平的分析筛选出了湖北省影响钉螺分布的主要因素,对各影响因素的参数值进行估计,进一步构建钉螺密度的贝叶斯时空模型。结果:单因素分析空气湿度(r=0.320, p<0.05) NDVI(r=0.384, p<0.05)、LST (r=0.318, p<0.05)及村子距水体距离(r=-0.383,p<0.05)与钉螺密度具有相关性,且具有统计学意义。广义线性混合模型的最佳模型以泊松分布为误差分布、log为连接函数和均数为方差函数的模型结果,GLMM结果显示钉螺密度受LST (p=0.020)、样本县离长江距离(p=0.020)是否灭螺(p=0.001)、NDVI (p=0.003)、空气湿度(p=0.001)及时间(p=0.001)的影响。贝叶斯模型结果显示钉螺密度具有逐渐下降的趋势,空间随机变异有统计学意义,且各观察时间点的空间变异不一样。根据DIC越小模型拟合效果越好的原则,贝叶斯时空模型拟合数据效果最佳,贝叶斯时空模型的参数估计值与广义线性混合效应模型所得自变量估计值较为接近。结论:湖北省钉螺密度的广义线性混合模型的最佳结构是以泊松分布为误差分布、log为连接函数和均数为方差函数的模型结构。贝叶斯时空模型表明钉螺密度具有逐渐下降的趋势,空间随机变异有统计学意义,且各观察时间点的空间变异不一样,构建模型时需要考虑时间、空间极其交互作用的影响。湿度、NDVI、LST、距离长江的距离及是否灭螺对于钉螺的分布具有统计学意义,可以据此作为钉螺密度监测及防控的依据。
     第三部分湖北省湖泊地区血吸虫病感染率的Bayesian估计
     目的:应用贝叶斯方法矫正血吸虫病诊断误差,从而对湖北省湖区血吸虫病感染率进行准确估计,以了解湖北省血吸虫病的真实感染情况。方法:采用多阶段随机整群抽样的方法于2011年在湖北省血吸虫病流行区随机抽取各样本村,分别利用IHA和Kato-Katz法对样本人群进行血吸虫感染的检测,通过两轮问卷调查的方法采用专家意见法获取关于IHA及Kato-Katz法准确度的先验信息,在两种情形下分别用贝叶斯分层模型进行血吸虫病感染率的估计,情形1中,运用IHA检测及Kato-Katz法联合诊断的数据进行感染率的估计,情形2中,仅运用IHA检测数据进行感染率的贝叶斯估计。结果:最终共随机抽取了14个县46个样本村合计50980个受试者进入研究。专家意见法获取的IHA法检验的灵敏度和特异度范围分别是80%~90%、70%~80%,Kato-Katz法检验灵敏度和特异度范围分别是20%to70%,90%to100%,两种情形估计获得的血吸虫病感染率相似,两种情形中所有样本村的估计感染率均低于13%,当仅用IHA数据进行估计时(即情形2)血吸虫病感染率变异范围为0.95%到12.26%。结论:在今后大规模的血吸虫病调查中可以考虑仅用血清学的方法(如IHA法)结合贝叶斯估计方法进行血吸虫病低度流行区血吸虫病流行率的估计。
Part1Study of distribution and spatial clustering of oncomelania in Hubei Province
     Objective:To investigate the distribution, geographic regularity of spatial distribution and spatial attributes of the oncomelania in Hubei Province, so as to provide a scientific basis for the development of the oncomelania-controlling plan for schistosomiasis control. Methods:This study was based on the database of eliminating oncomelania that was kept by Hubei provincial schistosomiasis control administration and the GIS geospatial database. We retrieved the two databases from the years1980to2009. The two databases were associated to establish the Hubei geographic information database of oncomelania. Dynamic changes about the oncomelania eleminating, area and density indicators were observed using descriptive analysis method. Spatial clustering analysis was conducted to analyze the oncomelania density. The global and local Moran's Index were calculated. Results: The oncomelania density at intervals of five years from the years1980to2009in Hubei Province showed a downward trend. The oncomelania density was higher from1980s to1990s. After the year of1990, the oncomelania density decreased and was at the lowest level in2009. Oncomelania area changed (increased or decreased) significantly in Hubei Province in1980s. And in1990s, the oncomelania area remained unchanging or slightly reduced. In2009, the oncomelania density was higher in Jiangling, Shashi, Gongan and Tianmen. Form the global Moran's I index, the results showed that the oncomelania density in Hubei had significant spatial autocorrelation. Hotspot analysis indicated that Jiangling, Yangxin and Gongan were the significantly higher oncomelania density areas in2009. Conclusion:The oncomelania density showed a downward trend in the past30years, which indicated that the control for oncomelania in Hubei was effective. Oncomelania in Hubei was distributed mainly along the middle reaches of the Yangtze River, the Han River, and the lake floodplains between the two rivers. The oncomelania was zonary-distributed along the two rivers mentioned above. The oncomelania density in Hubei showed a strong spatial clustering over time, but a trend of more gathering was not shown.
