CaCu_3Ti_4O_(12)基陶瓷的制备、结构与介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几年来立方钙钛矿结构的CaCu_3Ti_4O_(12)(CCTO)因其具有巨介电常数的独特性能(在无线电频率下,室温附近介电常数通常>10~4),受到了广泛的关注。但是关于其巨介电响应的产生机理至今尚存争论,并且其较大的介电损耗也限制了其实用化。本文通过CCTO基陶瓷的组成设计、结构控制方法研究,寻求具有高介电常数,且损耗相对较小的电介质陶瓷材料体系,并探讨相应的物理机制。为此类材料的应用奠定基础。
     获得高纯度单相CCTO原料是高性能陶瓷制备的基础。本文针对合成单相CCTO的难点,详细研究了微波加热工艺路线对物相形成的影响。发现利用微波加热技术可以在较低的温度和较短时间内单相的CCTO粉料。
     CCTO陶瓷的显微结构对铁电性能有较大的影响。发现了其具有弛豫铁电体的特性,并且随着陶瓷晶粒的减小,其频率弥散性和弛豫强度随之增加。这是由于小晶粒上所承受的晶界所导致的应力更大的缘故。
     B位改性CCTO陶瓷研究了Ti的化学计量以及不同价态离子,Zr~(4+)、Ta~(5+)和Sc~(3+)离子置换Ti~(4+)的结构与介电性能。发现了CCTO陶瓷的绝缘性阻挡层的形成以及晶粒不连续生长与B位离子Ti在晶界的聚集相关。研究表明CCTO的巨介电性能与其陶瓷的显微结构密切相关。主要可以用具有Maxwell-Wagner界面弛豫特性的内部阻挡层电容器模型对其进行解释,而且在300-400K和450-550K之间,存在有两个界面弛豫过程,分别由晶界和畴壁所决定。当选取适合的取代量,在一定的工艺条件下可以获得具有较好介电性能的CCTO基陶瓷材料:(1)当0.5%molZr~(4+)取代Ti时,CCTO基介质陶瓷的介电性能是:在-50-70℃之间,其介电常数>5000,损耗<0.08;(2)当Ta~(5+)的取代量为0.5mol%的时候,1100℃烧结1小时的样品的介电常数>20000,介电损耗<0.09;(3)当Sc~(3+)的取代量是为1.0%molTi的时候,样品的介电性能是:在KHz范围内,室温到100℃左右的范围内,其介电常数>6000,介电损耗<0.10。
     考虑SrTiO_3的低损耗性能,为有效降低CCTO陶瓷的介电损耗,本文研究了(1-x)CCTO-xSrTiO_3(x是体积含量)复合陶瓷的结构与介电性能。实验发现该陶瓷是典型的两相混合结构。其介电常数的变化规律符合Lichtenecker对数法则。并且由于SrTiO_3是良好的绝缘体,导致了陶瓷的绝缘电阻大幅度的增加,从而降低了介电损耗。当x=0.4的时候,1060℃烧结3小时的样品,在室温到150℃之间其无线电频率下的介电常数约为2000,损耗<0.10,并且其介电性能的高温稳定性要优于现有的X7R电容器。
CaCu_3Ti_4O_(12)(CCTO)has attracted a lot of researches for its unusual dielectric property,giant dielectric constant(>10~4)at radio frequency and at room temperature. However,it is a matter of disputation of what is the origin of giant dielectric response. Moreover,the large dielectric loss(>0.10)of CCTO hinders its application in electronic fields.In this work,we tried to explore the physical mechanism by the means of composition design,structural control and the research on structure-property relationship.Meanwhile,we also tried to find out the new CCTO-based dielectric system with high dielectric constant and low dielectric loss to facilitate its practical application.
     For the preparation of ceramics with optimum properties,it is necessary to obtain highly pure CCTO powder first.To aim at synthesizing single phase CCTO, which is a technological difficulty,the detailed procedure of microwave synthesis was investigated.By the microwave synthesis method,the formation of single phase CCTO powder can be obtained at a relatively low calcining temperature and in short time
     The ferroelectricity of CCTO ceramic depends on the microstructures closely.It is found that CCTO exhibits relaxor behavior.As grain size decreases,the frequency dispersion and the relaxation strength increases,which is due to the higher stress from grain boundary in smaller grains.
