TERE1/UBIAD1亚细胞定位及其果蝇同源物HEIX的基因调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异戊烯化转移酶一类是调节细胞信号转导网络的重要蛋白分子,它可以影响细胞的癌变。在蛋白质翻译后,异戊烯化转移酶通过硫脂键(-C-S-C)将异戊稀基团转移到蛋白质C端的半胱氨酸残端上,使被修饰蛋白能附着于细胞膜脂上。真核生物细胞内很多蛋白质需要经过异戊烯化才能促进细胞生长分化,维持细胞形态活力和细胞分裂周期等。大部分被异戊烯化转移酶所修饰的蛋白属于Ras家族蛋白,如Ras,Rab等。
     TERE1/UBIAD1蛋白一类是人体中新的异戊烯转移酶,已经被证明在人体MK-4的合成过程中起着重要的作用。TERE1/UBIAD1与人体膀胱癌、前列腺癌等多种癌症相关,并且TERE1/UBIAD1的突变导致施奈德结晶状角膜营养不良疾病,表现为系统脂质代谢紊乱而引起脂质在眼角膜的异常堆积。人体TERE1/UBIAD1基因和果蝇heix基因同源。在果蝇中,heix是一个肿瘤抑制基因,控制和调节着果蝇血细胞的增殖和分化。目前,对TERE1/UBIAD1的研究逐渐成为肿瘤相关研究领域关注的热点。本文采用生物信息学、分子生物学、细胞生物学和荧光成像等手段研究了TERE1/UBIAD1的亚细胞定位,跨膜结构和分子进化;预测和鉴定果蝇heix基因的启动子,以及调节heix基因表达的microRNAs。
     生物信息学研究结果表明TERE1/UBIAD1蛋白有多个疏水区域,TERE1/UBIAD1是一个八次跨膜的膜蛋白。TERE1/UBIAD1蛋白定位在细胞膜,内质网和高尔基体上面。分子进化分析表明TERE1/UBIAD1是一类异戊烯转移酶或者甲基萘醌合成酶。TERE1/UBIAD1蛋白在空间上面是一个有八个跨膜区段围成的桶状结构。
     活细胞荧光成像结果表明TERE1/UBIAD1与细胞内质网和高尔基体共定位,并且少量的TERE1/UBIAD1蛋白定位在除细胞膜,内质网和高尔基体之外的细胞器上,TERE1/UBIAD1在高尔基体上面的分布比较多。免疫荧光结果表明TERE1/UBIAD1的N端游离在细胞的胞浆中,并且其Loop1结构比较靠近细胞膜内侧。TERE1/UBIAD1截短体实验表明TERE1/UBIAD1的N端对于TERE1/UBIAD1的亚细胞定位起着重要的作用。
     本研究成功的克隆了人体Hras基因,并将蓝色荧光蛋白BFP基因连接到Hras基因的5`端,构建了pBFP-hras重组质粒,能在真核细胞中表达出BFP和Hras的融合蛋白,为研究TERE1/UBIAD1与Hras之间的关系提供了很好的帮助。
     果蝇heix基因调控研究结果表明,果蝇heix基因的启动子位于转录起始位点上游170bp和下游350bp之间。果蝇heix基因的启动子包含多个转录调控元件,并且具有较高的转录活性。果蝇heix基因的3`UTR区域存在特定microRNA的结合靶位点,heix基因的表达可能受到果蝇多个microRNAs转录后水平的调控,如dmiRNA3,dmiRNA309,dmiRNA318,dmiRNA4,dmiRNA133和dmiRNA79。该研究成果为进一步研究果蝇heix基因的功能及其表达调控奠定了基础。
Prenyltransferase is a class of important protein regulating intracellular signal transduction network. It has profound impact on cancer cells. Following protein synthesis, prenyltransferase transfers the isopentene radical to the cysteine residue in the C terminal of protein. So the modified protein can attach to the cell membrane. Many proteins of eukaryotic cells need prenylation to promote cell growth and differentiation, and to maintain cell morphology and cell division cycle. The most proteins modified by prenyltransferase are Ras family proteins, such as Ras, Rab.
