无细胞体系高效合成复杂膜蛋白的关键技术及工业应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜蛋白由于具有极其重要的生物学和医学意义,其研究已经成为蛋白质科学、结构生物学以及医学药学领域的重要部分,同时也是仿生膜等工程领域的研究基础。膜蛋白有不同的分类方法,既包括一次跨膜结构的简单膜蛋白,又包括多次跨膜的复杂膜蛋白。复杂膜蛋白包括受体蛋白,离子通道蛋白,转运蛋白,催化膜上反应的酶等具有各种生物学功能的蛋白质,其结构和功能研究关系着生命科学的各个方面。然而,膜蛋白尤其是复杂膜蛋白的大量制备仍然是现有体内蛋白表达技术难以攻克的难关之一。无细胞蛋白合成体系则为体内难以表达的膜蛋白研究提供了崭新的思路。
     本文选取线虫嗅觉受体ODR-10为目标开展了G蛋白偶联受体(GPCR)在无细胞系统高效表达的研究。GPCR是膜蛋白的一个重要组成部分,是许多药物筛选的靶点。本文采取了添加去污剂和脂质体两种策略在大肠杆菌无细胞体系实现ODR-10蛋白的可溶表达,可溶性ODR-10的表达水平达到100μg/mL以上。添加脂质体的策略促进了受体蛋白更加正确的折叠,同时可以使嗅觉受体在原位被合成、折叠和重构,这将方便嗅觉受体蛋白的结构和功能研究,为嗅觉传感器的制备提供支持。
     在实现受体蛋白大量可溶表达的基础上,本文进一步研究了通道蛋白的大量制备。选取了大肠杆菌水通道蛋白AqpZ为目标蛋白,利用大肠杆菌无细胞体系高效表达,并采取Ni2+亲和层析纯化得到目标蛋白。纯化后的AqpZ成功嵌入到脂质体上,并证实了功能活性。采用信号肽策略使AqpZ在无细胞体系的表达水平进一步提高。通过在无细胞体系中添加一定浓度的去污剂或脂质体可以原位切除信号肽,简化了纯化步骤,得到了天然大小的具有功能活性的AqpZ。该策略使得在一个反应器中能同时完成转录翻译、信号肽切除、膜蛋白正确折叠的过程。
     膜蛋白有许多有前景的工业应用,例如各种仿生膜的制备。在得到大量AqpZ的前提下,选取AqpZ进行了水通道过滤芯片的制备探索。本文制备了纳米氧化铝支撑的双分子膜,并合成了两亲性双嵌段聚合物PMOXA-PDMS-PMOXA,研究了其与AqpZ的相互作用。结果证明聚合物更适于制备稳定的固体支撑膜,用于海水淡化或者废水回收。
     许多膜蛋白都具有糖链,大部分有医学应用前景的蛋白质也都是糖蛋白。如何实现糖蛋白的高效异源表达也是膜蛋白大量制备需要解决的问题。本文探索了酵母无细胞蛋白合成体系的制备,发明了一种简便易行的酵母无细胞表达体系。该体系细胞容易培养,成本廉价,制备工艺简单,与其他真核体系相比具有一定优势。通过代谢改造可能会使酵母无细胞系统表达的异源糖蛋白更接近药物蛋白的要求。
     总之,本文致力研究膜蛋白在无细胞蛋白合成体系的高效表达策略以及应用研究,并为试图构建新的无细胞蛋白合成体系以适于各种膜蛋白表达。
Membrane proteins have been important research targets in protein science, structural biology, pharmaceuticals, and the preparation of biomimetic membrane, due to their significance in biology and medicine. Membrane proteins include both simple membrane proteins with one transmembrane domain and complex membrane proteins with several transmembrane domains. The structure and function researches of complex membrane proteins, including receptors, ion channel proteins, transporters, and enzymes, are involved in various areas of life sciences. However, high-level production of membrane protein in vivo is still challenging, especially for complex membrane proteins. Cell-free protein synthesis system has attracted many attentions as an alternative tool for the production of membrane proteins.
