白细胞介素-2对离子型谷氨酸受体功能以及培养海马神经元树突发育、突触发生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞介素-2(Interleukin-2,IL-2)是目前研究比较广泛的细胞因子之一,IL-2不仅具有与T细胞相关的多种免疫调节功能,同时也是一种具有多种生物学特性的细胞因子。除了IL-2的免疫活性之外,神经生物学和神经内分泌学的研究数据表明IL-2在中枢神经系统(central nervous systems,CNS)中发挥重要的作用。除了外周IL-2和它的特异性受体IL-2受体(IL-2R)外,IL-2/IL-2R蛋白分子还广泛存在于额叶皮层、纹状体、海马、下丘脑、蓝斑、小脑、垂体、胼胝体等脑区,也即在CNS中存在着IL-2作用的结构基础,推测可能来源于内源性神经元和胶质细胞的合成和分泌。脑源性的IL-2很可能在其介导的神经调节功能或者CNS紊乱等方面发挥重要的作用;同时,外周的IL-2也能通过转运机制穿过血脑屏障(blood-brainbarrier,BBB)进入一些脑区发挥作用,提示该细胞因子为免疫、内分泌和CNS之间的相互作用提供了体液调节的可能性。
     然而IL-2的临床应用也引起了许多CNS的副作用,例如IL-2用于抗肿瘤的免疫治疗过程中经常会伴有毒性并发症以及中度或严重的神经精神紊乱,且有认知功能的损伤;在啮齿类动物中,IL-2能引起生物和行为上的变化,并且与一些神经退行性疾病的病理异常相关,例如帕金森病和阿尔茨海默病;IL-2能有效地抑制海马长时程增强(long term potentiation,LTP)的诱导以及维持,提示IL-2可能与学习记忆功能相关。海马是一个富含脑源性IL-2以及IL-2R的脑区并且与学习记忆功能密切相关,因此IL-2在神经精神方面的副作用——认知缺损和记忆丧失等极有可能是IL-2直接作用于该脑区引起的。
     LTP与长时程抑制(long term depression,LTD)是突触可塑性的两种表现形式(方向相反),二者的协调表达是学习与记忆能够正常进行的基础。谷氨酸是海马内主要的兴奋性神经递质,它通过与突触后谷氨酸受体结合,激活受体,引发突触兴奋传递。离子型谷氨酸受体作为主要的兴奋性受体参与了神经系统重要功能的调节作用,尤其在突触可塑性的研究中非常关键。离子型谷氨酸受体包括N-甲基-D-天(门)冬氨酸(N-methyl-D-aspartate,NMDA)受体,α-氨基-3-羟-5甲基—异恶唑丙酸(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate,AMPA)受体以及海藻酸(kinate,KA)受体,前两者主要分布在突触后,而KA受体在突触前与突触后均有分布。AMPA和NMDA受体在海马的突触可塑性的研究中有关键作用。已经证实NMDA受体参与了多种神经系统疾病的病理过程,包括癫痫症,缺血性脑损伤,可能在神经退行性疾病包括帕金森病和阿尔茨海默病中发挥作用,并且NMDA受体掌控着海马LTP和LTD的发生,因此提示我们NMDA受体可能会介入IL-2对突触可塑性的调节作用。有研究发现IL-2能双向调节中脑神经元NMDA受体介导的电流,证实IL-2与中脑神经元NMDA受体之间有着密切的联系。此外,另一种离子型谷氨酸受体——AMPA受体则被认为是突触可塑性变化的重要调节蛋白,通过其反应实现了突触活性的改变。既然离子型谷氨酸受体对海马突触可塑性是非常重要的,而IL-2又介入了海马脑区突触可塑性的调节,因此我们认为IL-2、离子型谷氨酸受体和海马突触可塑性这三者之间很可能存在着某种联系。IL-2是否对海马NMDA受体有作用,或是对于海马的AMPA受体也有作用还不清楚,目前还没有关于IL-2对海马谷氨酸受体作用的相关研究报道。
     已往关于IL-2与CNS功能的研究主要都是倾向于IL-2是通过与其特异性受体IL-2R结合来发挥生物学效应,但是也有例外。1996年Wang等研究报道IL-2能够直接与阿片受体结合而引起相应的信号转导,说明IL-2并不只是与IL-2R结合后才起作用的。如果IL-2对海马离子型谷氨酸受体有作用,那么是通过什么途径来实现的?是通过与其受体IL-2R结合后引起一系列信号转导起作用或是直接作用于这些受体?这些受体是否具有对IL-2敏感的亚型或靶结构?这些具体的作用机制尚不清楚。
     此外,研究发现IL-2对多种神经元的生长及存活都有重要的促进作用。IL-2可为大鼠多个脑区包括海马等的原代培养神经元提供营养支持,能促进神经元的形态发育,如神经突的生长等。IL-2在空间学习和记忆相关的脑神经元发育和调节中起到重要的作用。神经元树突是神经元之间信息交换的场所,其长度、直径和分支等各项指标均可反映细胞的功能状态。这些提示我们IL-2对海马神经元树突发育和突触形成可能存在着一定的影响。
     本学位论文主要通过分子构建、原代神经元培养、电生理技术、活细胞荧光成像及其它相关技术,研究IL-2对离子型谷氨酸受体功能以及培养海马神经元树突发育、突触发生的影响,阐明IL-2的调节作用及其可能机制。
     第一部分:白细胞介素—2对NMDA受体功能的影响
     目的:研究IL-2对培养大鼠海马神经元和表达重组NMDA受体的HEK(humanembryonic kidney)293细胞中NMDA受体功能的影响以及初步作用机制。方法:本实验利用全细胞膜片钳技术在体外培养第12天(days in vitro,DⅣ12)到DⅣ14的原代海马神经元以及表达重组NMDA受体的HEK293细胞中通过Y管系统给予NMDA受体激动剂记录NMDA受体介导的全细胞电流(I_(NMDA)),并用Y管系统给予不同浓度的IL-2处理;同时用逆转录聚合酶链式反应(reversetranscription-polymerase chain reaction,RT-PCR)检测了HEK293细胞中IL-2Rβ亚基的表达情况。结果:我们发现1)在DⅣ12的神经元中,IL-2与NMDA受体激动剂同时作用时,0.01-1 ng/ml IL-2能剂量依赖性快速地抑制I_(NMDA)峰值,0.1 ng/mlIL-2引起的抑制程度为47±3%(P<0.001),而单独Y管给1L-2不能引起细胞的任何反应。2)IL-2对I_(NMDA)的抑制作用是一种竞争性的抑制作用,NMDA浓度越高,IL-2对I_(NMDA)的抑制程度就越低;IL-2的存在显著增加了NMDA的EC_(50)值,从42±7μM增加到79±4μM。3)IL-2不改变NMDA受体的反转电位和电流—电压(Ⅰ-Ⅴ)曲线。4)RT-PCR结果显示HEK293细胞中无功能性的IL-2R的存在;在分别表达重组的NMDA受体亚型NR1/NR2A和NR1/NR2B的HEK293细胞中,IL-2也能显著地抑制含有NR2A亚基和NR2B亚基的NMDA受体的电流(I_(NR2A)andI_(NR2B))峰值,并且抑制效率有亚型差异性,分别为54±5%(P<0.001)和30±4%(P<0.001)。5)在培养海马神经元中,用10μM ifenprodil阻断NR2B亚型成分电流I_(NR2B),也能观察到IL-2对I_(NR2A)的抑制作用,与HEK293细胞中的结果相似。结论:本实验证实了生理浓度下的IL-2(0.01-1 ng/ml)对培养大鼠海马神经元的NMDA受体有显著的抑制作用,并且这个抑制作用是IL-2浓度依赖的。在表达不同NMDA受体亚基的HEK293细胞中记录两种不同亚型的NMDA受体电流I_(NR2A)和I_(NR2B),IL-2对两者都有抑制作用,并且对I_(NR2A)的抑制程度大于I_(NR2B);IL-2对I_(NR2A)峰值的抑制作用在培养的海马神经元中也类似。这些结果提示着IL-2可能是直接作用于NMDA受体,而不是IL-2R依赖性的,并且这种抑制作用很可能有NMDA受体亚型的差异性。
     第二部分:白细胞介素—2对培养大鼠海马神经元的AMPA受体功能的影响
     目的:研究IL-2对培养大鼠海马神经元AMPA受体功能的影响。方法:仍通过Y管系统给予AMPA受体激动剂以及不同浓度的IL-2,用全细胞膜片钳技术在培养DⅣ12到DⅣ14的大鼠海马神经元中记录AMPA受体介导的全细胞电流(I_(AMPA))和AMPA受体介导的微小兴奋性突触后电流(AMPA-mEPSCs)。结果:我们发现1)IL-2与AMPA受体激动剂同时作用时,0.01-1 ng/ml IL-2能剂量依赖性快速地抑制I_(AMPA)峰值,0.1 ng/ml IL-2引起的抑制程度为55±6%(P<0.001),而单独Y管给IL-2也不能引起细胞的任何反应。2)IL-2对I_(AMPA)的抑制作用是一种竞争性的抑制作用,谷氨酸浓度越高,IL-2对I_(AMPA)的抑制程度就越小;IL-2增加了谷氨酸的EC_(50)值,从56±8μM增加到144±7μM。3)IL-2显著抑制AMPA-mEPSCs的幅度,抑制程度为24±6%(P<0.05),而对频率和衰减时间没有影响。结论:本实验证实了生理浓度下的IL-2(0.01-1 ng/ml)对培养大鼠海马神经元的AMPA受体也有显著的抑制作用,与对NMDA受体的作用类似,但对I_(AMPA)峰值的抑制程度更为显著;同时IL-2对AMPA-mEPSCs的抑制作用表明IL-2能抑制AMPA受体介导的兴奋性突触的活性,提示AMPA受体可能也介入了IL-2对突触可塑性的调节。
     第三部分:白细胞介素—2对培养海马神经元树突发育和突触发生的影响
     目的:观察IL-2对培养海马神经元树突发育和突触发生的影响。方法:本实验在DⅣ5的原代海马神经元中转染能定位在膜上的绿荧光蛋白(Green fluorescentprotein,GFP)F-GFP,用活细胞成像法于第7天观察树突丝的密度、长度和运动情况;于第7、10、14天分别观察树突分支的生长情况;第14天观察树突棘的密度,研究不同作用浓度和时间的IL-2对以上这些形态学特征的影响。用单因素方差分析和双尾t检验对实验结果作显著性检验。结果:我们发现1)IL-2处理后能明显促进培养第7、10、14天神经元树突树的分支发育和长度,增强效应与IL-2作用浓度和时间正相关;10 ng/ml IL-2处理48小时后DⅣ7、DⅣ10、DⅣ14的神经元树突树的分支数目分别增加了48.21±10.74%(P<0.001),17.79±5.64%(P<0.01)和15.28±4.89%(P<0.05);而树突树总长度分别增加了43.01±9.43%(P<0.001),35.04±7.01%(P<0.05)和24.48±5.83%(P<0.01)。这个增强作用也与作用时间正相关。无论是树突树的分支数还是长度,IL-2对DⅣ7神经元的作用最显著。2)10 ng/ml IL-2处理48小时后显著增加了DⅣ7神经元树突丝的运动性,以运动的树突丝的密度(个/100μm)以及运动的树突丝比上树突丝总个数的百分比来表示,分别增加了30.93±12.83%(P<0.001)和44.18±7.81%(P<0.001)。3)在DⅣ5到DⅣ7、DⅣ5到DⅣ14以及DⅣ12到DⅣ14这三个时间段分别用10 ng/ml IL-2处理神经元,在DⅣ14天观察,发现IL-2能促进前两组神经元树突棘的密度,分别增加了18.48±6.22%(P<0.05)和20.57±10.89%(P<0.01),但对后一组没有影响(P>0.05)。结论:这些研究结果提示IL-2能有效促进培养海马神经元树突的发育和突触的形成,尤其是在早期发育阶段更为有效。