     Human TERE1/UBIAD1 protein is a new class of prenyltransferase. It has been proven that TERE1/UBIAD1 is a novel human MK-4 biosynthetic enzyme, which is related to human bladder cancer, prostate cancer and other cancers. TERE1/UBIAD1 is a candidate gene for Schnyder crystalline corneal dystrophy (SCCD) disease, an autosomal dominant disorder involving deposition of cholesterol in the corneal stroma. Drosophila heix and human TERE1/UBIAD1 are homologous genes. In Drosophila, heix is a tumor suppressor gene. It regulates the proliferation and differentiation of Drosophila blood cells. At present, the research on the TERE1/UBIAD1 has gradually become one of the focuses in the cancer research field. In this paper, we have studied the subcellular localization, transmembrane structure and molecular evolution of TERE1/UBIAD1 using bioinformatics, molecular biology, cell biology and fluorescence imaging methods. Meanwhile we have predicted and identified the activity of Drosophila heix gene promoter, and the microRNAs regulating the expression of heix.
     Our bioinformatics results indicate that TERE1/UBIAD1 protein has multiple hydrophobic regions. TERE1/UBIAD1 is an eight transmembrane protein located on the cell membrane, endoplasmic reticulum and Golgi apparatus. Phylogenetic analysis showed that TERE1/UBIAD1 is a class of prenyltransferase or menaquinone synthase. TERE1/UBIAD1 protein has a barrel structure surrounded by eight transmembrane segments.
     Live cell fluorescence imaging results indicate that TERE1/UBIAD1 is co-localized with endoplasmic reticulum and Golgi apparatus. Also a small amount of TERE1/UBIAD1 protein is located in the other organelles besides the cell membrane, endoplasmic reticulum and Golgi apparatus. The main distribution of TERE1/UBIAD1 is on the Golgi apparatus. The immunofluorescence result showed that the N-terminal of TERE1/UBIAD1 resides in the cell cytoplasm, and its Loop1 structure is closer to the inner membrane. The truncated TERE1/UBIAD1 experiments indicate that the N-terminal of TERE1/UBIAD1 plays an important role in the subcellular localization of TERE1/UBIAD1.
     The human Hras gene has been successfully cloned. And the blue fluorescent protein(BFP) gene has been connected to the 5` end of Hras gene, to construct pBFP-hras DNA recombinant plasmid, which could express the fusion protein BFP-hras in eukaryotic cell. These have provided solid grounds for the study of the relationship between TERE1/UBIAD1 and Hras.
     The results of Drosophila heix gene regulation study indicate that the Drosophila heix gene promoter is located between the upstream 170bp and downstream 350bp of the transcription initiation site. The Drosophila heix gene promoter contains several transcriptional regulatory elements, and has high transcriptional activity. There are specific microRNA target sites in the 3 `UTR region of Drosophila heix gene. Heix gene expression may be post-transcriptional regulated by several Drosophila microRNAs, such as dmiRNA3,dmiRNA309,dmiRNA318,dmiRNA4,dmiRNA133 and dmiRNA79.
     Our research results have laid a good foundation for the further study of the function and expression regulation of heix gene.
引文
[1] Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem. 2004; 91(1):54-69.
    [2] Jemal Ahmedin, Siegel Rebecca, Ward Elizabeth, et al. CA Cancer J Clin. 2009,59,225-249.
    [3] Volanis D, Kadiyska T, Galanins A, et al. Enviromental factors and genetic susceptibility promote urinary bladder cancer. Toxicol Lett. 2010, 193(2):131-137.
    [4] Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet, 2009, 374(9685):239-249.
    [5] Hartman M, Loy EY, Ku CS, et al. Molecular epidemiology and its current clinical use in cancer management. Lancet Oncol. 2010, 11(4):383-390.
    [6] McGravey T.W., Nguyaen T., Tomaszewski J.E., et al. Isolation and characterization of the TERE1 gene, a gene down-regulated in transitional cell carcinoma of the bladder. Oncogene 2001, 20, 1042-1051.
    [7] McGravey T.W., Nguyaen T., Puthiyaveettil R., et al. TERE1, a novel gene affecting growth regulation in prostate carcinoma. The Prostate 2001 ,54,144-155.