     Part2Analysis of the oncomelania density using mixed-effects model and Bayesian space-time model
     Objective:We explored the factors that may affect the oncomelania density distribution in Hubei Province, and studied the changes of oncomelania density over time and space. Our findings can provide some theoretical basis for early prediction and control of oncomelania in Hubei Province. Methods:The study was based on the Hubei geographic information database. Environmental factors including climatic factors, and remote sensing factor were collected, associated with the oncomelania spatial database. Data from2009and1990-2009, respectively, were used to construct the no-time-effect mixed model and time mixed-effects model. AIC, AICC and BIC rules were employed to compare different error distributions and the connection function combination of generalized linear mixed models. The main factors that affecting oncomelania distribution were analyzed by a multi-level analysis, and the parameter were estimated. Bayesian space-time model was adopted to analyze the oncomelania density. Results:Results from the univariate analysis showed that air humidity (r=0.320, p<0.05), NDVI (r=0.384, p<0.05), LST (r=0.318, p<0.05), and the distance between the water and the village (r=-0.383, p<0.05correlation) were significantly associated with oncomelania density. The best generalized linear mixed model (GLMM) was Poisson-distributed error, log link function and variance function mean. GLMM results showed that oncomelania density was affected by LST (p=0.020), the distance between the sampled counties and the Yangtze (p=0.020), and whether oncomelania control or not (p=0.001), NDVI (p=0.003), air humidity (p=0.001) and time (p=0.001). Results from the Bayesian model showed a gradually downward trend. Spatial random variability was statistically significant, and each observation point of the spatial variability was different. Bayesian space-time model was the best according to the principles of the smaller the DIC, the better the model. Parameter estimates both using the Bayesian space-time model and generalized linear models were close. Conclusion:The best generalized linear mixed model (GLMM) was Poisson-distributed error, log link function and variance function mean using the data of oncomelania density in Hubei. Bayesian space-time model indicated that the oncomelania density had a gradually downward trend, and the spatial random variability had statistically significant. When building models, it is necessary to consider the effects of time, space and their interaction. Humidity, NDVI, LST, from the distance between the Yangtze River and village and whether oncomelania control or not were significantly associated with the distribution of the oncomelania. Findings from this study can provide the basis for the density monitoring and prevention and control of the oncomelania.
     Part3A Bayesian Approach to Estimate the Prevalence of Schistosomiasis Japonicum Infection in the lake region, Hubei Province, China
     Objective:A Bayesian technology was introduced to estimate community prevalence of schistosomiasis japonicum infection based on the data of a large-scale survey of schistosomiasis japonicum in lake-regions in Hubei Province. Methods:A multistage cluster random sampling approach was applied to the endemic villages in lake-regions of Hubei province in2011. IHA test and Kato-Katz test were applied for the detection of the S. japonicum infection for sampled population. Expert knowledge on sensitivities and specificities of IHA test and Kato-Katz test were collected based on a two-round interview. Prevalence of S. japonicum infection was estimated by Bayesian Hierarchical model in two different situations. Results:In situation1, Bayesian estimation used both IHA test data and Kato-Katz test data to estimate the prevalence of S. japonicum. In situation2, only IHA test data was used for Bayesian estimation. Finally14cities and46villages including50980residents were sampled from lake-regions of Hubei province. Sensitivity and specificity for IHA test ranged from80%to90%and70%to80%, respectively. And for the Kato-Katz test, sensitivity and specificity were from20%to70%and90%to100%, respectively. Similar estimated prevalence was obtained in the two situations. Estimated prevalence among sampled villages was almost below13%in both situations and varied from0.95%to12.26%when using data of IHA test only. Conclusion:The study indicated that it is feasible to apply IHA test only combining with Bayesian method to estimate the prevalence of S.japonicum infection in large-scale surveys.