     The structures and the dielectric properties of CCTO ceramics with different Ti stoichiometry,Zr~(4+),Ta~(5+),and Sc~(3+)substitution for Ti~(4+)were investigated.That is, with B-site modification,the effect of B-site ions on structures and dielectric properties were used to explore the mechanics of giant dielectric response in CCTO. The results show that the origins of formation of insulating barrier layer and the discontinuous growth of grains partially arise from Ti presenting at grain boundary. The nature of giant dielectric response in CCTO can be explained well by internal barrier layer capacitors model(IBLC)with Maxwell-Wagner relaxation behavior. And in the temperature ranges of 300-400K and 450-550K,two relaxation behaviors have been observed which are attributed to grain boundary and domain boundary, respectively.
     In addition,the effects of the different valence ions substituted for Ti illustrate that under an optimum sintering conditions,the CCTO-based materials have high dielectric constant and relatively low dielectric loss:at the radio frequency,(1)At the level of 0.5%mol Zr substitution,the ceramics exhibit good dielectric properties,with a high dielectric constant(>5000)and a low dielectric loss(<0.8)in the temperature range from -50 to 70℃.(2)At the level of 1.0mol%Ta substitution,the ceramic exhibit a high dielectric constant(>20000)and dielectric loss of 0.09.(3)When Sc concentration is 1.0%mol of Ti,the samples exhibit a high dielectric constant(>6000), and a low dielectric loss(<0.10)in the temperature range of 20-100℃.
     Considering the low dielectric loss of SrTiO_3,the structure and the dielectric properties of(1-x)CCTO-xSrTiO_3 ceramics have been studied,where x is volume ratio.The system is typical two phases composite.The changes in dielectric constant can be explained well by Lichtenecker's logarithmic law of composite.According to IBLC,the dielectric loss drops largely due to the high resistance of SrTiO_3.At the level of x=0.4,after sintered at 1060℃for 3 hours,an optimum dielectric ceramic has been obtained,with a high temperature stable dielectric constant of 2000 that is better than ones of XTR,and a low dielectric loss(<0.10)in the temperature range from room temperature to 150℃.
引文
[1]A.J.Moulson,J.M.Herbert.电子陶瓷(李世普等译).武汉:武汉工业大学出版社,1993
    [2]徐廷献等.电子陶瓷材料.天津:天津大学出版社,1993
    [3]殷景华,王雅珍,鞠刚.功能材料概论.哈尔滨:哈尔滨工业大学出版社,1999
    [4]赵连城,国风云.信息功能材料学.哈尔滨:哈尔滨工业大学出版社,2004
    [5]郭卫红,汪济奎.现代功能材料及其应用.北京:化学工业出版社,2002
    [6]R.科埃略,B.阿拉德尼兹.电介质材料及其介电性能(张治文,陈玲译).北京:科学出版社,2000
    [7]李世普.特种陶瓷工艺学,武汉:武汉工业大学出版社,1990
    [8]殷之文主编,电介质物理学,科学出版社,2003
    [9]钟维列,铁电体物理学,科学出版社,2000
    [10]干福熹,信息材料,天津大学出版社,2000
    [11]S.M.Sze,Semiconductor Devices:Physics and Technology 2~(nd)ed.Wiley,New York,2002
    [12]International Technology Roadmap for Semiconductors,2003< http://www.irts.net>
    [13]J.Y.Gan,Y.C.Chang and T.B.Wu,Dielectric Properties of(TiO_2)_x-(Ta_2O_5)_(1-x)Thin Films,Applied Physics Letters,1998,72:332-334
    [14]T.M.Klein,D.Niu,W.S.Epling,et al.,Evidence of Aluminum Silicate Formation During Chemical Vapor Deposition of Amorphous Al_2O_3 Thin Films on Si(100),Applied Physics Letters,1999,75:4001-4003
    [15]G.Mohan Rao and S.B.Krupanidhi,Pulsed Excimer Laser Ablation of(Pb,La)TiO_3 Thin Films for Dynamic Random Access Memory Devices,Applied Physics Letters,1993,64:1591-1593