Interleukin-2(IL-2)is one of the most actively studied cytokines,and it has multiple immunoregulatory functions and biological properties not only related to T-cells.In addition to its immune activities,neurobiological and neuroendocrine data indicated that IL-2 plays roles in the central nervous systems(CNS).IL-2 and IL-2 receptors(IL-2R) are widely distributed in the brain regions,including frontal cortex,striatum, hippocampus,hypothalamus,locus coeruleus,cerebellum,pituitary and callose,and are potentially produced by neurons and astrocytes;Besides,it has been reported that IL-2 is able to cross the blood-brain barrier(BBB)by saturable and nonsaturable transport mechanisms,which makes it a likely candidate for humoral communication between the immune,endocrine and CNS,suggesting that IL-2 could act as a neuroregulatory factor.
     IL-2 may prove of therapeutic value in a wide range of pathological conditions,but the significant anticancer effects obtained with IL-2 immunotherapy are often associated with side effects in the CNS,like toxic complications,moderate or severe neurological and mental disorders as well as cognitive impairements.In rodents,exogenous treatment of IL-2 could induce biological and behavioral alterations related to pathogenesis of some degenerative diseases,including Parkinson's disease and Alzheimer's disease.It has reported that IL-2 suppresses the induction and maintenance of long-term potentiation(LTP),a long-lasting increase in synaptic transmission,suggesting that IL-2 may be a modulatory factor in synaptic plasticity.Hippocampus is a region enriched of brain-derived IL-2 and IL-2R proteins,and also closed associated with learning and memory.Thus,side effects in nervous system like cognitive impairments and memory loss induced by IL-2 may be related to direct effects of IL-2 on hippocampus.It is well known that LTP and long term depression(LTD)are the two forms of neuronal plasticity, and are thought to be the substrate of learning and memory.Glutamatic acid is the main excitatory neurotransmitter in hippcampus,and it can initiate synaptic excitatory transmission through binding to and then activating postsynaptic glutamate receptors, which play important roles in regulation of nervous system as major excitatory receptors, especially in synaptic plasticity.There are two major postsynaptic ionotropic glutamate receptor subtypes,that is,N-methyl-D-aspartate(NMDA)receptors andα-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate(AMPA)receptors,which are crucial for mediating hippocampal synaptic plasticity.Activation of NMDA receptors within the CNS represents a major signal for persistent alterations in glutamatergic signaling,like LTP and LTD,which may underlie higher order processes such as learning and memory in the hippocampus and are involved in pathogenesis of several types of neurological disorders such as epilepsy,ischemia-induced brain injury,and neurodegenerative disorders.These studies have implied that NMDA receptors may be a probable target of IL-2 in the regulation of synaptic plasticity and learning and memory. A previous study showed that IL-2 can modulate NMDA receptor-mediated currents (I_(NMDA))in native mesolimbic neurons.However,the specific molecular targets of IL-2 on NMDA receptors remain unknown.In addition,AMPA receptors are also important to regulate alterations in synaptic plasticity and their activities are closely linked to the enhancement of synaptic transmission that occurs during LTP.Since ionotropic glutamate receptors and IL-2 are closely related to hippocampal synaptic plasticity,it is possible that there is relationship among IL-2,ionotropic glutamate receptors and synaptic plasticity.NMDA receptors and AMPA receptors may contribute to the possible effects of IL-2 on synaptic plasticity and learning and memory.However,there is no related report at present,we hypothesized that IL-2 may modulate excitability through NMDA receptors and/or AMPA receptors in the hippocampus.
     Furthermore,it is known that the biological effects of IL-2 are generally exerted through IL-2R.However,not all its effects are initiated by combination with its receptors, for instance,IL-2 can bind toδ-opioid receptors.So,IL-2 may also directly interact with either NMDA receptors or AMPA receptors.It was of interest to study the effects of IL-2, at physiologically relevant concentrations,on these two kinds of receptors.
     Moreover,IL-2 plays a role in development and regulation of brain neurons.IL-2 can promote development and survival of neurons from various brain regions.For example, it has multiple effects on morphology of hippocampal neurons,including significantly promoting the elongation and branching of neurites in both normal and damaged primary cultures.It is considered that dendrite is the important structure for receiving input signal and the location for integrating and exchanging synaptic information,and the length, diameter and arborazation of dendrites are all crucial to reflect situation of a neuron.It has been reported that many nutrients and stresses affected the formation and function of the whole neuronal circuit by interfering the developmental progress of dendrites.The studies suggested that IL-2 may have impact on dendritic development and synaptogenesis of cultured hippocampal neurons.