引文
1. 周晓农.全球血吸虫病防治研究进展与展望:世界卫生组织血吸虫病科学工作组报[M].北京:人民卫生出版社,2008:1.
    2. Chitsulo L, Engels D, Montresor A, et al. The global status of schistosomiasis and its control [J]. Acta Tropica,2000,77(1):41-51.
    3. 陈名刚.世界血吸虫病流行情况及防治进展[J].中国血吸虫病防治杂忠.2002,14(2):81-83.
    4. 卫生部办公厅.血吸虫病重大疫情应急处理预案(附件1,试行)见:关于印发《血吸虫病重大疫情应急处理预案(试行)》的通知,2003.5.14.
    5. 郝阳,郑浩,朱蓉等.2008年全国血吸虫病疫情通报[J].中国血吸虫病防治杂志,2009,21(6):450-456.
    6. Zhang ZJ, Carpenter TE, Lynn HS, et al. Location of active transmission sites of Schistosoma japonicum in lake and marshland regions in China [J]. Parasitology,2009,136(7):737-746.
    7. Yang Guo-Jing Penelope Vounatsou, Zhou Xiao-Nong, et al. A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China [J]. Acta Tropica.2005,969(7):117-129.
    8. 胡茂琼.空间分析技术在湖北省血吸虫病流行趋势研究中的应用.广西医科大学.2010.
    9. 邱娟,李仁东,徐兴建.湖北省钉螺分布现状的地理特征分析.长流流域资源与环境.2012,21(1):100-103.
    10. X.N.Zhou, J.B.Malone, T.K.Kristensen, et al. Application of geographic information systems and remote sensing to schistosomiasis control in China [J]. Acta Tropica.2001,79(7): 97-106.
    11. Yang K, Wang XH, Yang GJ, et al. An integrated approach to identify distribution of Oncomelania hupensis, the intermediate host of Schistosoma japonicum, in a mountainous region in China [J]. Int J Parasitol,2008,38(8-9):1007-1016.
    12. Diggle P. Analysis of longitudinal data [M]. USA:Oxford University Press,2002.
    13. Rekaya R, Gianola D, Weigel K, et al. Longitudinal random effects models for genetic analysis of binary data with application to mastitis in dairy cattle [J]. Genet Sel Evol.2003, 35(5):457-468.
    14. Basanez MG, Marshall C, Carabin H, et al. Bayesian statistics for parasitologists [J]. Trends Parasitol,2004,20(2):85-91.
    15. Gosoniu L, Vounatsou P, Sogoba N, et al. Bayesian modeling of geostatistical malaria risk data [J]. Geospat Health,2006,1(1):127-139.
    16.杨国静,周晓农,汪天平,林丹丹,洪青标,孙乐平.安徽、江西及江苏3省血吸虫病患者与钉螺分布的空间自相关分析.中国寄生虫学与寄生虫病杂志.2002,20(1):6-9.
    17.陈峰.疾病时空聚集性的统计方法研究.南通大学学报(医学版).1999,19(3):237-239.
    18.张松林,张昆.空间自相关局部指标Moran指数和G系数研究阴.大地测量与地球动力学,2007,27(03):31-34.
    19.张松林,张昆.局部空间自相关指标对比研究[J].统计研究,2007,24(07):65-67.
    20. Ricardo J.P.S., Guimaraes Corina C. Schistosomiasis risk estimation in Minas Gerais State, Brazil, using Environmental data and GIS techniques [J]. Acta Tropica.2008,108(7): 234-241.
    21. Ord J.K., Getis A. Local spatial auto correlation statistics:distribution issues and an application. Geographical Analysis.1995(27):286-306.
    22. J.L. Ping, C.J. Green. Exploring spatial dependence of cotton yield using global and local autocorrelation statistics [J]. Field Crops Research.2004(89):19-36.
    23. Randremanana RV, Sabatier P, Rakotomanana F, et al. Spatial clustering of pulmonary tuberculosis and impact of the care factors in Antananarivo City [J]. Trop Med Int Health, 2009,14(4):429-443.
    24. Szonyi B, Wade SE, Mohammed HO. Temporal and spatial dynamics of Crytosporidium parvum infection on dairy farms in the New York City Watershed:a cluster analysis based on crude and Bayesian risk estimates [J]. Int J Health Geogr,2010,9:31.