    [16]C.S.Hwang,(Ba,Sr)TiO_3 Thin Films for Ultra Large Scale Dynamic Random Access Memory.:A Review on the Process Integration,Materials Science and Engineering B,1998,56:178-190
    [17]A.Deschanvres,B.Raveau,and M.Tollermer,Remplacement de Métal Bivalent Par le Cuivre Dans Les Titanates de Type Perowskite,Bull.Soc.Chim.Fr.1967,11:4077-4078
    [18]M.A.Subramanian,Dong Li,N.Duan,et al.,High Dielectric Constant in ACu_3Ti_4O_(12)and ACu_3Ti_3FeO_(12)Phases,J.Solid State Chemistry,2000,151:323-325
    [19] A.P. Ramirez, M.A. Subramanian, M. Gardel, et al., Giant Dielectric Constant Responses in a Copper-Titanate, Solid State Communication, 2000, 115: 217-220
    [20] C.C. Homes, T. Voge, S.M. Shapiro, et al., High Dielectric Constant Perovskte-Related Oxide, Science, 2001, 293: 673-676
    [21] Yun Liu and Ray L. Withers, Structurally Frustrated Relaxor Ferroelectric Behavior in CaCu_3Ti_4O_(12), Physical Review B, 2005, 72:134104
    [22] Shanming Ke, Haitao Huang and Huiqing Fan, Relaxor Behavior in CaCu_3Ti_4O_(12) Ceramics, Applied Physics Letters, 2006, 89: 182904
    [23] Lixin He, J.B. Neaton, Morrel H. Cohen, et al., First-Principles Study of the Structure and Lattice Dielectric Response of CaCu_3Ti_4O_(12), Physical Review B, 2002, 65: 214112
    [24] P. Lunkenheimer, V. Bobnar, A.V. Pronin, et al., Origin of Apparent Colossal Dielectric Constants, Physical Review B, 2002, 66: 052105
    [25] M.H. Cohen, J.B. Neaton, L.X. He, et al., Extrinsic Models for the Dielectric Response of CaCu_3Ti_4O_(12), J. Applied Physics, 2003, 94: 3299-3306
    [26] P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, et al., Nonintrinsic Origin of the Colossal Dielectric Constants in CaCu_3Ti_4O_(12), Physical Review B, 2004, 70: 172102
    [27] D.C. Sinclair, T.B. Adams, F.D. Morrison, et al., CaCu_3Ti_4O_(12): One-Step Internal Barrier Layer Capacitor, Applied Physics Letters, 2002, 80: 2153-2155
    [28] T.B. Adams, D.C Sinclair, and A.R. West, Giant Barrier Layer Capacitance Effects in CaCu_3Ti_40O_(12) Ceramics, Advanced Materials, 2002, 14: 321-323
    [29] Jianjun Liu, Chun-gang Duan, W.N. Mei, et al., Dielectric Properties and Maxwell-Wagner Relaxation of Compouds ACu_3Ti_4O_(12) (A=Ca, Bi_(2/3), Y_(2/3), La_(2/3)), J. Applied Physics, 2005, 98: 093703
    [30] B. Shri Prakash and K.B.R. Varma, Effect of Sintering Conditions on the Dielectric Properties of CaCu_3Ti_4O_(12) and La_(2/3)Cu_3Ti_4O_(12) Ceramics: A Comparative Study, Physica B, 2006,382:312-319
    [31] S.F. Shao, J.L. Zhang, P. Zheng, et al., Microstructure and Electrical Properties of CaCu_3Ti_4O_(12) Ceramics, J. Applied Physics, 2006, 99: 084106
    [32] S.Y. Chung, I.D. Kim, and S.J.L. Kang, Strong Nonlinear Current-Voltage Behavior in Perovskite-Derivation Calcium Copper Titanate, Nature Materials, 2004, 3: 774-778
    [33] T.T. Fang and H.K. Shiau, Mechanism for Developing the Boundary Barrier Layers of CaCu_3Ti_4O_(12), J. American Ceramics Society, 2004, 87:2072-2079
    [34] T.T. Fang and C.P. Liu, Evidence of the Internal Domains for Inducing the Anomalously High Dielectric Constant of CaCu_3Ti_4_(12), Chemistry of Materials, 2005, 17:5167-5171
