探测车自适应障碍识别与路径规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主行驶车辆在军事和民用高科技领域有着广泛应用前景,它的主要应用包括侦察、监视、目标搜索、爆炸物处理、安全巡逻等。本文以自主行驶探测车的路径规划与避障技术为核心内容,在参与设计和制造“EV-II”号探测车原型车的基础上,重点研究了障碍识别、路径规划算法、动态避障算法,并将这些算法运用到原型车的试验中,验证了本论文研究成果的正确性。论文的主要研究内容和成果包括:
     (1)系统论述了各类轮式移动机器人的发展状况及其特点,系统分析了轮式移动机器人的体系结构、多传感器信息融合、路径规划等技术的发展状况和不足之处。
     (2)自主设计了探测车软、硬件系统,并制造了“EV-II”号探测车原型车。包括探测车本体机构、驱动系统、控制系统和电源系统。基于DSP和PC104的开放式控制器搭建了控制系统硬件平台,并根据实际控制需要选取合适的操作系统;根据探测车的技术指标,计算驱动系统所需要的动力,根据动力因素选择了合适的驱动电机,并给出了电机调速的具体过程;根据探测车的控制系统和驱动系统需要设计了探测车的供电系统。
     (3)设计了探测车障碍识别硬件系统并提出了一种新的基于信息融合的障碍识别算法。为了保证探测车在地面上安全自主行走,对比各种距离传感器的优、缺点,设计了基于DSP的多超声波获取距离信息的电路,给出了多个超声波传感器所测距离数据和嵌入式计算机PC104的串口通信过程,并采用视觉远程辅助导航。提出了一种基于模糊贴近度的数据融合新算法,缩短探测车导航中环境测量与数据处理的时间,提高了采集数据的精度和效率。
     (4)基于粒子群优化算法研究了可视全局路径规划问题。综合利用人工势场法及粒子群优化算法的优点,针对静态环境已知的探测车路径优化问题,运用等分法进行环境建模,在粒子群优化算法的基础上,引入人工势场法的斥力场函数,提出一种基于路径长度和路径危险度的适应度函数,根据全局最优解和局部最优解自动在线调节学习因子,从而在初始化及更新过程中能自动避开障碍物,快速安全地实现全局静态路径规划。
     (5)提出了一种基于速度障碍、碰撞危险度概念的动态环境模型,结合新的模糊神经控制算法,实现探测车在复杂的动态环境中自主安全地行走。针对动态环境中难以解决的探测车路径规划问题,基于模糊神经控制算法改进控制器的输入/输出模式,新的算法增加了模式匹配和加权平均两个要点,去掉了繁琐的模糊化和精确化过程。仿真实验表明,在提出的基于碰撞危险度的神经模糊算法控制下,探测车能够自主避开复杂动态障碍物,并且采用优化策略使得探测车朝向目标点行走,且不会陷入陷阱中。
     (6)综合利用上述的研究结果,设计并实现了一个探测车路径规划系统,并在自行研制的探测车平台上进行了大量的实车试验,验证了上述方法与算法的可行性与合理性。
Autonomous have many valuable attributes that can benefit human beings in all fields of modern life. The exploitation of space&ocean provides a huge market for robotics. The functions of autonomous vehicles include reconnaissance, surveillance, target acquisition and so on. Several important Autonomous Exploration Vehicles technologies are discussed in these topics which include: Path Planning, Obstacle Avoidance, Perception Technologies, Control System Architecture and etc. All the research work in this paper are not only discussed theoretically autonomous about the obstacle avoidance but also performed with the intelligent four-wheeled vehicle“EV-II”.The experiments’results of the Explorer under different conditions are presented. The main content and achievements are as follows:
     (1)The present state and the feature of the wheeled robot in the world are summarized.The Perception Technologies, the Multi-sensor data fusion, and the path planning technology are integrated systematically and comprehensive.
     (2)Exploration vehicle body, driven system, power system and control system are designed. The“EV-II”body is made. The open controller based on DSP and PC104 is built. According to request of the actual control, the appropriate operating system is selected. Based on technical indicators the required power to drive system is computed. According to dynamic factors, motors are selected and adjusted. The embedded hardware platform of the driven system is set up. According to the control system and power system, the power supply system of the driven system is designed.