    25.陈雅淑.局部空间自相关指标的适用性研究.华中师范大学,2009,2(11):17-18.
    26. Ward MP, Carpenter TE. Techniques for analysis of disease clustering in space and in time in veterinary epidemiology [J]. Prev Vet Med,2000,45(3):257-284.
    27. Fortheringham A S, Brundson C & Charlton M. Quantitative Geography Perspecitves on Spatial Data Analysis. SAGE Publications. Ltd U.K.2000.
    28.赵飞.乡镇尺度钉螺分布的高风险区域分析与Bayesian寸空建模.复旦大学博士学位论文.2011.
    29. N.E.Breslow, D.G.Clayton. Approximate Inference in Generalized Linear Mixed Models. Journal of the American Statistical Association, Vol.88. No.421,9-25.
    30. Christian Ritz. Inference in mixed models. The Royal Veterinary and Agricultural. University, Department of Mathematics and Physics.2002.
    31. Brown H, Presott R. Applied Mixed Models in Medicine. London:John Wiley and Sons, 1999.
    32. Lin X, Breslow N E. Bias correction in generalized linear mixed models with multiple components of dispersion [J]. Journal of the American Statistical Association,1996,91: 107-1060.
    33. Breslow NE, Clayton DG. Approximate Inference in Generalized Linear Mixed Models [J]. Journal of the American Statistical Association,1993,88:9-25.
    34. Diggle PJ, Heagerty P, Liang, K-Y, Zeger SL. Analysis of Longitudinal Data [M].2nd Ed. Oxford University Press, Oxford,2002.
    35. Wang K, Lee AH, Hamilton G, et al. Multilevel logistic regression modelling with correlated random effects:application to the Smoking Cessation for Youth study [J]. Stat Med,2006,25(22):3864-3876.
    36. Chen Z, Lynn K. A note on the Estimation of the Multinomial Logit Model with Random Effect [J]. The American Statistician,2001,55(2):89-95.
    37. Tuerlinckx F, Rijmen F, Verbeke G, et al. Statistical inference in generalized linear mixed models:a review [J]. Br J Math StatPsychol,2006,59(2):225-255.
    38. Littell RC, Pendergast J, Natarajan R. Modelling covariance structure in the analysis of repeated measures data [J]. Stat Med,2000,19(13):1793-1819.
    39. Schabenberger O. Introducing the GLIMMIX Procedure for Generalized Linear Mixed Models [C]. SUGI,2005:196.
    40. Kleinschmidt I, Sharp BL, Clarke GP, et al. Use of Generalized Linear Mixed Models in the Spatial Analysis of Small-Area Malaria Incidence Rates in KwaZulu Natal, South Africa [J]. Am J Epidemiol,2001,153(12):1213-1221.
    41. Young J, Glass TR, Bernasconi E, et al. Hierarchical modeling gave plausible estimates of associations between metabolic syndrome and components of antiretroviral therapy [J]. J Clin Epidemiol,2009,62(6):632-641.
    42. Dean CB, Nielsen JD. Generalized linear mixed models:a review and some extensions [J]. Lifetime Data Anal,2007,13(4):497-512.
    43. Witte JS, Greenland S, Kim LL, et al. Multilevel Modeling in Epidemiology with GLIMMIX [J]. Epidemiology,2000,11(6):684-688.
    44.杨珉,李晓松.医学和公共卫生研究常用多水平统计模型.北京:北京大学医学出版社,2006,80.
    45.尹文娇,赵守军,张勇.广义线性混合模型在传染病流行病学研究中的应用.中国疫苗和免疫.2011,17(4):373-377.
    46.谢远,涛杨娟.广义Gamma分布簇广义线性混合模型的构建.统计研究.2010,27(10):75-80.
    47. Y.Zhao, J. Staudenmayer, B.A.Coull and M.P.Wand. General Design Bayesian Generalized Linear Mixed Models. Statistical Science,2006, Vol.21, No.1,35-51.
    48. Zhen guo Qiu, Peter X.K.Song, and Ming Tan. Bayesian hierarchical models for multi-level repeated ordinal data using WinBUGS. Journal of Biopharmaceutical Statistics.2002 Vol.12, No.2,121-135.
    49.郭秀娥,徐勇勇等.医学研究中的贝叶斯统计分析.[博士学位论文].陕西:第四军医大学.2000.