     The olfactory receptor ODR-10from Caenorhabditis elegans, one member of GPCRs, which are usually targets of drug screening, was investigated in E. coli cell-free system. Both addition of detergents and supplementation of liposomes brought about more than100μg/ml soluble ODR-10. The supplied liposomes could integrate protein synthesis, folding and reconstitution in situ, which will facilitate the structure and function studies and pave the application of biosensors.
     Besides the large scale production of receptors, the effective expression of channel proteins was investigated. The water channel protein AqpZ was produced in E. coli cell-free system. The protein was effectively expressed and purified by Ni2+affinity chromatography. AqpZ was reconstituted into liposomes successfully and verified to be active. Several natural leader peptides were respectively fused at the N-terminus and verified to enhance the expression level significantly. The supplementation of detergents or liposome could remove the leader peptide in situ, which could simplify the purification process and provide hydrophobic environment for proper folding of active AqpZ. Using this strategy, the transcription-translation, leader sequence cleavage and membrane protein folding were integrated into a simple process in the cell-free system.
     As we know, membrane proteins can be applied in various industry areas, for example, the preparation of biomimetic membranes. Based on the large production of AqpZ, the water channel chip preparation was explored in this study. The AAO supported lipid bilayer was prepared and amphiphilic diblock copolymer PMOXA-PDMS-PMOXA was synthesized. The interaction of AqpZ with PMOXA-PDMS-PMOXA was investigated. The result indicated that the copolymer was more suitable for preparation of biomimetic membrane incorporated with AqpZ to be applied in seawater desalination or water recycling.
     Many membrane proteins are attached to sugar chains, and most promising targets in therapeutic application are glycoproteins. How to achieve heterologous glycoproteins is a challenging problem. Thus a simple and effective cell-free system based on yeast was established. Comparing to other eukaryotic cell-free systems, the culturing of yeast cells is low-cost, and the yeast cell-free system is easily prepared. The system can be developed to be suitable for production of glycoproteins which can meet the request of pharmaceutical use by metabolic engineering.
     This thesis is committed to study the effective production of complex membrane proteins in cell-free system and their applications, as well as the novel cell-free systems investigation for production of various kinds of membrane proteins.
引文
[1]Harvey L, Arnold B, Chris KA, Krieger M, Matthew SP, Anthony B, Hidde P, Paul M. Molecular Cell Biology (6th edn), New York, W. H. Freeman & Company,2007.
    [2]Singer SJ, Maher PA, Yaffe MP. On the transfer of integral proteins into membranes. Proc. Natl. Acad. Sci. U. S. A.,1987,84:1960-1964.
    [3]White S,1998, Irvine, the Stephen White laboratory at UC Irvine. Membrane Protein of Known 3D Structure. [January,2014], http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html.
    [4]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE,1999, Piscataway, Research Collaboratoty for Structural Bioinformatics. The Protein Data Bank. [January,2014], http://www.rcsb.org/pdb/
    [5]Drew D, Froderberg L, Baars L, de Gier JW. Assembly and overexpression of membrane proteins in Escherichia coli. Biochim. Biophys. Acta,2003,1610:3-10.
    [6]Fukuda M, Eshdat Y, Tarone G, Marchesi VT. Isolation characterisation of peptides derived from cytoplasmic segment of band-3, predominant intrinsic membrane protein of human erythrocyte. J. Biol. Chem.,1978,253:2419-2428.
    [7]Tate CG Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett.,2001,504:94-98.
    [8]Eshaghi S, Hedren M, Nasser MI, Hammarberg T, Thornell A, Nordlund P. An efficient strategy for high-throughput expression screening of recombinant integral membrane proteins. Protein Sci.,2005,14(3):676-683.
    [9]Kurland C, Gallant J. Errors of heterologous protein expression. Curr. Opin. Biotechnol., 1996,7(5):489-493.
    [10]Czerski L, Sanders CR. Functionality of a Membrane Protein in Bicelles. Anal. Biochem.,2000,284(2):327-333.
    [11]Nirenberg MW, Caskey T, Marshall R, Brimacombe R, Kellogg D, Doctor B, Hatfiled D, Kevin J, Rottmann F, Pestka S, Wilcox M, Anderson F. The RNA code and protein synthesis, Cold Spring Harb. Symp. Quant. Biol.,1966,31:11-24.