     (3)The hardware of obstacle recognition is designed.The data fusion algorithm is supposed.In order to ensure the travling safety of the exploration vehicle on the ground, the advantages and disadvantages of a variety of sensors are compared, the circuit of multi- ultrasonics which to obtain distance information is designed. The communication process between the distance information and PC104 are given. The visual-aided navigation is adopted. A new algorithm based on fuzzy close-degree of data fusion is proposed. So the navigation in environmental measurements and data processing time are shorten. Data collection speed and accuracy is improved.
     (4)Based on particle swarm optimization algorithm, the visualization global path planning is studied.Aimming to the exploration vehicle’s path optimization problems in the known static environment, equal portions France is used to carry out environmental modeling. Based on the particle swarm optimization algorithm, the repulsion field function of artificial potential field method is introducted. a new path planning approach based on artificial potential field (APF) and particleswarm optimization (PSO) is presented. And the learning factors are adjusted automatically on-line according to the global optimal solution and local optimal solution. The first step is to make a danger degree map(DDM) based on the repulsive force of obstacles in the environment. Then the PSO whose fitness function is the weighted sum of the path length and the path danger degree is introduced to get a global optimized path. The method has a simple model and a rapid convergence which can meet the safe and real-time demands of robot navigation. The feasibility and effectiveness are proved by the simulation results.
     (5)In the dynamic environment, the problem of exploration vehicle dynamic path planning is difficult to solve。Then a mathematical model of dynamic environment is proposed based on velocity obstacle and the concept of risk degree for collision, also a method of path planning with improved fuzzy neural network is given. The input / output of the controller are considered into the precise directly. So the improved algorithm includes only two elements: pattern matching and weighted average, thus the tedious process of fuzzication and precision are removed. The concept of patterns and pattern matching are introducted. Patterns includes input mode and rules mode, the norm is used to express the matching degree between them. According to the matching degree, a weighted average algorithm is used to determine the output. The Simulation is carried in the environment of removed obstacles and encountered obstacles. The result shows that method is valid. The exploration vehicle could avoid the complex and dynamic obstacles, walk towards the target point using optimization strategy, and could not fall into the trap.
     (6)By applying the above results of the study synthetically,the controller based path planning system of exploration vehicle is designed and implemented. A large number of tests on the exploration vehicle platform is finished. The feasibility of the above methods and algorithms’reasonablity are verified by the tests.
引文
[1]李舜酩,廖庆斌.星球探测车的研发状况综述[J].航空制造技术,2006,11:68-71.
    [2]俞建军.智能移动机器人控制系统研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [3]李东,陈闽慷等.月球探测的初步设想[J].导弹与航天运载技术,2002,5:14-20.
    [4]史美萍.基于人机协同的月球车路径规划技术研究, [博士学位论文].南京:国防科学技术大学,2006.
    [5]庞之浩.航天国际合作简析[J].Aerospace China,2007:34-37.
    [6]欧阳自远.月球探测的进展与中国的月球探测[J].地质科技情报,2004,23(4):1-5.
    [7] Bares J, Whittaker W L. Configuration of autonomous walkers for extreme terrain[J].The International Journal of Robotics Research,1993,2(5):835-859.
    [8] J. Bares and D. Wettereen. Dante II:Technical Description,Results and Lessons Learned[J]. International Journal of Robotics Research.1999,8(6):921-949.
    [9] Jun Morimoto, Jun Nakanishi, Gen Endo,et al.Poincar’e-Map-Based Reinforcement Learning For Biped Walking[C].Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona,Spain, 2005:2381-2386.
    [10] Takashi Kubota,Testuo Yoshimitsu.Asteroid Exploration Rover [J].IEEE ICRA 2005 Planetary Rover Workshop,Barcelona,Spain, 2005,87(11):211913–211916.
    [11]刘方湖,陈建平.行星探测机器人的研究现状和发展局势[J].机器人,2002,24(3):268-273.
    [12] Charles R.weisbin, Davaid B. Lavery, Guillermo Rodriuez.Robots in Space:U.S. Missions and technology requirements into the Next Century[J].Autonomous Robots,1997,4(1):159-173.
    [13]季学武.车辆一沙地相互作用关系及仿驼足轮胎关键技术的研究,[博士学位论文].吉林:吉林工业大学,1994.