    [35] Y. Yan, L. Jin, L. Feng, et al., Decrease of Dielectric Loss in Giant Dielectric Constant CaCu_3Ti_4O_(12) Ceramics by Adding CaTiO_3, Materials Science and Engineering B, 2006, 130:146-150
    [36] W. Kobayashi and I. Terasaki, CaCu_3Ti_4O_(12)CaTiO_3 Composite Dielectrics: Ba/Pb-free Dielectric Ceramics with High Dielectric Constants, Applied Physics Letters, 2005, 87:032902
    [37] Y. Lin, J. Cai, M. Li, et al., High Dielectric and Nonlinear Electrical Behaviors in TiO_2-rich CaCu_3Ti_4O_(12) Ceramics, Applied Physics Letters, 2006, 88:172902
    [38] R. Mazumder, A. Seal, A. Sen, et al., Effect of Boron Addition on the Dielectric Properties of Giant Dielectric CaCu_3Ti_4O_(12), Ferroelectrics, 2005, 326:103-108
    [39] W. Kobayashi, I. Terasaki, Unusual Impurity Effects on the Dielectric Properties of CaCu_(3-x)Mn_xTi_4O_(12) Physica B, 2003, 329-333:771-772
    [40] R.K Grubbs, E.L. Venturing P.G. Clem, et al., Dielectric and Magnetic Properties of Fe- and Nb-doped CaCu_3Ti_4O_(12), Physical Review B, 2005, 72:104111 [41] S.H. Hong and D.Y. Kim, Electric and Dielectric Properties of Nb-doped CaCu_3Ti_4O_(12) Ceramics, J. American Ceramics Society, 2007, 90:2118-2121
    [42] S. Kwon, C. Huang, E.A. Patterson, et al., The Effect of Cr_2O_3, Nb_2O_5 and ZrO_2 Doping on the Dielectric Properties of CaCu_3Ti_4O_(12), Materials Letters, 2008, 62:633-636
    [43] B. Shri Prakash and K.B.R. Varma, Microstructural and Dielectric Properties of Donor Doped (La~(3+)) CaCu_3Ti_4O_(12) Ceramics, J. Materials Science: Materials Electron, 2006, 17:899-907
    [44] W. Li, R.W. Schwartz, A. Chen et al., Dielectric Response of Sr Doped CaCu_3Ti_4O_(12) Ceramics, Applied Physics Letters, 2007, 90:112901
    [45] A.F.L. Almeida, R.S. de Oliveria, J.C. Goes, et al., Structural Properties of CaCu_3Ti_4O_(12) Obtained by Mechanical Alloying, Materials Science and Engineering B, 2002, 96:275-283
    [46] P. Jha, P. Arora, A.K. Ganguli, Polymeric Citrate Precursor Route to the Synthesis of the High Dielectric Constant Oxide, CaCu_3Ti_4O_(12), Materials Letters, 2003, 57:2443-2446
    [47] R.N.P. Choudhary, U. Bhunia, Structural Dielectric and Electrical Properties of ACu_3Ti_4O_(12) (A=Ca, Sr and Ba), J. Materials Science, 2002, 37:5177-5182
    [48] A. Hassin, M. Gervais and J. Coulon, Synthesis of Ca_(0.25)Cu_(0.75)TiO_3 and Infrared Characterization of Role Played by Copper, Materials Science and Engineering B, 2001, 87:164-168
    [49] 郝华,铋层状SrBi_4Ti_4O_(15)压电陶瓷的制备与性能研究,武汉理工大学博士学位论文,2004
    [50]刘韩星,欧阳世翕,无机材料微波固相合成方法与原理,科学出版社,2006
    [51]V.Subramanian,C.L.Chen,H.S.Chou et al.,Microwave-assisted Solid-state Synthesis of LiCoO_2 and Its Electrochemical Properties As a Cathode Material for Lithium Batteries,J.Materials Chemistry,2001,11:3348-3353
    [52]A.Agostino,P.Benzi,M.Castiglioni,et al.,YBa_2Cu_3O_7 Synthesis Using Microwave Heating,Superconductor Science and Technology,2004,17:685-688
    [53]B.Vaidhyanathan,D.K.Agrawal,T.R.Shrout,at al.,Microwave Synthesis and Sintering of Ba(Mg_(1/3)Ta_(2/3))O_3,Materials Letters,2000,42,207-211
    [54]K.E.Gibbons,M.O.Jones,S.J.Blundell,et al.,Rapid Synthesis of Colossal Magnetoresistance Manganites by Microwave Dielectric Heating,Chemistry Communication,2000,159-160