    [12]Spirin AS, Baranov VI, Ryabova LA, Ovodov, SY, Alakhov YB. A continous cell-free translation system capable of producing polypeptides in high yield. Science,1988,242: 1162-1164.
    [13]Uzawa T, Yamagishi A, Oshima T. Polypeptide synthesis directed by DNA as a messenger in cell-free polypeptide synthesis by extreme thermophiles, Thermus thermophilus HB27 and Sulfolobus tokodaii strain 7. J. Biochem.,2002,131(6):849-853.
    [14]Jackson R J, Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol.,1983,96(5):50-74.
    [15]Erickson A H, Blobel G. Cell-free translation of messenger RNA in a wheat germ system. Methods Enzymol.,1983,96:38-50.
    [16]Gasior E, Herrera F, Sadnik I, McLaughlin CS, Moldave K. The preparation and characterization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J. Biol. Chem.,1979,254(10):3965-3969.
    [17]Mureev S, Kovtun O, Nguyen UT, Alexandrov K. Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol.,2009,27:747-752.
    [18]Ezure T, Suzuki T, Shikata M, Ito M, Ando E, Utsumi T, Nishimura O, Tsunasawa S. Development of an insect cell-free system. Curr. Pharm. Biotechnol.,2010,11(3):279-284.
    [19]Blow J J, Laskey RA. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell,1986,47:577-587.
    [20]Masutani M, Machida K, Kobayashi T, Yokoyama S, Imataka H. Reconstitution of eukaryotic translation initiation factor 3 by co-expression of the subunits in a human cell-derived in vitro protein synthesis system. Protein Expr. Purif.,2013,87:5-10.
    [21]Martemyanov KA, Shirokov VA, Kurnasov OV, Gudkov AT, Spirin AS. Cell-free production of biologically active polypeptides:application to the synthesis of antibacterial peptide cecropin. Protein Expr Purif.,2001,21:456-461.
    [22]Berrier C, Park KH, Abes S, Bibonne A, Betton JM, Ghazi A. Cell-free synthesis of a functional ion channel in the absence of a membrane and in the presence of detergent. Biochemistry,2004,43:12585-12591.
    [23]Kim DM, Swartz JR. Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of E. coli. Biotechnol. Bioeng.,2004,85:122-129.
    [24]Kang SH, Jun SY, Kim DM. Fluorescent labeling of cell-free synthesized proteins by incorporation of fluorophore-conjugated nonnatural amino acids. Anal. Biochem.,2007,360: 1-6.
    [25]Lesley SA, Brow MAD, Burgess RR. Use of in vitro protein synthesis from polymerase chain reaction generated templates. J. Biol. Chem.,1991,266:2632-2638.
    [26]Ahn JH, Chu HS, Kim TW, Oh IS, Park CG, Kim DM. Cell-free synthesis of recombinent proteins from PCR-amplified genes at a comparable productivity to that of plasmid-based reactions, Biochem. Biophys. Res. Commun.,2005,338:1346-1352.
    [27]Gan R, Yamanaka Y, Kojima T, Nakano H. Microbeads display of proteins using emulsion PCR and cell-free protein synthesis, Biotechnol. Prog.,2008,24:1107-1114.
    [28]Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett.,1999, 442(1):15-19.
    [29]Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB. A continous cell-free translation system capable of producing polypeptides in high yield. Science,1988,242: 1162-1164.
    [30]Kim T W, Keum J W, Oh I S, Choi CY, Park CG, Kim DM. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J. Biotechnol., 2006,126(4):554-561.
    [31]Kim D M, Swartz J R. Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog.,2000,16(3):385-390.
    [32]Kim D M, Swartz J R. Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol Bioeng.1999,66(3):180-188.
    [33]Kim T W, Keum J W, Oh I S, Choi CY, Park CG, Kim DM. An economical and highly productive cell-free protein synthesis system utilizing fructose-1,6-bisphosphate as an energy source. J. Biotechnol.,2007,130(4):389-393.
    [34]Kim T W, Oh I S, Keum J W, Kwon YC, Byun JY, Lee KH, Choi CY, Kim DM. Prolonged cell-free protein synthesis using dual energy sources:Combined use of creatine phosphate and glucose for the efficient supply of ATP and retarded accumulation of phosphate. Biotechnol. Bioeng.,2007,97(6):1510-1515.