     Therefore,in order to understand effects of IL-2 on NMDA receptors and AMPA receptors as well as dendritic development and synaptogenesis of hippocampal neurons, we performed the following studies by molecular construction,primary neuronal cultures, electrophysiological technique and living cell images.
     PartⅠ:Interleukin-2 inhibits NMDA receptor-mediated currents directly and may differentially affect subtypes
     Using whole-cell patch-clamp recordings,this study investigated the effects of interleukin-2(IL-2)on N-methyl-D-aspartate(NMDA)receptor-mediated currents (I_(NMDA))in rat cultured hippocampal neurons and human embryonic kidney(HEK)293 cells expressing recombinant NMDA receptors.We found that IL-2(0.01-1 ng/ml) immediately and significantly decreased peak I_(NMDA)in cultured neurons,causing a 47±3%inhibition at 0.1 ng/ml(p<0.001).The effect of IL-2 on peak I_(NMDA)amplitude was depended on NMDA concentrations,and the value of EC_(50)for NMDA in the presence of IL-2 was 79±4μM(n=7),markedly greater than 42±7μM in controls.Interestingly, the peak I_(NMDA)induced in HEK 293 cells was also inhibited by IL-2.We also found that IL-2 differentially decreased the peak amplitudes of NR2A- and NR2B-containing NMDA receptor-mediated currents(I_(NR2A)and I_(NR2B))by 54±5%(P<0.001)and 30±4% (P<0.001),respectively.These results provide new evidence that IL-2 induces rapid inhibition of peak currents of NMDA receptor-mediated responses with possible NR1/NR2A and NR1/NR2B subtype-differentiation,and suggest that the inhibition is possibly mediated by direct interaction between IL-2 and NMDA receptors.
     PartⅡ:Interleukin-2 inhibits AMPA receptor function in cultured hippocampal neurons of rats
     IL-2 is an important neuroregulatory molecule in the CNS.The present study investigated the effects of IL-2 onα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA)receptors in cultured hippocampal neurons of rats using whole cell patch-clamp analysis.We found that IL-2(0.01-1 ng/ml)immediately and significantly decreased peak I_(AMPA)in cultured hippocampal neurons in a concentration-dependent manner,causing a 55±6%inhibition at 0.1 ng/ml(p<0.001),similar to the effect on NMDA receptors.The effect of IL-2 on peak amplitude of I_(AMPA)was also depended on glutamatic acid concentrations,and the value of EC_(50)for glutamatic acid in the presence of IL-2 was 144±7μM,markedly greater than 56±8μM in controls(n=6).In addition,we also found that the amplitudes of AMPA miniature excitatory postsynaptic currents(mEPSCs)were significant decreased by 24±6%(p<0.05)after 0.1 ng/ml IL-2 application,whereas their frequency and decay times were not altered.These results demonstrate that IL-2 induces rapid inhibition of AMPA receptor-mediated responses, indicating that AMPA receptors may be involved in modulation of IL-2 in excitatory synaptic activity in cultured rat hippocampal neurons.
     PartⅢ:Effects of interleukin-2 on dendritic development and synaptogenesis of cultured hippocampai neurons of rats
     This study has investigated the effects of IL-2 on dendritic filopodia,dendritic arborization,and spine maturation during development in cultured hippocampal neurons of rats.The cultured hippocampal neurons were transfected with F-GFP on days in vitro 5(DIV5)to display the subtle structures of dendrites,and then were treated with IL-2 at various concentrations,respectively,for different time before observation of living cell images.We found that both the dendritic arborization and the length of dendrites per neuron at DIV7,DIV10 and DIV14 were increased by IL-2 treatment in a dose-dependent manner.After treatment for 48 hours,10 ng/ml IL-2 caused 48.21±10.74%(P<0.001),17.79±5.64%(P<0.01)and 15.28±4.89%(P<0.05)increases in neurons at DIV7,DIV10 and DIV14,respectively;while for the total length of branches, causing 43.01±9.43%(P<0.001),35.04±7.01%(P<0.05)and 24.48±5.83%(P<0.01)increase at DIV7,DIV10 and DIV14,respectively.The most strongest effects on both dendritic number and length were observed in neurons at DIV7.And there was also a significant increase in the mobility of dendritic filopodia in the neurons at DIV7 treated with 10 ng/ml IL-2 for 48 h from DIV5 to DIV7,causing a 30.93±12.83%increase in mobile filopodia/100μm(P<0.001)and 44.18±7.81%increase in ration of mobile/total filopodia(P<0.001),but no significant change was observed in filopodia density and length.In addition,IL-2 also caused an increase in the spine density of neurons at DIV14 either treated with IL-2 from DIV5 to DIV7 or from DIV5 to DIV14,causing 18.48±6.22%increase in the former group(P<0.05)and 20.57±10.89%increase in the latter group(P<0.01),respectively,but did not affect neurons with IL-2 treatment from DIV12 to DIV14.These results indicate that IL-2 may affect the dendritic development and formation of synapses of cultured hippocampal neurons,especially during the early developmental stage of neurons.
引文
Alonso R, Chaudieu I, Diorio J, Krishnamurthy A, Quirion R, Boksa P (1993)
    
    Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells. J Neurochem 61:1284-1290.
    
    Anisman H, Kokkinidis L, Merali Z (1996) Interleukin-2 decreases accumbal dopamine efflux and responding for rewarding lateral hypothalamic stimulation. Brain Res 731:1-11.
    
    Anisman H, Merali Z, Poulter MO, Hayley S (2005) Cytokines as a precipitant of depressive illness: animal and human studies. Curr Pharm Des 11:963-972.
    
    Araujo DM, Lapchak PA (1994a) Induction of immune system mediators in the hippocampal formation in Alzheimer's and Parkinson's diseases: selective effects on specific interleukins and interleukin receptors. Neuroscience 61:745-754.
    
    Araujo DM, Lapchak PA (1994b) Induction of immune system mediators in the hippocampal formation in Alzheimer's and Parkinson's diseases: selective effects on specific interleukins and interleukin receptors. Neuroscience 61:745-754.
    
    Araujo DM, Lapchak PA, Collier B, Quirion R (1989) Localization of interleukin-2 immunoreactivity and interleukin-2 receptors in the rat brain: interaction with the cholinergic system. Brain Res 498:257-266.
    
    Awatsuji H, Furukawa Y, Nakajima M, Furukawa S, Hayashi K (1993) Interleukin-2 as a neurotrophic factor for supporting the survival of neurons cultured from various regions of fetal rat brain. J Neurosci Res 35:305-311.
    
    Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14:846-856.
    Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276:2042-2045.
    
    Bartholomew SA, Hoffman SA (1993) Effects of peripheral cytokine injections on multiple unit activity in the anterior hypothalamic area of the mouse. Brain Behav Immun 7:301-316.
    
    Bartus RT, Dean RL, III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408-414.
    
    Beck RD, Jr., King MA, Ha GK, Cushman JD, Huang Z, Petitto JM (2005) IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: relation to development and neurotrophins. J Neuroimmunol 160:146-153.
    
    Beck RD, Jr., King MA, Huang Z, Petitto JM (2002) Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout. Brain Res 955:16-23.
    
    Benveniste EN, Herman PK, Whitaker JN (1987) Myelin basic protein-specific RNA levels in interleukin-2-stimulated oligodendrocytes. J Neurochem 49:1274-1279.
    
    Benveniste EN, Merrill JE (1986) Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321:610-613.
    
    Benveniste EN, Whitaker JN, Gibbs DA, Sparacio SM, Butler JL (1989) Human B cell growth factor enhances proliferation and glial fibrillary acidic protein gene expression in rat astrocytes. Int Immunol 1:219-228.
    
    Bindoni M, Perciavalle V, Berretta S, Belluardo N, Diamantstein T (1988) Interleukin 2 modifies the bioelectric activity of some neurosecretory nuclei in the rat hypothalamus. Brain Res 462:10-14.
    
    Bjorklund A, Dunnett SB (1995) Cognitive function. Acetylcholine revisited. Nature 375:446.
    Blalock JE (1994) The syntax of immune-neuroendocrine communication. Immunol Today 15:504-511.
    
    Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361-379.
    
    Breedlove SM, Jordan CL (2001) The increasingly plastic, hormone-responsive adult brain. Proc Natl Acad Sci U S A 98:2956-2957.
    
    Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327-335.
    
    Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:2983-2994.
    
    De Sarro GB, Masuda Y, Ascioti C, Audino MG, Nistico G (1990) Behavioural and ECoG spectrum changes induced by intracerebral infusion of interferons and interleukin 2 in rats are antagonized by naloxone. Neuropharmacology 29:167-179.
    
    De SG, Rotiroti D, Audino MG, Gratteri S, Nistico G (1994) Effects of interleukin-2 on various models of experimental epilepsy in DBA/2 mice. Neuroimmunomodulation 1:361-369.
    
    Denicoff KD, Durkin TM, Lotze MT, Quinlan PE, Davis CL, Listwak SJ, Rosenberg SA, Rubinow DR (1989) The neuroendocrine effects of interleukin-2 treatment. J Clin Endocrinol Metab 69:402-410.
    
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-61.
    
    Eitan S, Schwartz M (1993) A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes. Science 261:106-108.
    
    Eitan S, Solomon A, Lavie V, Yoles E, Hirschberg DL, Belkin M, Schwartz M (1994) Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Science 264:1764-1768.
    
    Eitan S, Zisling R, Cohen A, Belkin M, Hirschberg DL, Lotan M, Schwartz M (1992) Identification of an interleukin 2-like substance as a factor cytotoxic to oligodendrocytes and associated with central nervous system regeneration. Proc Natl Acad Sci U S A 89:5442-5446.
    
    Eizenberg O, Faber-Elman A, Lotan M, Schwartz M (1995a) Interleukin-2 transcripts in human and rodent brains: possible expression by astrocytes. J Neurochem 64:1928-1936.
    
    Eizenberg O, Faber-Elman A, Lotan M, Schwartz M (1995b) Interleukin-2 transcripts in human and rodent brains: possible expression by astrocytes. J Neurochem 64:1928-1936.
    
    Eizenberg O, Kaplitt MG, Eitan S, Pfaff DW, Hirschberg DL, Schwartz M (1994) Linear dimeric interleukin-2 obtained by the use of a defective herpes simplex viral vector: conformation-activity relationship. Brain Res Mol Brain Res 26:156-162.
    
    Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847-854.
    
    Friedmann MC, Migone TS, Russell SM, Leonard WJ (1996) Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc Natl Acad Sci U S A 93:2077-2082.
    
    Gogas KR (2006) Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol 6:68-74.
    
    Hanisch UK, Quirion R (1995) Interleukin-2 as a neuroregulatory cytokine. Brain Res Brain Res Rev 21:246-284.
    