    [55]刘韩星,刘志坚,欧阳世翕,微波合成SrTiO_3的工艺、结构与性能研究,物理化学学报,1998,14:624-629
    [56]曹明贺;刘韩星;欧阳世翕等,微波烧结钛酸钡陶瓷与常规烧结钛酸钡陶瓷界面偏析研究,硅酸盐学报,2000,28:47-50
    [57]M.H.Liang,S.Y.Wu,C.T.Hu et al.,Enhancing the Sinterability of Ba(Mg_(1/3)Ta_(2/3))O_3Dielectrics by Using Chemically-de-rived Powders,Materials Chemistry and Physics,2003,79:276-281
    [58]C.H.Lu and C.C Tsai,Homogeneous Precipitation Synthesis and Sintering Behavior of Microwave Dielectrics:Ba(Mg_(1/3)Ta_(2/3))O_3,Materials Science and Engineering B,1998,55:95-101
    [59]J.R.Huang,Z.X.Xiong,C.Fang et al.,Hydrothermal Synthesis of Ba_2Ti_9O_(20)Nano-powder for Microwave Ceramics,Materials Science and Engineering B,2003,99:226-229
    [60]J.H.Choy,Y.S.Han,S.H.Hwang,et al.,Citrate Route to Sn-doped BaTi_4O_9,J.American Ceramics Society,2001,84:1669-1773
    [61]B.A.Bender,M.J.Pan,The Effect of Processing on the Giant Dielectric Properties of CaCu_3Ti_4O_(12),Materials Science and Engineering B,2005,117:339-347
    [62]B.Brize,G.Gruener,J.Wolfman,et al.,Grain Size Effects on the Dielectric Constant of CaCu_3Ti_4O_(12)Ceramics,Materials Science and Engineering B,2006,129:135-138
    [63]W.Q.Ni,X.H.Zheng,J.C.Yu,Sintering Effects on Structure and Dielectric Properties of Dielectrics CaCu_3Ti_4O_(12),J.Materials Science,2007,42:1037-1041
    [64]B.S.Prakash,K.B.R.Varma,Influence of Sintering Conditions and Doping on the Dielectric Relaxation Originating from the Surface Layer Effects in CaCu_3Ti_4O_(12)Ceramics,J.Physics and Chemistry of Solids,2007,68:490-502
    [65] T.B. Adams, D.C Sinclair, A.R. West, Decomposition Reactions in CaCu_3Ti_4O_(12) Ceramics, J. American Ceramics Society, 2006, 89:2933-2838 [66] T.T. Fang, L.T. Mei, H.F. Ho, Effects of Cu Stoichiometry on the Microstructures, Barrier-Layer Structures, Electrical Conduction, Dielectric Responses, and Stability of CaCu_3Ti_4O_(12), Acta Materialia, 2006, 54:2867-2875
    [67] M.A. Alim, M.A. Seitz, R.W. Hirthe, Complex Plane Analysis of Trapping Phenomena in Zinc Oxide Based Grain Boundaries, J. Applied Physics, 1988, 63:2337-2396
    [68] A. Smith, J.F. Baumard, P. Abelard, et al, Ac Impedance Measurements and V-I Characteristics for Co-, Mn-, or Bi-doeped ZnO, J. Applied Physics, 1989, 65:5119-5125
    [69] J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, An Alternative Representation of Impedance Spectra of Ceramics, Materials Research Bulletin, 2000, 35:727-740
    [70] D.C Sinclair, and A.R. West, Impedance and Modulus Spectroscopy of Semiconducting BaTiO_3 Showing Positive Temperature Coefficient of Resistance, J. Applied Physics, 1989, 66:3850-3858
    [71]史美伦,交流阻抗谱原理及应用,国防工业出版社,2001
    [72] J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, Applicability of the Brick Layer Model to Describe the Grain Boundary Properties of Strontium Titanate Ceramics, J. European Ceramics Society, 2000, 20:1603-1609
    [73] B. Bender, M.J. Pan, The Effect of Starting Powders on the Giant Dielectric Properties of the Perovskite CaCu_3Ti_4O_(12), Ceramic Engineering and Science Proceeding: 2005, 26:101-108
    [74] Z. Jing, C. Ang, Z. Yu, et al., Dielectric Properties of Ba(Ti_(1-y)Y_y)O_3 Ceramics, J. Applied Physics, 1998, 84:983-986
    [75] X.G. Tang, H.L.W. Chan, Effect of Grain Size on the Electrical Properties of (Ba,Ca)(Zr, Ti)O_3 Relaxor Ferroelectric Ceramics, J. Applied Physics, 2005, 97:034109