    50. Carlin.B.P, Louis.T.A. Bayes and Empirical Bayes Methods for Data Analysis. Second Editon. Boca Ration London New York.Washington.D.C.2000.
    51. Satagopan, J.M., Yandell, B.S., Newton, M.A., Osborn, T.C. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo.Genetics.1996,144 (2):805-816.
    52. Spiegelhalter, D.J., Best, N.G, Carlin, B.P. Bayesian Deviance, the Effective Number of Parameters, and the Comparison of Arbitrarily Complex Models. Technical Report; Medical Research Council Biostatistics Unit:Cambridge,1998.
    53.马跃渊,徐勇勇.医学数据统计分析中MCMC算法的实现与应用.[硕士学位论文].陕西:第四军医大学.2004.
    54.张志杰,彭文祥,周艺彪,等.湖沼地区预测钉螺数量的模型研究.中华预防医学杂志,2007,41(5).
    55.赵飞,张志杰,王海银.山丘型血吸虫病流行区钉螺分布的动态分析.中国血吸虫病防治杂志.2010,22(1):35-39.
    56. Zhou, X.N., Wang, T.P., Wang, L.Y., Guo, J.G., Yu, Q., Xu, J., Wang, R.B., Chen, Z., Jia, T.W. The current status of schistosomisasis epidemics in China. Chin. J. Epi.2004,25,555-558.
    57. Zhou, X.N., Wang, L.Y., Chen, M.G., Wu, X.H., Jiang, Q.W., Chen, X.Y., Zheng, J., Utzinger. J. The public health significance and control of schistosomiasis in China-then and now. Acta. Trop.2005,96,97-105.
    58. Zhou, X.N., Guo, J.G., Wu, X.H. Epidemiology of schistosomisasis in the People Republic of China. Emerg. Infect. Dis.2007,13,1470-1476.
    59. Li, S.Z., Luz, A., Wang, X.H., Xu, L.L., Wang, Q., Qian,Y.J., Wu, X.H., Guo, J.G., Xia, G., Wang, L.Y., Zhou, X.N. Schistosomiasis in China:acute infections during 2005-2008. Chin. Med. J.2009,122,1009-1014.
    60. Wang, X.H., Wang, L.Y., Xia, G., Hao, Y., Chin, D.P., Zhou, X.N. A strategy to control transmission of Schistosomiasis japonicum in China. N. Engl. J. Med.2009,360,121-128.
    61. Zhu, H.P., Yu, C.H., Xia, X., Dong, G.Y., Tang, J., Fang, L., Du, Y.K. Assessing the diagnostic accuracy of immunodiagnostic techniques in the diagnosis of schistosomiasis japonica, a meta-analysis. Parasitol. Res.2010,107,1067-1073.
    62. Dai, R.J., Zhu, Y.C., Liang, Y.S., Zhao, S., Li, H.J., Xu, Y.L., Hua, W.Q., Cao, G.Q. and Xu, M. (2004). Study on scheme for screening schitosomiasis in low endemic areas. Chi. J. Sch. Con.2004,16,13-15.
    63. Georgiadis, M.P., Johnson, W.O., Gardner, LA., Singh, R. Correlation adjusted estimation of sensitivity and specificity of two diagnostic tests. Appl. Slat.2003,52,63-76.
    64. Smith, A.F.M., Robert, G.O. Bayesian computation via the Gibbs sampler and related Marko chain Monte Carlo method. J. Roy. Stat. Soc.1993,55,3-24.
    65. Yu, J.M., Yuan, H.C., Yang, Q.J., VLAS, S.J. De., Gryseels, B. Comparison of common methods in field diagnosis of Schistosoma japonicum infection. Tongji Univ.2001,22,1-4.
    66. Steinmann, P., Zhou, X.N., Matthys, B., Li, Y.L., Chen, S.R., Yang, Z., Fan, W., Jia, T.W., Vounatsou, P., Utzinger, J. Spatial risk profiling of Schistosoma japonicum in Eryuan county, Yunnan province, China. Geospatial Health 2007,2,59-73.
    67. He, W., Zhu, Y.C., Liang, Y.S., Dai, J.R., Xu, M., Tang, J.X., Cao, G.Q., Hua, W.Q., Li, Y.L. Yang, Z. Comparison of stool examination and immunodiagnosis for schistosomiasis. Chi. J. Sch. Con.2007,19,107-109.