    [8] McGravey T.W., Nguyaen T., and Malkowicz S.B. An interaction between apolipoprotein E and TERE1 with a possible association with bladder tumor formation. Journal of cellular biochemistry 2005 ,95,419-428.
    [9] Jayne S. Weiss, Howard S. Kruth, Helena Kuivaniemi, el at. Genetic Analysis of 14 Families With Schnyder Crystalline Corneal Dystrophy Reveals Clues To UBIAD1 Protein Function. American Journal of Medical Genetics Part A 2008, 146A:271–283.
    [10] Orr A., Dube M., Marcadier J., et al. Mutations in the UBIAD1 Gene, Encoding a Potential Prenyltransferase, Are Causal for Schnyder Crystalline Corneal Dystrophy. PloS ONE 2007, 8, e685 1-10.
    [11] Jayne S. Weiss, Howard S. Kruth, Helena Kuivaniemi, et al. Mutations in the UBIAD1 Gene on Chromosome Short Arm 1, Region 36, Cause Schnyder Crystalline Corneal Dystrophy. Investigative Ophthalmology & Visual Science, 2007, Vol. 48, No. 11
    [12] Yellore VS, Khan MA, Bourla N, et al. Identification of mutations in UBIAD1 following exclusion of coding mutations in the chromosome 1p36 locus for Schnyder crystalline corneal dystrophy. Mol Vis. 2007, 13:1777-82.
    [13] Nakagawa K, Hirota Y, Sawada N, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010, 468(7320):117-21. Epub 2010 Oct 17.
    [14] Yanzhi Xia, Xiong Wei, Shimin Wu, et al. Downregulation of TERE1/UBIAD1 activated Ras-MAPK signaling and induced cell proliferation. Cell Biol. Int. Rep. 2010, 17(1): art: e00005.
    [15] Xia, Y and Hong Ling. Molecular mechanism of TERE1/UBIAD1 induced bladder carcinoma through Ras-MAPK signaling pathway, 2009 Asia-Pacific Conference of Tumor Biology and Medicine, October 2009, XI’AN, P.R.China page 119-120.
    [16] Resh MD. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol. 2006, 2(11):584-90.
    [17] Casey PJ, Seabra MC. Protein prenyltransferases. J Biol Chem. 1996, 271(10):5289-92.
    [18] Rubin G.M., Hong L., Brokstein P., et al. A Drosophila Complementary DNA Resource. Science. 2000,287, 2222-2224.
    [19] Hong L. L (2)35Fc, a novel Drosophila melanotic tumor suppressor, Crete XI, June, Crete, Greece. 1998, Page 59.
    [20] Hong L. and Rubin G. M. L (2)35Fc, a novel transmembrane protein required for suppression of melanotic tumors. 39th Annual Drosophila Research Conference, 1998, Washington, DC. Page 128.
    [21] Ashburner M S. Misra J. Roote, G. M. Rubin, et al. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: The Adh Region .Genetics 1999,153, 179-219.
    [22] Miguel Beato, Sebastián Chávez and Mathias Truss. Transcriptional regulation by steroid hormones. Steroids, Volume 61, Issue 4, 1996, Pages 240-251.
    [23] Carpenter G, and Cohen S. Epidermal growth factor. J. Biol. Chem. 1990,265 (14): 7709–7712.
    [24] Schroder et al. Interferon-γan overview of signals, mechanisms and functions. Journal of Leukocyte Biology 2004, 75: 163–189.
    [25] Chung CW, Cooke RM et al. The three-dimensional solution structure of RANTES. Biochemistry 1995, 34 (29): 9307–9314.
    [26] Kistler J, Stroud RM et al. Structure and function of an acetylcholine receptor. Biophys. J. 1982, 37 (1): 371–383.
    [27] Wiesmann C. and de Vos AM. Nerve growth factor: structure and function. Cell Mol Life Sci 2001, 58 (5-6): 748–759.
    [28] Khosravi-Far R., Der CJ. The Ras signal transduction pathway. Cancer Metastasis Rev. 1994; 13(1):67-89.
    [29] Charest PG, Shen Z, Lakoduk A, et al. A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell. 2010, 18(5):737-49.