    [14]田娜.变结构轮腿式探测机器人的研究,[博士学位论文].北京:北京航空航天大学,2005.
    [15]殷礼明.中国深空探测技术的发展与展望[J].中国航天,2003,(2):39-43.
    [16]刘方湖,马培荪,陈建平.星球探测自位机器人的研究现状和发展趋势[J].机械设计,2003,20(3):1-4.
    [17] Koshiyama A, Yamafuji K..Design and control of an all-directionsteering type mobile robot[J]. The International Journal of Robotic Research.1993,12(5):411-419.
    [18]李春明,苏波,江磊,等.面向行驶安全性的月球车行走系统FDTM总体设计[J].机器人技术与应用,2008,3:10~13.
    [19]毕贞法,邓宗全,陶建国.变驱动半径两轮并列式月球车的稳定性分析[J].上海交通大学学报.2007,41(7):1204-1208.
    [20] Seraji H, Howard A.Behaviour-based robot navigation on challenging terrain:a fuzzy logic approach[J]. IEEE Transactions on Robotics and Automation, 2002, 18(3):308-321.
    [21] E.Rollins, J.Luntz, A.Foessel,et al.Nomad:a Demonstration of the Transforming Chassis[C]. Proceedings of the 1998 IEEE International conference on Robotics&Automation,Leuven, Belgium, May 1998:679-684.
    [22]陶建国,邓宗全,高海波.六圆柱-圆锥轮式月球车的设计[J].哈尔滨工业大学学报,2006, 38(1),4-7.
    [23] He Xu, Wei Da Wang, Marie Bernard Sidibe.Maneuver Algorithm for Mobile Robot with Four Steered Propulsive Wheels[A].Proceedings of the 6th WSEAS International Conference on Signal Processing,Robotics and Automation,Corfu Island,Greece ,2007:634-639.
    [24]黄智,钟志华.菱形新概念车转向性能分析[J].湖南大学学报(自然科学版),2006,33(6):46-50.
    [25] Kubota T, Kuroda Y, Kunii Y.Micro planetary rover "Micros"[C].5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (ISAIRAS 99),1999:373-378.
    [26]陈春林,陈宗海,周光明.基于多智能体的自主移动机器人混合式体系结构[J].系统工程与电子技术,2004,26(11):1746-1748.
    [27] Richard Volpe. Rover Technology Development and Mission Infusion[J]. IEEE ICRA 2005 Planetary Rover Workshop. Barcelona, Spain,2005:971–981.
    [28] Esher T., Cransaz Y., Merminod B.,et al. An innovative Space Rover with Extended Climbing Abilities[C]. Proceedings of space and Robotics, Albuquerque, USA, 2000:781-786.
    [29] G.Andrade, F. Ben., Amar,et al. Modeling robot-Soil Interaction for planetary rover motion control[C]. Proceedings.of the 1998 IEEE International Conference on Intelligent Robots and Systems, Vitoria, B.C., Canada, 1998:212-217.
    [30]江磊,姚其昌,何亚丽,等.星球车行走系统和它的研制者们-俄罗斯篇[J].机器人技术与应用,2008,3:17-19.
    [31]丁希仑,石旭尧,Alberto Rovetta,等.月球探测(车)机器人技术的发展与展望[J].机器人技术与应用,2008,5:5-9.
    [32]徐贺,谭大伟,张振宇.崎岖地面上移动机器人构型发展综述[J].中国科技论文在线,2006:1-20.
    [33] Penh Chen, Shinichiro Mitsutake, Takashi Isoda,et al. Omni-Directional Robot and Adaptive Control Method for Off-Road Running[J]. IEEE Transactions on Robotics and Automation,April 2002.18(2):111-116.
    [34] Peter Berkelman, Mei chen, Jesse Easudes,et al. Design of a Day/Night Lunar Rover:Technical Report CMU-RI-TR-95-24[J],The Robotics Institute,1995:546-551.
    [35]付宜利,李寒,徐贺,等.轮式全方位移动机器人几种转向方式的研究[J].制造业自动化,2005,27(10):33-37.
    [36] Apostolopoulos,D.Systematic. Configuration of Robotic Locomotion:Technical Report CMU-RI-TR-96-30[J].The Robotics Institute,1996:874-879.