    68. Willian, M.B. Introduction to Bayesian Statistics. Wiley, Hoboken, NJ,2004, pp129-146.
    69. Basanez, M.G, Marshall, C., Carabing, H., Gyorkos, T., Joseph, L. Bayesian statistics for parasitologists. Trends. Parasitol.2004,20,85-91.
    70. Wang, X.H., Wu, X.H., Zhou, X.N. Bayesian estimation of community prevalences of Schistosoma japnicum infection in China. Int. J. Parasitol.2006,36,895-902.
    71. Carabin, H., Marshall, C.M., Joseph, L., Riley, S., Olveda, R., McGarvey, S.T. Estimating the intensity of infection with Schistosoma japonicum in villagers of Leyte, Philippines. Part I:a Bayesian cumulative logit model. The schistosomiasis transmission and ecology project (STEP). Am. J. Trop. Med. Hyg.2005,72,745-753.
    72. Joseph, L., Gyorkos, T.W., Coupal, L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am. J. Epi.1995,141, 263-272.
    73. Mao, S.S. Bayesian statistics,2nd Edn, Beijing Press,1999, pp 20-23.
    74. Schurink, C.A., Lucas, P.J., Hoepelman, I.M., Bonten, M.J. Computer-assisted decision support for the diagnosis and treatment of infectious diseases in intensive care units. Lancet. Infect. Dis.2005,5,305-312.
    75. Toft, N., Jorgensen, E., Hojsgaard, S. Diagnosing diagnostic tests:evaluating the assumptions underlying the estimation of sensitivity and specificity in the absence of a gold standard. Prev. Vet. Med.2005,68,19-33.
    76. Branscum, A.J., Gardner, I.A., Johnson, W.O. Bayesian modeling of animal-level and herd-level prevalence. Prev. Vet. Med.2004,66,101-112.
    77. Hanson, T.E., Johnson W.O., Gardner I.A. Log-linear and logistic modeling of dependence among diagnostic tests. Prev. Vet. Med.2000,45,123-137.
    1. Banos A, Lacasa J. Spatio-temporal exploration of SARS epidemic. Cyber geo 2007; 408. http://www.cybergeo.eu/index12803.html.
    2. World Health Organization. Global early warning system for major animal diseases, including zoonoses (GLEWS). Geneva:WHO,2007. http://www.who.int/zoonoses/outbreaks/glews/en/.
    3. Diggle P. Statistical analysis of spatial point patterns. London:Academic Press Inc.; 2003.
    4. Moore K, Edge G, Kurc A. Visualization techniques and graphical user interfaces in syndromic surveillance systems. Summary from the Disease Surveillance Workshop, Sept. 11-12,2007; Bangkok, Thailand. BMC Proc 2008,2(3):S6.
    5. Odiit M, Bessell PR, et al. Using remote sensing and geographic information systems to identify villages at high risk for rhodesians sleeping sickness in Uganda. Trans R Soc Trop Med Hyg 2006,100(4):354-62.
    6. Childs JE, Curns AT, Dey ME, Real LA, Feinstein L, Bjornstad ON. Predicting the local dynamics of epizootic rabies among raccoons in the United States. Proc Natl Acad Sci USA 2000,97(25):13666-71.
    7. Openshaw S, Charlton ME, Wymer C, Craft A. A mark 1 geographical analysis machine for the automated analysis of point data sets. Int J Geogr Inf Sys 1987,1(4):335-58.
    8. Bithell JF. An application of density estimation to geographical epidemiology. Stat Med 1990; 9(5):691-701.
    9. Lawson AB, Williams FLR. Applications of extraction mapping in environmental epidemiology. Stat Med 1993,12:1249-58.
    10. Turnbull B W, Iwano E J, Burnett W S, Howe H L, Clark L C. Monitoring for clusters of disease:application to leukemia incidence in upstate New York. American Journal of Epidemiology,1990,132:136-143.
    11. Besag J, Newell J. The detection of clusters in rare diseases. J R Stat Soc Ser A 1991, 154:143-55.
    12. Getis A, Ord C. The analysis of spatial association by use of distance statistics. Geogr Anal 1992,24(3):189-206.
    13. Anselin L. Local indicators of spatial association-LISA. Geogr Anal 1995.27(2):93-115.
    14. Kulldorff M, Nagarwalla N. Spatial disease clusters:Detection and Inferrence. Statistics in Medicine,1995,14(8):799-810.