    [76] X.G. Tang, K.H. Chew, H.L.W. Chan, Diffuse Phase Transition and Dielectric Tunability of Ba(Zr_yTi_(1-y))O_3 Relaxor Ferroelectric Ceramics, Acta Materialia, 2004, 52:5177-5183
    [77] GA. Samara, The Relaxational Properties of Compositionally Disordered ABO_3 Perovskites, J. Physics: Condensed Materials, 2003, 15:R367-R411
    [78] Chen Ang, Zhi Jing, and Zhi Yu, Ferroelectric Relaxor Ba(Ti,Ce)O_3, J. Physics.: Condensed Matterials, 2002, 14: 8901-8912
    [79] A.E. Glazounov and A.K. Tagantsev, Direct Evidence for Vogel-Fulcher Freezing in Relaxor Ferroelectrics, Applied Physics Letters, 1998, 73:856-858
    [80] B.E. Vugmeistre and M.D. Glinchuk, Dipole Glass and Ferroelectricity in Random-site Electric Dipole Systems, Reviews of Modern Physics, 1990, 62:993-1026
    [81]S.Wada,T.Hoshina,H.Yasuno,et al.,Size Dependence of Dielectric Properties for nm-Sized Barium Titanante Crystallites and Its Origin,J.Korean Physical Society,2005,46:303-307
    [82]S.K.Rout,E.Sinha,S.Panigrahi,J.Bera,T.P.Sinha,J.Phys.Chem.Solids.67,2257(2006)
    [83]S.M.Moussa and B.J.Kennedy,Structural studies of the distorted perovskite Ca_(0.25)Cu_(0.75)TiO_3,Materials Research Bulletin,2001,36:2525-2529
    [84]P.R.Bueno,M.A.Ramirez,J.A.Varela,et al.,Dielectric Spectroscopy Analysis of CaCu_3Ti_4O_(12)Polycrystalline System,Applied Physics Letters,2006,89:19117
    [85]J.Li,M.A.Subramanian,H.D.Rosenfeld,et al.,Clues to the Giant Dielectric Constant of CaCu_3Ti_4O_(12)in the Defect Structure of SrCu_3Ti_4O_(12),Chemistry Materials,2004,16:5223-5225
    [86]C.Wang,H.J.Zhang,P.M.He,et al.,Ti-rich and Cu-poor Grain-boundary Layers of CaCu_3Ti_4O_(12)Detected by X-ray Photoelectron Spectroscopy,Applied Physics Letters,2007,91:052910
    [87]B.K.Lee,S.Y.Chung,S.J.Kang,Grain Boundary Faceting and Abnormal Grain Growth in BaTiO_3,Acta Materialia,2000,48:1575-1580
    [88]G.Cao,L.Feng,C.Wang,Grain-boundary and Subgrain-boundary Effects on the Dielectric Properties of CaCu_3Ti_4O_(12)Ceramics,J.Physics D:Applied Physics,2007,40:2899-2905
    [89]J.Liu,C.G.Duan,W.G.Yin,et al.,Large Dielectric Constant and Maxwell-Wagner Relaxation in Bi_(2/3)Cu_3Ti_4O_(12),Physical Review B,2004,70:144106
    [90]沈宗洋,稀土Nd掺杂SrTiO_3基高储能介质陶瓷缺陷结构及介电性能研究,武汉理工大学博士学位论文,2007
    [91]H.Neumann,G.Arit,Maxwell-Wagner Relaxation and Degradation of SrTiO_3 and BaTiO_3Ceramics,Ferroelectfics,1986,69:179-186
    [92]C.Elissalde,J.Ravez,Ferroelectfic Ceramics:Defects and Dielectric Relaxations,J.Materials Chemistry,2001,11:1957-1967
    [93]H.T.Yu,H.X.Liu,H.Hao,et al.,Grain Size Dependence of Relaxor Behavior in CaCu_3Ti_4O_(12)Ceramics,Applied Physics Letters,2007,91:222911
    [94]R.D.Shannon,Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,Acta Crystalline,1976,A32:751-767
    [95]S.H.Hong,D.Y.Kim,H.M.Park,et al.,Electric and Dielectric Properties of Nb-Doped CaCu_3Ti_4O_(12)Ceramics,J.American Ceramics Society,2007,90:2118-2121
    [96] Z.H. Wu, M.H. Cao, H.T. Yu, et al., The Microstructures and Dielectric Properties of xSrZrO_3-(1-x)SrTiO_3 Ceramics, J. Electroceramics, DOI: 10.1007/s 10832-007-9103-9 (In press) [97] T.R. Armstrong, R.D. Roseman, R.C. Buchanan, Effect of Core Shell Morphology on Dielectric Properties of Zr-doped BaTiO_3, IEEE, Application of Ferroelectrics, 1992, ISAF'92, 455-457