    [35]Wu PSC, Ozawa K, Lim SP, Vasudevan SG, Dixon NE, Otting G Cell-free transcription/translation from PCR-amplified DNA for high-throughput NMR studies. Angew. Chem. Int. Ed.,2007,46:3356-3358.
    [36]Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Ueda T. Cell-free translation reconstituted with purified components. Nature Biotechnol.,2001,19:751-755.
    [37]Ramachandiran V, Kramer G, Hardesty B. Expression of different coding sequences in cell-free bacterial and eukaryotic systems indicates translational pausing on Escherichia coli ribosomes. FEBS lett.,2000,482(3):185-188.
    [38]Marcus A, Feeley J. Activation of protein synthesis in the imbibitions phase of seed germination. Proc. Natl. Acad. Sci. U. S. A.,1964,51:1075-1079.
    [39]Sawasaki T, Ogasawara T, Morishita R, Endo Y A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. U. S. A.,2002,99:14652-14657.
    [40]Takai K, Sawasaki T, Endo Y. Practical cell-free protein synthesis system using purified wheat embryos. Nature Protoc.,2010,5(2):227-238.
    [41]Tsuboi, T. Takeo S, Iriko H, Jin L, Tsuchimochi M, Matsuda S, Han ET, Otsuki H, Kaneko O, Sattabongkot J, Udomsangpetch R, Sawasaki T, Torii M, Endo Y. Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infect. Immun.,2008,76:1702-1708.
    [42]Shao J, Prince T, Hartson SD, Matts RL. Phosphorylation of serine 13 is required for the proper function of the Hsp90 cochaperone, Cdc37. J. Biol. Chem.,2003,278(40): 38117-38120.
    [43]Iwamuro S, Saeki M, Kato S. Multi-ubiquitination of a nascent membrane protein produced in a rabbit reticulocyte lysate. J. Biochem.,1999,126(1):48-53.
    [44]Kinsella BT, Erdman RA, Maltese WA. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid. Proc. Natl. Acad. Sci. U. S. A.,1991,88(20):8934-8938.
    [45]Utsumi T, Sato M, Nakano K, Takemura D, Iwata H, Ishisaka R. Amino acid residue penultimate to the amino-terminal glyresidue strongly affects two cotranslational protein modifications, N-myristoylation and N-acetylation. J. Biol. Chem.,2001,276(13): 10505-10513
    [46]Joseph SK, Boehning D, Pierson S, Nicchitta CV. Membrane insertion, glycosylation, and oligomerization of inositol trisphosphate receptors in a cell-free translation system. J. Biol. Chem.,1997,272(3):1579-1588.
    [47]Ishisaka R, Sato N, Tanaka K, Takeshige T, Iwata H, Klostergaard J, Utsumi T. A part of the transmembrane domain of pro-TNF can function as a cleavable signal sequence that generates a biologically active secretory form of TNF. J. Biochem.,1999,126(2):413-420.
    [48]Endo Y, Sawasaki T. Cell-free expression systems for eukaryotic protein production. Curr. Opin. Biotechnol.,2006,17:373-380.
    [49]Swerdel MR, Fallon AM. Cell-free translation in lysates from Spodoptera frugiperda (Lepidoptera:Noctuidae) cells, Comp. Biochem. Physiol. B,1989,93:803-806.
    [50]Wakiyama M, Kaitsu Y, Matsumoto T, Yokoyama S. Coupled transcription and translation from polymerase chain reaction-amplified DNA in Drosophila Schneider 2 cell-free system. Anal. Biochem.,2010,400:142-144.
    [51]Suzuki T, Ito M, Ezure T, Shikata M, Ando E, Utsumi T, Tsunasawa S, Nishimura O. Protein prenylation in an insect cell-free protein synthesis system and identification of products by mass spectrometry. Proteomics,2007,7:1942-1950.
    [52]Suzuki T, Ito M, Ezure T, Shikata M, Ando E, Utsumi T, Tsunasawa S, Nishimura O. N-Terminal protein modifications in an insect cell-free protein synthesis system and their identification by mass spectrometry. Proteomics,2006,6:4486-4495.