    15. Aldstadt J. An incremental Knox test for the determination of the serial interval between successive cases of an infectious disease. Stoch Environ Res Risk Assess 2007,21(5): 487-500.
    16. Kulldorff M, Hjalmars U. The Knox method and other tests for space-time interaction. Biometrics 1999,55:544-52.
    17. Knox E. The detection of space-time interactions. Appl Stat 1964,13:25-29.
    18. Sabria J, Comas C, Barcelo-Vidal C, Illa M, Echevarria M, Gomez-Roig MD, Borrell A. Cumulative sum plots and retrospective parameters in first-trimester ductus venosus quality assurance. Prenat Diagn.2013 Mar 14:1-7. doi:10.1002/pd.4079.
    19. Maguire T, Mayne CJ, Terry T, Tincello DG. Analysis of the surgical learning curve using the cumulative sum (CUSUM) method. Neurourol Urodyn.2013,doi:10.1002/nau.22375.
    20. Rogerson P. A set of associated statistical tests for spatial clustering. Environ Ecol Stat 2005a. 12(3):275-288.
    21. Rogerson PA, Yamada I. Monitoring change in spatial patterns of disease:comparing univariate and multivariate cumulative sum approaches. Stat Med.2004,23(14):2195-2214.
    22.唐咸艳,周红霞,扫描统计及其在流行病学中的应用.中国卫生统计.2011,6(28):332-337.
    23. Turnbull B W, Iwano E J, BURNETT W S, et al. Monitoring for clusters of disease: application to leukemia incidence in upstate New York [J]. Am J Epidemiol,1990,132-136.
    24. Kulldorff M. A spatial scan statistic [J]. Commum Stat-Theor M,1997.26(6):1481-1496.
    25. Dwass M. Modified randomization tests for nonparametric hypotheses. Annals of Mathematical Statisitcs,1957,28(1):181-187.
    26. SaTScan User Guide for version 9.1.1. http://www.satscan.org.2011.
    27. Mostashari F, Kulldorff M, Hartman JJ, et al. Dead bird clusters as an early warning system for West Nile virus activity. Emerging Infectious Diseases,2003,9(6):641-646.
    28. Sheehan TJ, DeChello LM. A space-time analysis of the proportion of late stage breast cancer in Massachusetts,1988 to 1997. International Journal of Health Geo graphics,2005, 4:15.
    29. Haryran M. Analyzing factors associated with cancer occurrence:a geographical systems approach. Turkish Journal of Cancer,2004,34(2):67-70.
    30. Costa MA, Kulldorff M, Assuncao RM. A space time permutation scan statistic with irregular shape for disease outbreak detection. Adv Dis Surveill 2007,4(3):86.
    31. Kleinman K P, Abrams A M, Kulldorff M, Platt R. A model-adjusted space-time scan statistic with an application to syndromic surveillance. Epidemiol Infect 2005,133(03): 409-419.
    32. Boscoe F P, McLaughlin C, Schymura M J, et al. Visualization of the spatial scan statistic using nested circle. Health and Place,2003,9(3):273-277.
    33. Laird, N. M.& Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4),963-974.
    34.康萌萌.广义线性混合模型及其SAS实现.统计教育.2009,10(10):52-54.
    35.曹红艳.贝叶斯广义线性混合模型及其医学应用.山西医科大学,2009.pp.32-33.
    36.张岩波,何大卫,刘桂芬,张晋昕,郭静.离散型二分类数据的广义混合线性模型分析.中国卫生统计.2001:18(6):328-330.
    37.尹文娇,赵守军,张勇.广义线性混合模型在传染病流行病学研究中的应用.中国疫苗和免疫,2011,17(4):373-376.
    38. Kleinschmidt I, Sharp B L, Clarke G P, et al. Use of Generalized Linear Mixed Models in the Spatial Analysis of Small-Area Malaria Incidence Rates in KwaZulu Natal, South Africa [J]. Am J Epidemiol,2001,151(12):1213-1221.
    39. Wang K, Lee A H, Hamilton G, et al. Multilevel logistic regression modeling with correlated random effects:application to the Smoking Cessation for Youth study [J]. Stat Med,2006, 25(22):3864-3876.