    [30] Goodsell DS. The molecular perspective: the ras oncogene. Oncologist 1999, 4 (3): 263–4.
    [31] Downward J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 2003, 3 (1): 11–22.
    [32] Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 2003, 3 (6): 459–65.
    [33] Chang EH, Gonda MA, Ellis RW, et al. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses.Proc. Natl. Acad. Sci. U.S.A. 1982, 79 (16): 4848–52.
    [34] Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature 1964, 204: 1104–5.
    [35] Kirsten WH, Schauf V, McCoy J. Properties of a murine sarcoma virus. Bibl Haematol 1970, (36): 246–9.
    [36] Cooper GM. Cellular transforming genes. Science (journal) 1982,217 (4562): 801–6.
    [37] Santos E, Tronick SR, Aaronson SA, Pulciani S, et al. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 1982,298 (5872): 343–7.
    [38] Parada LF, Tabin CJ, Shih C, et al. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 1982,297 (5866): 474–8.
    [39] Bos J. ras oncogenes in human cancer: a review. Cancer Res 1989, 49 (17): 4682–9.
    [40] Rotblat B, Ehrlich M, Haklai R, et al. The Ras inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. Methods Enzymol 2008, 439: 467–89.
    [41] Roy Blum, yoel kloog. Ras Inhibition in Glioblastoma Down-regulates Hypoxia-Inducible Factor-1, Causing Glycolysis Shutdown and Cell Death. Cancer Research 2005, 65: 999–1006.
    [42] Latasha P. Wright and Mark R. Philips. CAAX modification and membrane targeting of Ras. JLR Papers in Press 2006,?883-891.
    [43] Christian Herrmann, Christoph Block, Christoph Geisen, Kirsten Haas, Christoph Weber, et al. Sulindac sulfide inhibits Ras signaling.Oncogene 1998,17, 1769- 1776.
    [44] Choy E, Chiu VK, Silletti J, et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell. 1999, 98(1):69-80.
    [45] Rocks O, Peyker A, Kahms M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science. 2005, 307(5716):1746-52.
    [46] YOAV I. HENIS, JOHN F. HANCOCK, and IAN A. PRIOR. Ras acylation,compartmentalization and signaling nanoclusters. Mol Membr Biol. 2009, 26(1): 80–92.
    [47] Rocks O, Peyker A, Bastiaens PI. Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Current Opinion in Cell Biology 2006,18 (4): 351–7.
    [48] Ellinger-Ziegelbauer H, et al. Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative. J Biol Chem. 1997,272 (5): 2668–74.
    [49] Rossomando AJ, Payne DM, Weber MJ, et al. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci USA 1989, 86 (18): 6940–3.
    [50] Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999,286 (5443): 1358–62.
    [51] Chadee DN, Yuasa T, Kyriakis JM. Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol. Cell. Biol. 2002, 22 (3): 737–49.
    [52] Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature 2001,410 (6824): 37–40.
    [53] Chen YR, Tan TH. The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int. J. Oncol. 2000, 16 (4): 651–62.
    [54] Hazzalin CA, Mahadevan LC. MAPK-regulated transcription: a continuously variable gene switch? Nat. Rev. Mol. Cell Biol. 2002, 3 (1): 30–40.
    [55] Kato Y, Kravchenko VV, Tapping RI, et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 1997, 16 (23): 7054–66.
    [56] Kiefer F, Tibbles LA, Anafi M, et al. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. EMBO J. 1996, 15 (24): 7013–25.
    [57] Pearson G, English JM, White MA, et al. ERK5 and ERK2 cooperate to regulate NF-kappaB and cell transformation. J. Biol. Chem. 2001,276 (11): 7927–31.
    [58] Weston CR, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science 2002,296 (5577): 2345–7.
    [59] Kleppe K, Ohtsuka E, Kleppe R, et al. Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J. Mol. Biol. 1971, 56 (2): 341–361.
    [60] Rabinow, Paul. Making PCR: A Story of Biotechnology. Chicago: University of Chicago Press1996.
    [61] Kary Mullis Nobel Lecture, December 8, 1993.