    [53]Suzuki T, Ezure T, Ando E, Nishimura O, Utsumi T, Tsunasawa S. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system. J. Biotechnol.,2010,145:73-78.
    [54]Tarui H, Murata M, Tani I, Imanishi S, Nishikawa S, Hara T. Establishment and characterization of cell-free translation/glycosylation in insect cell (Spodoptera frugiperda 21) extract prepared with high pressure treatment. Appl. Microbiol. Biotechnol.,2001,55(4): 446-453.
    [55]Mikami S, Kobayashi T, Yokoyama S, Imataka H. A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins. J. Biotechnol.,2006,127(1):65-78.
    [56]Mikami S, Kobayashi T, Masutani M, Yokoyama S, Imataka H. A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr. Purif.,2008,62(2):190-198.
    [57]Kobayashi T, Nakamura Y, Mikami S, Masutani M, Machida K, Imataka H. Synthesis of encephalomyocarditis virus in a cell-free system:from DNA to RNA virus in one tube. Biotechnol. Lett.,2012,34(1):67-73.
    [58]Jiang X, Oohira K, Iwasaki Y, Nakano H, Ichihara S, Yamane T. Reduction of protein degradation by use of protease-deficient mutants in cell-free protein synthesis system of Escherichia coli. J. Biosci. Bioeng.,2002,93(2):151-156.
    [59]Ali M, Suzuki H, Fukuba T, Jiang X, Nakano H, Yamane T.. Yamane. Improvements in the cell-free production of functional antibodies using cell extract from protease-deficient Escherichia coli mutant. J. Biosci. Bioeng.,2005,99(2):181-186.
    [60]Jackson M, Pratt JM, Holland IB. Enhanced polypeptides synthesis programmed by linear DNA fragments in cell-free extracts lacking exonuclease V. FEBS Lett.,1983,163: 221-224.
    [61]Michel-Reydellet N, Woodrow K, Swartz J. Increasing PCR fragment stability and protein yields in a cell-free system with genetically modified Escherichia coli extracts. J. Mol. Microbiol. Biotechnol.,2005,9(1):26-34.
    [62]Seki E, Matsuda N, Yokoyama S, Kigawa T. Cell-free protein synthesis system from Escherichia coli cells cultured at decreased temperatures improves productivity by decreasing DNA template degradation. Anal. Biochem.,2008,377(2):156-161.
    [63]Jun SY, Kang SH, Lee KH. Continuous-exchange cell-free protein synthesis using PCR-generated DNA and an RNase E-deficient extract. Biotechniques,2008,44:387-391.
    [64]Seki E, Matsuda N, Kigawa T. Multiple inhibitory factor removal from an Escherichia coli cell extract improves cell-free protein synthesis. J. Biosci. Bioeng.,2009,108(1):30-35.
    [65]Michel-Reydellet N, Calhoun K, Swartz J. Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome. Metab. Eng.,2004,6:197-203.
    [66]Kim DM, Swartz JR. Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol. Bioeng.,2004,85:122-129.
    [67]Kim D M, Swartz J R. Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog.,2000,16(3):385-390.
    [68]Kim D M, Swartz J R. Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol. Bioeng.,1999,66(3):180-188.
    [69]Kim D M, Swartz J R. Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnol. Bioeng.,2001,74(4):309-316.
    [70]Kim T W, Keum J W, Oh I S, Choi CY, Park CG, Kim DM. An economical and highly productive cell-free protein synthesis system utilizing fructose-1,6-bisphosphate as an energy source. J. Biotechnol.,2007,130(4):389-393.
    [71]Kim T W, Oh I S, Keum JW, Kwon YC, Byun JY, Lee KH, Choi CY, Kim DM. Prolonged cell-free protein synthesis using dual energy sources:Combined use of creatine phosphate and glucose for the efficient supply of ATP and retarded accumulation of phosphate. Biotechnol. Bioeng.,2007,97(6):1510-1515.
    [72]Kim DM, Choi CY. A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol. Prog.,1996 12(5):645-649.
    [73]Sawasaki, T., Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y. A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett.,2002,514(1):102-105.