    [37]李佳宁,易建强.移动机器人体系结构研究进展[J].机器人,2003,25(7):756-760.
    [38]夏伟.移动机器人控制系统研究,[硕士学位论文].浙江:浙江大学,2003.
    [39] Willian E Ford. What is an Open Architecture Robot Controller[J].IEEE International Symposium on Intelligent Control,1994:1-9.
    [40]沈跃,刘慧.开放式结构平台上的SIASUN-06B机器人控制系统的研究[J].组合机床与自动化加工技术,2004,(5):101-103.
    [41] Stefano Caselli, Francesco Monica, and Monica Reggiani. YARA: A Software Framework Enhancing Service Robot Dependability[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005:1982-1987.
    [42]徐益.移动机器人控制系统设计,[硕士学位论文].浙江:浙江大学,2003.
    [43]谈世哲.基于Windows NT的开放式机器人控制系统的设计[J].组合机床与自动化加工技术,2001,(2):17-21.
    [44]马晓薇.基于混合智能的移动机器人路径规划技术研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2000.
    [45]徐国华,谭民.移动机器人的发展现状及其趋势[J].机器人技术与应用,2001,3:6-12.
    [46]吴雄英,胡国清,黄玉程,等.自主移动机器人体系结构状况与发展研究[J].自动化博览,2005,(3):21-24.
    [47] Park, E. Kobayashi, L. Lee, S.Y. Extensible Hardware Architecture for Mobile Robots[C].Proceedings of the 2005 IEEE International Conference on Robotics and Automation,Barcelona, Spain, 2005:3095-3100.
    [48]曹会宾.移动机器人移动机构及运动控制的研究,[硕士学位论文].哈尔滨:哈尔滨工业大学,2004.
    [49]叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480.
    [50]谢震声,胡宇,汪增福.月球车激光测距仪校准技术的探索[J].新工艺新技术新设备,2004,(5):90-94.
    [51]李磊,叶涛,谭民.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480.
    [52]欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究[J].机器人,2000,26(6):519-526.
    [53]何友.多传感器多目标数据融合算法研究,[博士学位论文],北京:清华大学,1996.
    [54]刘春荣.弹道导弹制导技术浅谈[J].海军航空工程学院学报,2002,17(4):431-435.
    [55] Hall D L. Mathematical techniques in multisensor data fusion [M].Artech House,Boston,1992.
    [56] Hashemipour, H.R.Roy. Decentralized structures for parallel Kalman filtering[J].IEEE Transactions On AC,1998,33(1):88-93.
    [57] Carlson N A. Federated square root filter for decentralized parallel processes[J].1990 IEEE T-AES,1990,26(3):517-525.
    [58]李瑞峰,李伟招.基于多传感器信息融合的移动机器人路径规划[J].机电一体化,2002,(4):20-23.
    [59]李贻斌.移动机器人多超声波传感器信息融合方法[J].系统工程与信息,1999,(21):55-57.
    [60]杨清梅,孟庆鑫,张立勋.数据融合技术在移动机器人研究中的应用[J].机床与液压,2002,(6):44-46.
    [61] S.Baase,A.V. Gelder.Computing Algorithms[J].Beijing:Higher Education Press,2001:235-267.
    [62] Henroch D.Fast Motion Planning by Parallel Processing-A Review[J].Intelligent and Robotic Systems,1997,20(1):45-69.
    [63] Kennedy J, Eberhart RC. Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks.Perth,1995:1942-1948.
    [64] Angeline P J. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Difference[A].Annual Confereence Center on Evolutionary Programming. SanDiego,1998:601-610.
    [65]秦元庆,孙德宝,李宁,等.基于粒子群算法的移动机器人路径规划[J].机器人,2004,26(3):222-225.
    [66] Gerhard V,Jaroslaw S S . Particle Swarm Optimization [C].43rd AIAA /ASME /ASCE /AHS /ASC Structures, Structural Dynamics, and Materials Conference,Denver,2002:282-290.
    [67]李磊,叶涛等.移动机器人技术现状研究与未来[J].机器人,2002,(5):475-480.
    [68]任世军,洪炳熔,黄德海.基于栅格扩展的机器人路径规划方法[J].哈尔滨大学学报,2001,(1):68-72.