    Hanisch UK, Rowe W, Sharma S, Meaney MJ, Quirion R (1994) Hypothalamic-pituitary-adrenal activity during chronic central administration of interleukin-2. Endocrinology 135:2465-2472.
    Hanisch UK, Rowe W, van RD, Meaney MJ, Quirion R (1996) Phasic hyperactivity of the HPA axis resulting from chronic central IL-2 administration. Neuroreport 7:2883-2888.
    Hanisch UK, Seto D, Quirion R (1993) Modulation of hippocampal acetylcholine release: a potent central action of interleukin-2. J Neurosci 13:3368-3374.
    Hatakeyama M, Tsudo M, Minamoto S, Kono T, Doi T, Miyata T, Miyasaka M, Taniguchi T (1989) Interleukin-2 receptor beta chain gene: generation of three receptor forms by cloned human alpha and beta chain cDNA's. Science 244:551-556.
    Haugen PK, Letourneau PC (1990) Interleukin-2 enhances chick and rat sympathetic, but not sensory, neurite outgrowth. J Neurosci Res 25:443-452.
    Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262-2267.
    Hermus AR, Sweep CG (1990) Cytokines and the hypothalamic-pituitary-adrenal axis. J Steroid Biochem Mol Biol 37:867-871.
    Huberman M, Shalit F, Roth-Deri I, Gutman B, Brodie C, Kott E, Sredni B (1994) Correlation of cytokine secretion by mononuclear cells of Alzheimer patients and their disease stage. J Neuroimmunol 52:147-152.
    Hunter KE, Sporn MB, Davies AM (1993) Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia 7:203-211.
    Jiang CL, Lu CL (1998) Interleukin-2 and its effects in the central nervous system. Biol Signals Recept 7:148-156.
    Jones TH, Kennedy RL (1993) Cytokines and hypothalamic-pituitary function. Cytokine 5:531-538.
    Jontes JD, Smith SJ (2000) Filopodia, spines, and the generation of synaptic diversity. Neuron 27:11-14.
    Karanth S, Lyson K, McCann SM (1993) Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalami. Proc Natl Acad Sci U S A 90:3383-3387.
    Karanth S, McCann SM (1991) Anterior pituitary hormone control by interleukin 2. Proc Natl Acad Sci U S A 88:2961-2965.
    Kolb B, Forgie M, Gibb R, Gorny G, Rowntree S (1998) Age, experience and the changing brain. Neurosci Biobehav Rev 22:143-159.
    Kowalski J, Labuzek K, Herman ZS (2004a) Flupentixol and trifluperidol reduce interleukin-1 beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Pol J Pharmacol 56:563-570.
    Kowalski J, Labuzek K, Herman ZS (2004b) Flupentixol and trifluperidol reduce interleukin-l beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Pol J Pharmacol 56:563-570.
    Lacosta S, Merali Z, Anisman H (1999) Influence of acute and repeated interleukin-2 administration on spatial learning, locomotor activity, exploratory behaviors, and anxiety. Behav Neurosci 113:1030-1041.
    Lai AY, Swayze RD, El-Husseini A, Song C (2006) Interleukin-l beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J Neuroimmunol 175:97-106.
    Lapchak PA, Araujo DM, Quirion R, Beaudet A (1991b) Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigen-like immunoreactivity) in the rat brain. Neuroscience 44:173-184.
    Lapchak PA, Araujo DM, Quirion R, Beaudet A (1991a) Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigen-like immunoreactivity) in the rat brain. Neuroscience 44:173-184.
    Leonard WJ, Depper JM, Kanehisa M, Kronke M, Peffer NJ, Svetlik PB, Sullivan M, Greene WC (1985) Structure of the human interleukin-2 receptor gene. Science 230:633-639.
    Lin JX, Leonard WJ (1997) Signaling from the IL-2 receptor to the nucleus. Cytokine Growth Factor Rev 8:313-332.
    Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021-1024.
    Luber-Narod J, Rogers J (1988) Immune system associated antigens expressed by cells of the human central nervous system. Neurosci Lett 94:17-22.
    Luheshi GN, Hammond E, Van Dam AM (1996) Cytokines as messengers of neuroimmune interactions. Trends Neurosci 19:46-47.
    McCann SM, Lyson K, Karanth S, Gimeno M, Belova N, Kamat A, Rettori V (1995) Mechanism of action of cytokines to induce the pattern of pituitary hormone secretion in infection. Ann N Y Acad Sci 771:386-395.
    McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105-122.
    McKnight AJ, Classon BJ (1992) Biochemical and immunological properties of rat recombinant interleukin-2 and interleukin-4. Immunology 75:286-292.
    Miller JP, Jacobs GA (1984) Relationships between neuronal structure and function. J Exp Biol 112:129-145.
    Molinuevo JL, Llado A, Rami L(2005) Memantine: targeting glutamate excitotoxicity in Alzheimer's disease and other dementias. Am J Alzheimers Dis Other Demen 20:77-85.
    Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007-1008.
    Moroni SC, Rossi A (1995) Enhanced survival and differentiation in vitro of different neuronal populations by some interleukins. Int J Dev Neurosci 13:41-49.
    Morris RG, Anderson E, Lynch GS, Baudry M (1986a) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776.
    Morris RG, Anderson E, Lynch GS, Baudry M (1986b) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776.
    Morris RG, Anderson E, Lynch GS, Baudry M (1986c) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776.
    Nieto-Sampedro M, Chandy KG (1987) Interleukin-2-like activity in injured rat brain. Neurochem Res 12:723-727.
    Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH (2007) Effects of GSM 1800 MHz on dendritic development of cultured hippocampal neurons. Acta Pharmacol Sin 28:1873-1880.
    Nistico G (1993) Communications among central nervous system, neuroendocrine and immune systems: interleukin-2. Prog Neurobiol 40:463-475.
    Nistico G, De SG (1991b) Is interleukin 2 a neuromodulator in the brain? Trends Neurosci 14:146-150.
    Nistico G, De SG (1991a) Behavioral and electrocortical spectrum power effects after microinfusion of lymphokines in several areas of the rat brain. Ann N Y Acad Sci 621:119-134.
    Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262:1877-1880.
    Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21:545-559.
    Nylund R, Leszczynski D (2004) Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4:1359-1365.
    Ohara PT, Havton LA (1994) Dendritic architecture of rat somatosensory thalamocortical projection neurons. J Comp Neurol 341:159-171.
    Otero GC, Merrill JE (1995) Molecular cloning of IL-2R alpha, IL-2R beta, and IL-2R gamma cDNAs from a human oligodendroglioma cell line: presence of IL-2R mRNAs in the human central nervous system. Glia 14:295-302.
    Otero GC, Merrill JE (1994) Cytokine receptors on glial cells. Glia 11:117-128.
    Palmer CL, Cotton L, Henley JM (2005) The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev
    57:253-277.
    Pardy K, Murphy D, Carter D, Hui KM (1993) The influence of interleukin-2 on vasopressin and oxytocin gene expression in the rodent hypothalamus. J Neuroimmunol 42:131-138.
    Petitto JM, Huang Z (2001) Cloning the full-length IL-2/15 receptor-beta cDNA sequence from mouse brain: evidence of enrichment in hippocampal formation neurons. Regul Pept 98:77-87.
    Petitto JM, McCarthy DB, Rinker CM, Huang Z, Getty T (1997) Modulation of behavioral and neurochemical measures of forebrain dopamine function in mice by species-specific interleukin-2. J Neuroimmunol 73:183-190.
    Petitto JM, McNamara RK, Gendreau PL, Huang Z, Jackson AJ (1999) Impaired learning and memory and altered hippocampal neurodevelopment resulting from interleukin-2 gene deletion. J Neurosci Res 56:441-446.
    Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129-7142.
    Pyter LM, Reader BF, Nelson RJ (2005) Short photoperiods impair spatial learning and alter hippocampal dendritic morphology in adult male white-footed mice (Peromyscus leucopus). J Neurosci 25:4521-4526.
    Raber J, Bloom FE (1994) IL-2 induces vasopressin release from the hypothalamus and the amygdala: role of nitric oxide-mediated signaling. J Neurosci 14:6187-6195.
    Rajan I, Cline HT (1998) Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 18:7836-7846.
    Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC (2005) The structure of interleukin-2 complexed with its alpha receptor. Science 308:1477-1480.
    Robinson MA, Veliz Y, Bergado J, Serrano T, Rosillo JC, Ivett C, Arana M, Quijano Z, Castellano O, Telleria A (1997) [Neuronal toxicity of human recombinant interleukin-2 in rats. Morphological and behavioral validation]. Rev Neurol 25:452-456.
    Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34-42.
    Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci 18:130-136.
    Rozsa K, Rubakhin SS, Szucs A, Hughes TK, Stefano GB (1997) Opposite effects of interleukin-2 and interleukin-4 on GABA-induced inward currents of dialysed Lymnaea neurons. Gen Pharmacol 29:73-77.
    Rutanen EM (1993) Cytokines in reproduction. Ann Med 25:343-347.
    Sakai N, Kaufman S, Milstien S (1995) Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells. J Neurochem 65:895-902.
    Saneto RP, Altman A, Knobler RL, Johnson HM, de VJ (1986) Interleukin 2 mediates the inhibition of oligodendrocyte progenitor cell proliferation in vitro. Proc Natl Acad Sci U S A 83:9221-9225.
    Saneto RP, Chiappelli F, de VJ (1987) Interleukin-2 inhibition of oligodendrocyte progenitor cell proliferation depends on expression of the TAC receptor. J Neurosci Res 18:147-154.
    Sarder M, Abe K, Saito H, Nishiyama N (1996) Comparative effect of IL-2 and IL-6 on morphology of cultured hippocampal neurons from fetal rat brain. Brain Res 715:9-16.
    Sarder M, Saito H, Abe K (1993) Interleukin-2 promotes survival and neurite extension of cultured neurons from fetal rat brain. Brain Res 625:347-350.
    Saris SC, Rosenberg SA, Friedman RB, Rubin JT, Barba D, Oldfield EH (1988) Penetration of recombinant interleukin-2 across the blood-cerebrospinal fluid barrier. J Neurosurg 69:29-34.
    Sawada M, Hara N, Ichinose M (1992) Interleukin-2 inhibits the GABA-induced CI-current in identified Aplysia neurons. J Neurosci Res 33:461-465.
    Sawada M, Suzumura A, Marunouchi T (1995) Induction of functional interleukin-2 receptor in mouse microglia. J Neurochem 64:1973-1979.
    Schwegler H, Boldyreva M, Linke R, Wu J, Zilles K, Crusio WE (1996a) Genetic variation in the morphology of the septo-hippocampal cholinergic and GABAergic systems in mice: II. Morpho-behavioral correlations. Hippocampus 6:535-545.
    Schwegler H, Boldyreva M, Pyrlik-Gohlmann M, Linke R, Wu J, Zilles K (1996b) Genetic variation in the morphology of the septo-hippocampal cholinergic and GABAergic system in mice. I. Cholinergic and GABAergic markers. Hippocampus 6:136-148.
    Schwegler H, Crusio WE (1995) Correlations between radial-maze learning and structural variations of septum and hippocampus in rodents. Behav Brain Res 67:29-41.
    Schwegler H, Crusio WE, Lipp HP, Heimrich B (1988) Water-maze learning in the mouse correlates with variation in hippocampal morphology. Behav Genet 18:153-165.
    Seto D, Kar S, Quirion R (1997) Evidence for direct and indirect mechanisms in the potent modulatory action of interleukin-2 on the release of acetylcholine in rat hippocampal slices. Br J Pharmacol 120:1151-1157.
    Shen Y, Zhu LJ, Liu SS, Zhou SY, Luo JH (2006) Interleukin-2 inhibits NMDA receptor-mediated currents directly and may differentially affect subtypes. Biochem Biophys Res Commun 351:449-454.
    Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811-1816.
    Shimojo M, Imai Y, Nakajima K, Mizushima S, Uemura A, Kohsaka S (1993) Interleukin-2 enhances the viability of primary cultured rat neocortical neurons. Neurosci Lett 151:170-173.
    Singh VK (1994) Studies of neuroimmune markers in Alzheimer's disease. Mol Neurobiol 9:73-81.
    Sorra KE, Harris KM (2000) Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10:501-511.
    Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219-3228.
    Suminami Y, Kashii Y, Law JC, Lin WC, Stanson J, Reichert TE, Rabinowich H, Whiteside TL (1998) Molecular analysis of the IL-2 receptor beta chain gene expressed in human tumor cells. Oncogene 16:1309-1317.
    Szelenyi J (2001) Cytokines and the central nervous system. Brain Res Bull 54:329-338.
    Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257:379-382.
    Tancredi V, Zona C, Velotti F, Eusebi F, Santoni A (1990) Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus. Brain Res 525:149-151.
    Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J (1983) Structure and expression of a cloned cDNA for human interleukin-2. Nature 302:305-310.
    Taniguchi T, Minami Y (1993) The IL-2/IL-2 receptor system: a current overview. Cell 73:5-8.
    Van Sickle BJ, Tietz EI (2002) Selective enhancement of AMPA receptor-mediated function in hippocampal CA1 neurons from chronic benzodiazepine-treated rats. Neuropharmacology 43:11-27.
    Vaughn JE (1989) Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3:255-285.
    Waguespack PJ, Banks WA, Kastin AJ (1994) Interleukin-2 does not cross the blood-brain barrier by a saturable transport system. Brain Res Bull 34:103-109.
    Wang Y, Pei G, Cai YC, Zhao ZQ, Wang JB, Jiang CL, Zheng ZC, Liu XY (1996) Human interleukin-2 could bind to opioid receptor and induce corresponding signal transduction. Neuroreport 8:11-14.
    Winkelhake JL, Gauny SS (1990) Human recombinant interleukin-2 as an experimental therapeutic. Pharmacol Rev 42:1-28.
    Woolley CS (1998) Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm Behav 34:140-148.
    Ye JH, Tao L, Zalcman SS (2001) Interleukin-2 modulates N-methyl-D-aspartate receptors of native mesolimbic neurons. Brain Res 894:241-248.
    Zhu JJ, Qin Y, Zhao M, Van AL, Malinow R (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110:443-455.
    Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91-102.
    Zurawski SM, Vega F, Jr., Doyle EL, Huyghe B, Flaherty K, McKay DB, Zurawski G (1993) Definition and spatial location of mouse interleukin-2 residues that interact with its heterotrimeric receptor. EMBO J 12:5113-5119.
    Zwain IH, Grima J, Cheng CY (1994) Regulation of clusterin secretion and mRNA expression in astrocytes by cytokines. Mol Cell Neurosci 5:229-237.
    Anisman H, Kokkinidis L, Merali Z (1996) Interleukin-2 decreases accumbal dopamine efflux and responding for rewarding lateral hypothalamic stimulation. Brain Res 731:1-11.
    Anisman H, Merali Z, Poulter MO, Hayley S (2005) Cytokines as a precipitant of depressive illness: animal and human studies. Curr Pharm Des 11:963-972.
    Araujo DM, Lapchak PA (1994) Induction of immune system mediators in the hippocampal formation in Alzheimer's and Parkinson's diseases: selective effects on specific interleukins and interleukin receptors. Neuroscience 61:745-754.