    40. Schabenberger O. Introducing the GLIMMIX Procedure for Generalized Linear Mixed Models [C] SUGI,2005:196.
    41. Johnson G. Prospective spatial prediction of infectious disease:experience of New York State (USA) with West Nile Virus and proposed directions for improved surveillance. Environ Ecol Stat 2008,15(3):293-311.
    42. Kleinman K. Generalized linear models and generalized linear mixed models for small-area surveillance. In:Lawson AB, Kleinman K, editors. Spatial and syndromic surveillance for public health. West Sussex:John Wiley; 2005. pp.77-93.
    43.王济川,谢海义,姜宝法.多层统计分析模型方法与应用[M].北京:高等教育出版社,2008.
    44. Best N, Richardson S, Thomson A. A comparison of Bayesian spatial models for disease mapping. Stat Methods Med Res 2005,14(1):35-59.
    45. Lawson AB. Bayesian disease mapping; hierarchical modeling for spatial epidemiology. New York:CRC Press; 2009.
    46.朱慧明,韩玉启.贝叶斯多元统计推断理论[M].北京:科学出版社,2006.
    47. Rodeiro C L V, Lawson A B. Online updating of space-time disease surveillance models via particle filters. Stat Methods Med Res 2006b,15(5):423-44.
    48. MacNab YC. A Bayesian hierarchical model for accident and injury surveillance. Accid Anal Prev 2003,35(1):91-102.
    49. Tzala E, Best N. Bayesian latent variable modeling of multivariate spatiotemporal variation in cancer mortality. Stat Methods Med Res 2008,17(1):97-118.
    50. Yang K, Wang X H, Yang G J. An integrated approach to identify distribution of oncomelania hupensis, the inter mediate host of Schistosoma japonicum, in a mountainous region in China [J]. In t J Parasitol,2008,38 (829):107-116.
    51. Yang G J. Zhou X N. A Bayesian-based approach for spatio-temporal modeling of county level prevalence of Schistosoma japonicum infection in Jiangsu province, China [J]. Int J Parasitol,2005,35(2):155-162.
    52. Wang J F, Wu J L, Meng B, et al. Exploratory spatial data analysis for the identification of risk factors to birth defects[J]. BMC Public Health,2004,4:23-34.
    53. CHI Wen-xue, WANG Jin-feng, LI Xin-hu, ZHENG Xiao-ying, LIAO Yi-lan. Bayesian mapping of neural tube defects prevalence in Heshun County, Shanxi Province, China during 1998-2001. JOURNAL OF ZHEJIANG UNIVERSITY SCIENCE A.2007,8(6):921-925.
    54.郑卫军,李秀央,陈坤.空间流行病学研究中的贝叶斯统计方法.浙江大学学报(医学版).2008,6(37):642-647.
    55. Besa G J, York J, Moll IA. Bayesian image restoration with applications in spatial statistics [J]. Ann In st Stat Math,1991,43:1-59.
    56. Clayton D G. Bernard Nell I L. Bayesian methods for mapping disease risk in Spatial epidemiological:method and applications [M]. London:Oxford University Press,2000: 205-220.
    57. Bernard Nell I L.Clayton D G, Montomolic Bayesian estimates of disease map:how important are priors [J]. Stat med,2005,14:2411-2431.
    58. Green P, Richardson S. Hidden Markov models and disease mapping [J]. J Am Stat Assoc, 2002,97:1055-1070.
    59. Knorr-Held L, Raber G. Bayesian detection of clusters and discontinuities in disease maps [J]. Biometrics,2000,56:13-21.
    60. Denison D G T, Holmes C C. Bayesian partitioning for estimating disease risk [J]. Biometrics, 2001,57:143-149.
    61. Elliott P. Spatial epidemiology:methods and applications [M]. Oxford:Oxford University Press,2000:393-414.
    62. Best N G, Ickstad T K, Wolpert R L, et al. Modeling the impact of traffic-related air pollution on childhood respiratory illness in case studies in Bayesian statistics volume V [M]. New York, NY, USA:Springer-Verlag,2002:183-259.
    63. Spiegel Halter D, Best N G, Carlin B P, et al. Bayesian measures of model complexity and fit. [J]. J R Statist Soc B (Statistical Methodology),2002,64:583-639.
    64. Best N, Richard Son S, Thomson A. A comparison of Bayesian spatial models for disease mapping [J]. Stat Methods Med Res,2006,14(1):35-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700