    [69]王卫华,陈卫东,席裕庚.基于不确定信息的移动机器人地图创建研究进展[J].机器人,2001,23(6):561-568.
    [70]顾国昌,张巧荣.移动机器人分层路径规划方法研究[J].哈尔滨工程大学学报.2001,(5):31-34.
    [71]屈耀红,潘泉.无人机全局航路规划技术仿真[J].系统仿真学报,2006,18(2):278-281.
    [72]徐守江,朱庆保.基于遗传算法的移动机器人路径滚动规划[J].计算机工程,2007,(33):207-209.
    [73]肖本贤,余炎峰.基于免疫遗传算法的移动机器人全局路径规划[J].计算机工程与应用,2007,43(30):91-94.
    [74]赵德安,陈伟.基于遗传算法的喷涂机器人喷枪路径规划[J].中国机械工程,2008,19(4):777-780.
    [75] M.A. Porta, Garcia, Oscar Montiel, et al.Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[J],Applied Soft Computing,2009,9(3):1102-1110.
    [76] Koeing S,Likhachev M.Improved fast replanning for robot navigation in unknown terrain[C]. Proceedings 2002 IEEE International Conference on Robotics and Automation, Washington,2002,1(10):968-975.
    [77]张纯刚,席裕庚.全局环境未知时基于滚动窗口的机器人路径规划[J].中国科学(E辑),2001,31(1):51-58.
    [78]蔡自兴.人工智能原理及其应用[M].北京:清华大学出版社.2003.
    [79]庄晓东,孟庆春等.多障碍环境中基于增强式学习的势场优化和路径规划[J].青岛海洋大学学报,2001,(6):937-942.
    [80] Claudiu Pozna,Fritz Troester,et al.On the design of an obstacle avoiding trajectory[J].Method and simulation, Mathematics and Computers in Simulation.2009,(79):2211-2226.
    [81] L.Huang. Velocity planning for a mobile robot to track a moving target-a potentiaeld approach[J]. Robotics and Autonomous Systems,2009,(57):55-63.
    [82]禹建丽,V. Kroumov,孙增沂.一种快速神经网络路径规划算法[J].机器人,2001,(3):201-205.
    [83]陈刚,沈林成.复杂环境下路径规划问题的遗传路径规划方法[J].机器人,2001,(1):40-44.
    [84]梁晓辉,吴威,赵芯平.大规模真实地形数据中的全局路径规划方法-基于遗传算法的研究[J].计算机研究与发展,2002,(3):301-306.
    [85]谢宏斌,刘国栋,李春光.动态环境中基于模糊神经网络的机器人路径规划的一种新方法[J].江南大学学报(自然科学版),2003,(1):19-23.
    [86] Nilsson N J. Introduction to artificial intelligence principles[J]. Rivista di Informatica,1981,11(1): 132-38.
    [87] Stentz A .Optional and efficient path planning for partly known environment[C].Proceedings ofthe IEEE International Conference on Robotics and Automation,San Diego,1994, 4(10):3310–3317.
    [88] Stentz A. The focused D* algorithm for real time replanning [C]. Proceedings of the International Joint Conference on Artificial Intelligence, New York,1995,1(10):425-432.
    [89] Podsedkowski L, Nowakowski J, Idzikowski M,et al. A new solution for path planning in partially known or unknown environment for nonholonomic mobile robots[J].Robotics and Autonomous Systems,2001,34(2-3):145-152.
    [90]武传宇.基于PC+DSP模式的开放式机器人控制系统及其应用研究,[博士学位论文].杭州:浙江大学,2002.
    [91]穆中林,鲁艺,任波,等.基于改进A*算法的无人机航路规划方法研究[J].弹箭与制导学报,2007,27(1):297-300.
    [92]王庆庆,唐锐.基于MCF5272微处理器的PC104总线的设计与实现[J].工业控制计算机,2005,18(12):73-74.
    [93]王牛,李祖枢,李永龙,等.带驱动直流电机两轮机器人运动系统仿真[J].系统仿真学报,2008,20(17):4633-4646.
    [94]谷侃锋,赵明扬.轮式移动机器人沙地行驶控制建模与仿真研究[J].系统仿真学报.2008,20(18):5035-5039.