    [98] T. Maiti, R. Guo, A.S. Bhalla, The Evolution of Relaxor Behavior in Ti~(4+) Doped BaTiO_3 Ceramics, J. Applied Physics, 2006, 100:114109
    [99] P.B. Macedo, C.T. Moynihan, and R. Bose, Phys. Chem. Glasses 1972, 13:171
    [100]R. Gerhardt, Impedance and Dielectric Spectroscopy Revisited: Distinguishing Localized Relaxation from Long-range Conductivity, J. Physics and Chemistry of Solids, 1994, 55: 1491-1506
    [101]S.Y. Chung, Lattice Distortion and. Polarization Switching in Calcium Copper Titanate, Applied Physics Letters, 2005, 87:052901
    [102]S.H. Yoon, H. Kim, Space Charge Segregation During the Colling Process and its Effect on the Grain Boundary Impedance in Nb-Doped BaTiO_3, J. European Ceramic Society, 2002, 22:689-696
    [103]F.D Morrison, D.C. Sinclair, A.R. West, An Alternative Explanation for the Origin of the Resistive Anomaly in La-Doped BaTiO_3, J. American Ceramics Society, 2001, 54:474-476
    [104]F.D. Morrision, D.C. Sinclair, A.R. West, Characterization of Lanthanum-Doped Barium Titanate Ceramics Using Impedance Spectroscopy, J. American Ceramics Society, 2001, 84:531-538
    [105]A.J. Mouslon and J.M. Herbert, Electroceramics: Materials, Properties and Applications, Chapman & Hall, London, U.K. 1990
    [106]M. Matos, and L. Walmsley, Cation-oxygen Interaction and Oxygen Stability in CaCu_3Ti_4O_(12) and CdCu_3Ti_4O_(12) Lattices, J. Physics: Condensed Matter, 2006, 18:1793-1803
    [107]C.C. Wang, L.W. Zhang, Surface-layer Effect in CaCu_3Ti_4O_(12), Applied Physics Letters, 2006, 88:042906
    [108]A.S. Bhalla, R. Guo, R. Roy, The Perovskite Structure - A Review of its Role in Ceramic Science and Technology, Materials Research Innovation, 2000, 4:3-26
    [109]H. Ishikawa, K. Oohira, T. Nakajima, et al., Combustion Synthesis of SrTiO_3 Using Different Raw Materials, J. Alloys and Compounds, 2008,454:384-388
    [110]H.T. Yu, H.X. Liu, H. Hao, et al., Dielectric Properties of CaCu_3Ti_4O_(12) Ceramics Modified by SrTiO_3, Materials Letters, 2008,62:1353-1355
    [111]Z.H. Yao, H.X. Liu, Z.Y. Shen, et al., Effect of V_2O_5 Additive to 0.4SrTiO3-0.6La(Mg0.5Ti0.5)O3 Ceramics on Sintering Behavior and Microwave Dielectric Properties, Materials Research Bulletin, 2006, 41:1972-1978
    [112]P.S. Neelakantaswamy, B.V.R. Chowdari and A. Rajaratnam, Estimation of Permittivity of a Compact Crystal by Dielectric Measurements on its Powder: A Stochastic Mixture Model for Powder Dielectric, J. Physics D, 1983,16: 1785-1799
    [113]O. Furukawa, M. Harata, M. Imai, et al., Low Firing and High Dielectric Constant X7R Ceramic Dielectric for Multilayer Capacitors Based on Relaxor and Barium Titanate Composite, J. Materials Science, 1991, 26: 5838-5842
    [114]N.J. Kidner, Z.J. Homrighaus, B.J. Ingram, et al., Impedance/Dielectric Spectroscopy of Electroceramics - Part 1: Evlauation of Composite Models for Polycrystalline Ceramics, J. Electroceramics, 2005, 14: 283-291
    [115]M.J. Pan and B.A. Bender, A Bimodal Grain Size Model for Predicting the Dielectric Constant of Calcium Copper Titanate Ceramics, J. American Ceramics Society, 2005, 88:2611-2614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700