    Araujo DM, Lapchak PA, Collier B, Quirion R (1989) Localization of interleukin-2 immunoreactivity and interleukin-2 receptors in the rat brain: interaction with the cholinergic system. Brain Res 498:257-266.
    Awatsuji H, Furukawa Y, Nakajima M, Furukawa S, Hayashi K (1993) Interleukin-2 as a neurotrophic factor for supporting the survival of neurons cultured from various regions of fetal rat brain. J Neurosci Res 35:305-311.
    Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14:846-856.
    Bartholomew SA, Hoffman SA (1993) Effects of peripheral cytokine injections on multiple unit activity in the anterior hypothalamic area of the mouse. Brain Behav Immun 7:301-316.
    Bartus RT, Dean RL, III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408-414.
    Beck RD, Jr., King MA, Ha GK, Cushman JD, Huang Z, Petitto JM (2005) IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: relation to development and neurotrophins. J Neuroimmunol 160:146-153.
    Beck RD, Jr., King MA, Huang Z, Petitto JM (2002) Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout. Brain Res 955:16-23.
    Benveniste EN, Herman PK, Whitaker JN (1987) Myelin basic protein-specific RNA levels in interleukin-2-stimulated oligodendrocytes. J Neurochem 49:1274-1279.
    Benveniste EN, Merrill JE (1986) Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321:610-613.
    Benveniste EN, Whitaker JN, Gibbs DA, Sparacio SM, Butler JL (1989) Human B cell growth factor enhances proliferation and glial fibrillary acidic protein gene expression in rat astrocytes. Int Immunol 1:219-228.
    Bindoni M, Perciavalle V, Berretta S, Belluardo N, Diamantstein T (1988) Interleukin 2 modifies the bioelectric activity of some neurosecretory nuclei in the rat hypothalamus. Brain Res 462:10-14.
    Bjorklund A, Dunnett SB (1995) Cognitive function. Acetylcholine revisited. Nature 375:446.
    Blalock JE (1994) The syntax of immune-neuroendocrine communication. Immunol Today 15:504-511.
    De Sarro GB, Masuda Y, Ascioti C, Audino MG, Nistico G (1990) Behavioural and ECoG spectrum changes induced by intracerebral infusion of interferons and interleukin 2 in rats are antagonized by naloxone. Neuropharmacology 29:167-179.
    De SG, Rotiroti D, Audino MG, Gratteri S, Nistico G (1994) Effects of interleukin-2 on various models of experimental epilepsy in DBA/2 mice. Neuroimmunomodulation 1:361-369.
    Denicoff KD, Durkin TM, Lotze MT, Quinlan PE, Davis CL, Listwak SJ, Rosenberg SA, Rubinow DR (1989) The neuroendocrine effects of interleukin-2 treatment. J Clin Endocrinol Metab 69:402-410.
    Eitan S, Schwartz M (1993) A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes. Science 261:106-108.
    Eitan S, Solomon A, Lavie V, Yoles E, Hirschberg DL, Belkin M, Schwartz M (1994) Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Science 264:1764-1768.
    Eitan S, Zisling R, Cohen A, Belkin M, Hirschberg DL, Lotan M, Schwartz M (1992) Identification of an interleukin 2-like substance as a factor cytotoxic to oligodendrocytes and associated with central nervous system regeneration. Proc Natl Acad Sci U S A 89:5442-5446.
    Eizenberg O, Faber-Elman A, Lotan M, Schwartz M (1995b) Interleukin-2 transcripts in human and rodent brains: possible expression by astrocytes. J Neurochem 64:1928-1936.
    Eizenberg O, Faber-Elman A, Lotan M, Schwartz M (1995a) Interleukin-2 transcripts in human and rodent brains: possible expression by astrocytes. J Neurochem 64:1928-1936.
    Eizenberg O, Kaplitt MG, Eitan S, Pfaff DW, Hirschberg DL, Schwartz M (1994) Linear dimeric interleukin-2 obtained by the use of a defective herpes simplex viral vector: conformation-activity relationship. Brain Res Mol Brain Res 26:156-162.
    Friedmann MC, Migone TS, Russell SM, Leonard WJ (1996) Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc Natl Acad Sci U S A 93:2077-2082.
    Gogas KR (2006) Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol 6:68-74.
    Hanisch UK, Quirion R (1995) Interleukin-2 as a neuroregulatory cytokine. Brain Res Brain Res Rev 21:246-284.
    Hanisch UK, Rowe W, Sharma S, Meaney MJ, Quirion R (1994) Hypothalamic-pituitary-adrenal activity during chronic central administration of interleukin-2. Endocrinology 135:2465-2472.
    Hanisch UK, Rowe W, van RD, Meaney MJ, Quirion R (1996) Phasic hyperactivity of the HPA axis resulting from chronic central IL-2 administration. Neuroreport 7:2883-2888.
    Hanisch UK, Seto D, Quirion R (1993) Modulation of hippocampal acetylcholine release: a potent central action of interleukin-2. J Neurosci 13:3368-3374.
    Hatakeyama M, Tsudo M, Minamoto S, Kono T, Doi T, Miyata T, Miyasaka M, Taniguchi T (1989) Interleukin-2 receptor beta chain gene: generation of three receptor forms by cloned human alpha and beta chain cDNA's. Science 244:551-556.
    Haugen PK, Letourneau PC (1990) Interleukin-2 enhances chick and rat sympathetic, but not sensory, neurite outgrowth. J Neurosci Res 25:443-452.
    Hermus AR, Sweep CG (1990) Cytokines and the hypothalamic-pituitary-adrenal axis. J Steroid Biochem Mol Biol 37:867-871.
    Huberman M, Shalit F, Roth-Deri I, Gutman B, Brodie C, Kott E, Sredni B (1994) Correlation of cytokine secretion by mononuclear cells of Alzheimer patients and their disease stage. J Neuroimmunol 52:147-152.
    Hunter KE, Sporn MB, Davies AM (1993) Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia 7:203-211.
    Jiang CL, Lu CL (1998) Interleukin-2 and its effects in the central nervous system. Biol Signals Recept 7:148-156.
    Jones TH, Kennedy RL (1993) Cytokines and hypothalamic-pituitary function. Cytokine 5:531-538.
    Karanth S, Lyson K, McCann SM (1993) Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalami. Proc Natl Acad Sci U S A 90:3383-3387.
    Karanth S, McCann SM (1991) Anterior pituitary hormone control by interleukin 2. Proc Natl Acad Sci U S A 88:2961-2965.
    Kowalski J, Labuzek K, Herman ZS (2004) Flupentixol and trifluperidol reduce interleukin-l beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Pol J Pharmacol 56:563-570.
    Lapchak PA, Araujo DM, Quirion R, Beaudet A (1991a) Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigen-like immunoreactivity) in the rat brain. Neuroscience 44:173-184.
    Lapchak PA, Araujo DM, Quirion R, Beaudet A (1991b) Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigen-like immunoreactivity) in the rat brain. Neuroscience 44:173-184.
    Leonard WJ, Depper JM, Kanehisa M, Kronke M, Peffer NJ, Svetlik PB, Sullivan M, Greene WC (1985) Structure of the human interleukin-2 receptor gene. Science 230:633-639.
    Lin JX, Leonard WJ (1997) Signaling from the IL-2 receptor to the nucleus. Cytokine Growth Factor Rev 8:313-332.
    Luheshi GN, Hammond E, Van Dam AM (1996) Cytokines as messengers of neuroimmune interactions. Trends Neurosci 19:46-47.
    McCann SM, Lyson K, Karanth S, Gimeno M, Belova N, Kamat A, Rettori V (1995) Mechanism of action of cytokines to induce the pattern of pituitary hormone secretion in infection. Ann N Y Acad Sci 771:386-395.
    McKnight AJ, Classon BJ (1992) Biochemical and immunological properties of rat recombinant interleukin-2 and interleukin-4. Immunology 75:286-292.
    Molinuevo JL, Llado A, Rami L (2005) Memantine: targeting glutamate excitotoxicity in Alzheimer's disease and other dementias. Am J Alzheimers Dis Other Demen 20:77-85.
    Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007-1008.