    [95]易军.履带车辆自动变速系统智能控制策略及实验研究,[博士学位论文].武汉:华中科技大学,2007.
    [96]彭韬,鱼振民.无刷直流电动机单神经元自适应PID控制及改进[J].伺服控制,2005,38(1):19-22.
    [97]占日新.基于模糊控制的星球探测器驱动系统避障研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [98]孟庆浩,张明路,彭商贤.用于移动机器人避障的超声测距系统软硬件设计[J].河北工业大学学报,1997,26(1):86-89.
    [99]叶涛,陈细军.基于DSP的多超声波测距数据采集处理系统[J].自动化与仪器仪表,2003,1:27-29.
    [100]王耿,贾伟.利用RTW和DSP实现某无人机飞控测试平台[J].弹箭与制导学报,2008,28(1):286-288.
    [101]危遂薏,刘桂雄.一种同质的多传感数据融合新算法[J].传感器技术,2004,(8):61-62.
    [102]李雄,徐宗昌,王凯.机器人导航中的多传感器数据融合新算法[J].工程图学学报,2008,(1):154-157.
    [103] R.Volpe, P.Khosla. Manipulator Control with Superquadric Artificial Potential Functions:Theory and Experiments[J].IEEE Transactions on Systems,Man and Cybernetics,Special Issue on Unmanned Vehicles and Intelligent Systems,1990,20(6):1423-1436.
    [104] C.I.Connolly,J.B.Burns,R.Weiss.Path Planning Using Laplace's Equation[C]. Proceedings IEEE Intnternational Conference on Robotics and Automation,Los Alamitos,1990:2102-2106.
    [105] S. Akishita,S. Kawamura,K. Hayashi.Laplace Potential for Moving Obstacle Avoidance and Approach of a MobileRobot[C].Proceedings Japan-USA Symp,Flexible Automation Conference, Tokyo,1990:139-142.
    [106] J.H.Chang .Potential-based Modeling of Three-dimensional Workspace for Obstacle Avoidance[J].IEEE Transactions on Robotics and Automation,1998,14(5):778-785.
    [107] Kennedy J, Eberhart R C.Particle swarm optimization[C],Proceedings of the IEEE International Conference on Neural Networks,Piscataway, 1995:1942-1948.
    [108] Shi Y, Eberhart R C. A modified particle swarm optimizer[C],Proceedings of the IEEE International Conference on Evolutionary Computation. Nagoya,1998:69-73.
    [109]秦元庆,孙德宝,李宁等.基于粒子群算法的移动机器人路径规划[J].机器人,2004,26(3):222-225.
    [110]孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055.
    [111] Ammar W. Mohemmed, Nirod Chandra Sahoo,Tan Kim Geok. Solving shortest path problem using particle swarm optimization[J].Applied soft computing,2008(8):1643-1653.
    [112] Parsopoulos K.E, Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002,1(2):235-306.
    [113]李宁.粒子群优化算法的理论分析与应用研究,[博士学位论文].武汉:华中科技大学,2006.
    [114] Shi Y,Eberhart R.C.A modified particle swarms optimizer[C].IEEE World Congress on Computational Intelligence,USA, 1998:69-73.
    [115]严庆新.船舶碰撞危险度评判模型[J].武汉理工大学学报,2002,26(2):220-222.
    [116]段群杰.水下机器人实时路径规划研究,[博士学位论文].哈尔滨:哈尔滨工程大学2007.
    [117]汪洋,郭晨,孙富春.基于动态神经模糊算法的船舶航向自适应控制[J].哈尔滨工程大学学报,2009,30(10):1159-1164.
    [118] Borenstein J,Koren Y. Real-time obstacle avoidance for fast mobile robots[J].IEEETransactions on System Man and Cybernetics,1989,19(5):1179-1187.
    [119] Stone,P., Sutton,R.S., Kuhlmann,G. Reinforcement learning for Robo Cup-soccer keepaway[J].Adaptive Behavior,2005,13(3):165-188.
    [120] Ward C.C., Iagnemma K. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain[J].IEEE Transactions on Robotics,2008,24(4):821-831.
    [121] Ojeda,L., Cruz,D., Reina,G.,et al. Current-based slippage detection and odometry correction for mobile robots and planetary rovers[J].IEEE Transactions on Robotics,2006,22(2):366-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700