    [74]Biyani M, Husimi Y, Nemoto N. Solid-phase translation and RNA-protein fusion:a novel approach for folding quality control and direct immobilization of proteins using anchored mRNA. Nucleic Acids Res.,2006,34:e140.
    [75]Park N, Um SH, Funabashi H, Xu J, Luo D. A cell-free protein-producing gel. Nat. Mater.,2009,8:432-437.
    [76]Yabuki T, Motoda Y, Hanada K, Nunokawa E, Saito M, Seki E, Inoue M, Kigawa T, Yokoyama S. A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis. J. Struct. Funct. Genomics,2007,8(4):173-191.
    [77]Mureev S, Kovtun O, Nguyen UT, Alexandrov K. Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol.,2009,27(8):747-752.
    [78]Sawasaki T, Hasegawa Y, Morishita R, Seki M, Shinozaki K, Endo Y. Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system. Phytochemistry,2004,65(11):1549-1555.
    [79]He M, Stoevesandt O, Taussig MJ. In situ synthesis of protein arrays. Curr. Opin. Biotechnol.,2008,19:4-9.
    [80]Angenendt P, Nyarsik L, Szaflarski W, Glokler J, Nierhaus KH, Lehrach H, Cahill DJ, Lueking A. Cell-free protein expression and functional assay in nanowell chip format. Anal. Chem.,2004,76(7):1844-1849.
    [81]Shi J, Pelton JG, Cho HS, Wemmer DE. Protein signal assignments using specific labeling and cell-free synthesis. J. Biomol. NMR,2004,28(3):235-247.
    [82]Stapleton JA, Swartz JR. Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS One,2010,5:e15275.
    [83]Tsuboi T, Takeo S, Arumugam TU, Otsuki H, Torii M. The wheat germ cell-free protein synthesis system:a key tool for novel malaria vaccine candidate discovery. Acta Trop.,2010, 114:171-176.
    [84]Klammt C, Lohr F, Schafer B, Haase W, Dotsch V, Ruterjans GC, Bernhard F. High level cell-free expression and specific labeling of integral membrane proteins. Eur. J. Biochem.,2004,271:568-580.
    [85]Klammt C, Schwarz D, Lohr F, Schneider B, Dotsch V, Bernhard F. Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J.,2006,273(18):4141-4153.
    [86]Klammt C, Schwarz D, Fendler K, Haase W, Dotsch V, Bernhard F. Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J., 2005,272(23):6024-6038.
    [87]Park KH, Berrier C, Lebaupain F, Pucci B, Popot JL, Ghazi A, Zito F. Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. Biochem. J.,2007,403(1):183-187.
    [88]Umakoshi H, Suga K, Bui HT, Nishida M, Shimanouchi T, Kuboi R. Charged liposome affects the translation and folding steps of in vitro expression of green fluorescent protein. J. Biosci. Bioeng.,2009,108(5):450-454.
    [89]Kalmbach R, Chizhov I, Schumacher MC, Friedrich T, Bamberg E, Engelhard M. Functional cell-free synthesis of a seven helix membrane protein:in situ insertion of bacteriorhodopsin into liposomes. J. Mol. Biol,2007,371(3):639-648.
    [90]Nomura SM, Kondoh S, Asayama W, Asada A, Nishikawa S, Akiyoshi K. Direct preparation of giant proteo-liposomes by in vitro membrane protein synthesis. J. Biotechnol., 2008,133(2):190-195.
    [91]Hovijitra NT, Wuu JJ, Peaker B, Swartz JR. Cell-Free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnol. Bioeng.,2009,104(1):40-49.
    [92]Buck L, Axel R. A novel multigene family may encode odorant receptors:a molecular basis for odor recognition. Cell,1991,65(1):175-187.
    [93]彭鹤,赵鲁杭。嗅觉受体基因和蛋白的研究进展。浙江大学学报英文版,2012,41(1):117-122.
    [94]Firestein S. How the olfactory system makes sense of scents. Nature,2001,413(6852): 211-218.
    [95]Floriano WB, Vaidehi N, Goddard WA 3rd. Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors. Chem. Senses.,2004, 29(4):269-290.
    [96]Sengupta P, Chou JH, Bargmann CI. Odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell,1996,84:899-909.