    Moroni SC, Rossi A (1995) Enhanced survival and differentiation in vitro of different neuronal populations by some interleukins. Int J Dev Neurosci 13:41-49.
    Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774-776.
    Nieto-Sampedro M, Chandy KG (1987) Interleukin-2-like activity in injured rat brain. Neurochem Res 12:723-727.
    Nistico G (1993) Communications among central nervous system, neuroendocrine and immune systems: interleukin-2. Prog Neurobiol 40:463-475.
    Nistico G, De SG (1991b) Is interleukin 2 a neuromodulator in the brain? Trends Neurosci 14:146-150.
    Nistico G, De SG (1991a) Behavioral and electrocortical spectrum power effects after microinfusion of lymphokines in several areas of the rat brain. Ann N Y Acad Sci 621:119-134.
    Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262:1877-1880.
    Otero GC, Merrill JE (1995) Molecular cloning of IL-2R alpha, IL-2R beta, and IL-2R gamma cDNAs from a human oligodendroglioma cell line: presence of IL-2R mRNAs in the human central nervous system. Glia 14:295-302.
    Otero GC, Merrill JE (1994) Cytokine receptors on glial cells. Glia 11:117-128.
    Palmer CL, Cotton L, Henley JM (2005) The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev
    57:253-277.
    Pardy K, Murphy D, Carter D, Hui KM (1993) The influence of interleukin-2 on vasopressin and oxytocin gene expression in the rodent hypothalamus. J Neuroimmunol 42:131-138.
    Petitto JM, Huang Z (2001) Cloning the full-length IL-2/15 receptor-beta cDNA sequence from mouse brain: evidence of enrichment in hippocampal formation neurons. Regul Pept 98:77-87.
    Petitto JM, McCarthy DB, Rinker CM, Huang Z, Getty T (1997) Modulation of behavioral and neurochemical measures of forebrain dopamine function in mice by species-specific interleukin-2. J Neuroimmunol 73:183-190.
    Petitto JM, McNamara RK, Gendreau PL, Huang Z, Jackson AJ (1999) Impaired learning and memory and altered hippocampal neurodevelopment resulting from interleukin-2 gene deletion. J Neurosci Res 56:441-446.
    Raber J, Bloom FE (1994) IL-2 induces vasopressin release from the hypothalamus and the amygdala: role of nitric oxide-mediated signaling. J Neurosci 14:6187-6195.
    Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC (2005) The structure of interleukin-2 complexed with its alpha receptor. Science 308:1477-1480.
    Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci 18:130-136.
    Rozsa K, Rubakhin SS, Szucs A, Hughes TK, Stefano GB (1997) Opposite effects of interleukin-2 and interleukin-4 on GABA-induced inward currents of dialysed Lymnaea neurons. Gen Pharmacol 29:73-77.
    Rutanen EM (1993) Cytokines in reproduction. Ann Med 25:343-347.
    Sakai N, Kaufman S, Milstien S (1995) Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells. J Neurochem 65:895-902.
    Saneto RP, Altman A, Knobler RL, Johnson HM, de VJ (1986) Interleukin 2 mediates the inhibition of oligodendrocyte progenitor cell proliferation in vitro. Proc Natl Acad Sci U S A 83:9221-9225.
    Saneto RP, Chiappelli F, de VJ (1987) Interleukin-2 inhibition of oligodendrocyte progenitor cell proliferation depends on expression of the TAC receptor. J Neurosci Res 18:147-154.
    Sarder M, Abe K, Saito H, Nishiyama N (1996) Comparative effect of IL-2 and IL-6 on morphology of cultured hippocampal neurons from fetal rat brain. Brain Res 715:9-16.
    Sarder M, Saito H, Abe K (1993) Interleukin-2 promotes survival and neurite extension of cultured neurons from fetal rat brain. Brain Res 625:347-350.
    Saris SC, Rosenberg SA, Friedman RB, Rubin JT, Barba D, Oldfield EH (1988) Penetration of recombinant interleukin-2 across the blood-cerebrospinal fluid barrier. J Neurosurg 69:29-34.
    Sawada M, Hara N, Ichinose M (1992) Interleukin-2 inhibits the GABA-induced Cl-current in identified Aplysia neurons. J Neurosci Res 33:461-465.
    Sawada M, Suzumura A, Marunouchi T (1995) Induction of functional interleukin-2 receptor in mouse microglia. J Neurochem 64:1973-1979.
    Schwegler H, Boldyreva M, Linke R, Wu J, Zilles K, Crusio WE (1996a) Genetic variation in the morphology of the septo-hippocampal cholinergic and GABAergic systems in mice: II. Morpho-behavioral correlations. Hippocampus 6:535-545.
    Schwegler H, Boldyreva M, Pyrlik-Gohlmann M, Linke R, Wu J, Zilles K (1996b) Genetic variation in the morphology of the septo-hippocampal cholinergic and GABAergic system in mice. I. Cholinergic and GABAergic markers. Hippocampus 6:136-148.
    Schwegler H, Crusio WE (1995) Correlations between radial-maze learning and structural variations of septum and hippocampus in rodents. Behav Brain Res 67:29-41.
    Schwegler H, Crusio WE, Lipp HP, Heimrich B (1988) Water-maze learning in the mouse correlates with variation in hippocampal morphology. Behav Genet 18:153-165.
    Seto D, Kar S, Quirion R (1997) Evidence for direct and indirect mechanisms in the potent modulatory action of interleukin-2 on the release of acetylcholine in rat hippocampal slices. Br J Pharmacol 120:1151-1157.
    Shen Y, Zhu LJ, Liu SS, Zhou SY, Luo JH (2006) Interleukin-2 inhibits NMDA receptor-mediated currents directly and may differentially affect subtypes. Biochem Biophys Res Commun 351:449-454.
    Shimojo M, Imai Y, Nakajima K, Mizushima S, Uemura A, Kohsaka S (1993) Interleukin-2 enhances the viability of primary cultured rat neocortical neurons. Neurosci Lett 151:170-173.
    Singh VK (1994) Studies of neuroimmune markers in Alzheimer's disease. Mol Neurobiol 9:73-81.
    Suminami Y, Kashii Y, Law JC, Lin WC, Stanson J, Reichert TE, Rabinowich H, Whiteside TL (1998) Molecular analysis of the IL-2 receptor beta chain gene expressed in human tumor cells. Oncogene 16:1309-1317.
    Szelenyi J (2001) Cytokines and the central nervous system. Brain Res Bull 54:329-338.
    Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257:379-382.
    Tancredi V, Zona C, Velotti F, Eusebi F, Santoni A (1990) Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus. Brain Res 525:149-151.
    Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J (1983) Structure and expression of a cloned cDNA for human interleukin-2. Nature 302:305-310.
    Taniguchi T, Minami Y (1993) The IL-2/IL-2 receptor system: a current overview. Cell 73:5-8.
    Waguespack PJ, Banks WA, Kastin AJ (1994) Interleukin-2 does not cross the blood-brain barrier by a saturable transport system. Brain Res Bull 34:103-109.
    Wang Y, Pei G, Cai YC, Zhao ZQ, Wang JB, Jiang CL, Zheng ZC, Liu XY (1996) Human interleukin-2 could bind to opioid receptor and induce corresponding signal transduction. Neuroreport 8:11-14.
    Winkelhake JL, Gauny SS (1990) Human recombinant interleukin-2 as an experimental therapeutic. Pharmacol Rev 42:1-28.
    Ye JH, Tao L, Zalcman SS (2001) Interleukin-2 modulates N-methyl-D-aspartate receptors of native mesolimbic neurons. Brain Res 894:241-248.
    Zurawski SM, Vega F, Jr., Doyle EL, Huyghe B, Flaherty K, McKay DB, Zurawski G (1993) Definition and spatial location of mouse interleukin-2 residues that interact with its heterotrimeric receptor. EMBO J 12:5113-5119.
    Zwain IH, Grima J, Cheng CY (1994) Regulation of clusterin secretion and mRNA expression in astrocytes by cytokines. Mol Cell Neurosci 5:229-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700