    [62] Anthony J. F. Griffiths et al. 8. The Structure and Replication of DNA. An Introduction to genetic analysis. 1999, San Francisco: W.H. Freeman.
    [63] Meselson, M. and Stahl, F.W. The Replication of DNA in Escherichia coli. PNAS 1958, 44: 671-82.
    [64] Berg JM, Tymoczko JL, Stryer L, Clarke ND. Biochemistry. W.H. Freeman and Company, 2002.
    [65] Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. Garland Science, 2002.
    [66] Cheng S, Fockler C, Barnes WM, et al. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci. 1994, 91 (12): 5695–5699.
    [67] Joseph Sambrook and David W. Russel.Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. ISBN 0-87969-576-5. Chapter 8: In vitro Amplification of DNA by the Polymerase Chain Reaction, 2001.
    [68] Pavlov AR, Pavlova NV, Kozyavkin SA, et al. Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol. 2004, 22 (5): 253–260.
    [69] Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bact. 1976,127 (3): 1550–7.
    [70] Shimomura O, Johnson F, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea . J Cell Comp Physiol 1962, 59: 223–39.
    [71] Prasher D, Eckenrode V, Ward W, et al. Primary structure of the Aequorea victoria green-fluorescent protein. GeneⅢ1992, (2): 229–33.
    [72] Orm? M, Cubitt AB, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996,273 (5280): 1392–5.
    [73] Yang F, Moss L, Phillips G. The molecular structure of green fluorescent protein . Nat Biotechnol 1996, 14 (10): 1246–51.
    [74] The Nobel Prize in Chemistry 2008.
    [75] Thastrup O, Tullin S, Kongsbak Poulsen L, et al. Fluorescent Proteins. US patent, 1995.
    [76] Mark RS, Jason O, William PH, et al. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J, 2005, 19:440-442.
    [77] Hanson GT, McAnaney TB, Park ES, et al. Green fluorescent protein variants as ratiometric dual emission pH sensors.1.Structural characterization and preliminary application. Biochemistry, 2002, 41:15477-15488.
    [78] Jayaraman S, Haggie P, Wachter RM, et al. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem, 2000, 275:6047-6050.
    [79] Yu R, Hinkle PM. Rapid turnover of calcium in the endoplasmic reticulum during signaling: studies with cameleon calcium indicators. J Biol Chem, 2000,275:23648-23653.
    [80] Yuk IHY, Wildt S, Jolicoeur M, et al. A GFP-based screen for growth-arrested, recombinant protein-producing cells. Biotechnol Bioeng, 2002, 79:74-82.
    [81] Gonzalez JE, Negulescu PA. Intracellular detection assays for high-throughput screening. Curr Opin in Biotechnol, 1998, 9(6):624-631.
    [82] Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157(1):105-32.
    [83] Eric W Klee and Lynda BM Ellis. Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics. 2005, 6: 256.
    [84] Nielsen M., Lundegaard C., Lund O., Petersen TN. CPHmodels-3.0 - Remote homology modeling using structure guided sequence profiles. Nucleic Acids Research, 2010, Vol. 38.
    [85] Fredericks WJ, Wang H, Sepulveda J, et al. TERE1/UBAID1 and TBL2 proteins Regulate cholesterol levels in bladder cancer cells. Accepted AUA Chicago, 2009.
    [86] DING Jie, ZHOU Jing and YUAN Liu-di. Construction of recombinant plasmid highly expressing luciferase in Drosophila S2 cells J Soutneast Univ (Med Sci Edi) Nov, 2006, 25(6):403-406.
    [87] Luker KE, Luker GD. Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res. 2008, 78(3):179-187.
    [88] Deckers R, Quesson B, Arsaut J, et al. Image-guided, noninvasive, spatiotemporal control of gene expression. Proc Natl Acad Sci U S A. 2009, 106(4):1175-1180.
    [89] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75 (5): 843–54.
    [90] Bartel, DP. MicroRNAs: target recognition and regulatory functions. Cell 2009,136 (2): 215–33.
    [91] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116 (2): 281–97.
    [92] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5 (7): 522–31.
    [93] Bartel D P, Chen C Z. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet, 2004, 5(5): 396~400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700