    [97]Ko HJ, Park TH. Piezoelectric olfactory biosensor:ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens. Bioelectron.,2005,20(7):1327-1332.
    [98]Sung JH, Ko HJ, Park TH. Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens. Bioelectron.,2006,21(10):1981-1986.
    [99]Cook BL, Ernberg KE, Chung H, Zhang S. Study of a synthetic human olfactory receptor 17-4 expression and purification from an inducible mammalian cell line. PloS One, 2008,3(8):e2920
    [100]Leck KJ, Zhang S, Hauser CA. Study of biocnginecrcd zebra fish olfactory receptor 131-2:receptor purification and secondary structure analysis. Plos One,2010,5(11): e15027.
    [101]Du L, Wu C, Peng H, Zou L, Zhao L, Huang L, Wang P. Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization. Sens. Actuator B- Chem., 2013,187:481-487.
    [102]Lee SH, Park TH. Recent advances in the development of bioelectronic nose. Biotechnol. Bioprocess Eng.,2010,15:22-29.
    [103]Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang S. Efficient cell-free production of olfactory receptors:detergent optimization, structure, and ligand binding analyses. Proc. Natl. Acad. Sci. U. S. A.,2008,105(41):15726-15731.
    [104]Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc. Natl. Acad. Sci. U. S. A.,2011,108(22):9049-9054.
    [105]Gopel W, Ziegler C, Breer H, Schild D, Apfelbach R, Joerges J, Malaka R. Bioelectronic noses:a status report-Part Ⅰ. Biosens. Bioelectron.,1998,13(3-4):479-493.
    [106]Minic J, Persuy MA, Godel E, Aioun J, Connerton I, Salesse R, Pajot-Augy E. Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS. J.,2005,272:524-537.
    [107]Ko HJ, Park TH. Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol. Chem.,2006,387:59-68.
    [108]Ko HJ, Park TH. Functional analysis of olfactory receptors expressed in a HEK-293 cell system by using cameleons. J. Microbiol. Biotechnol.,2007,17:928-933.
    [109]Marrakchi M, Vidic J, Jaffrezic-Renault N, Martelet C, Pajot-Augy E. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40. Eur. Biophys. J.,2007,36:1015-1018.
    [110]Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science,1992,256:385-387.
    [111]Maurel C, Reizer J, Schroeder JI, Chrispeels MJ. The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J.,1993,12(6): 2241-2247.
    [112]de Groot BL, Grubmuller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science,2001,294(5550):2353-2357.
    [113]Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature,2000,407(6804): 599-605.
    [114]Agre P. The aquaporin water channels. Proc. Am. Thorac. Soc.,2006,3 (1):5-13.
    [115]Borgnia MJ, Kozono D, Calamita G, Maloney PC, Agre P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol.,1999,291: 1169-1179.
    [116]Mohanty AK, Wiener MC. Membrane protein expression and production:effects of polyhistidine tag length and position. Protein Expr. Purif.,2004,33:311-325.
    [117]Lian JZ, Ding SH, Cai J, Zhang DP, Xu ZN, Wang XN. Improving aquaporin Z expression in Escherichia coli by fusion partners and subsequent condition optimization. Appl. Microbiol. Biot,2009,82:463-470.
    [118]Xu ZN, Lian JZ, Cai J. Efficient expression of aquaporin Z in Escherichia coli cell-free system using different fusion vectors. Protein Pept. Lett.,2010,17(2):181-185.
    [119]Miiller-Lucks A, Gena P, Frascaria D, Altamura N, Svelto M, Beitz E, Calamita G. Preparative scale production and functional reconstitution of a human aquaglyceroporin (AQP3) using a cell free expression system. New Biotechnol.,2013,30(5):545-551.
    [120]Lei Kai, Ralf Kaldenhoff, Jiazhang Lian, Xiangcheng Zhu, Volker Dotsch, Frank Bernhard, Peilin Cen, Zhinan Xu. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes. PLoS ONE,2010,5 (9):e12972.
    [121]von Bulow J, Miiller-Lucks A, Kai L, Bernhard F, Beitz E. Functional characterization of a novel aquaporin from Dictyostelium discoideum amoebae implies a unique gating mechanism. J. Biol. Chem.,2012,287:7487-7494.
    [122]Sun G, Zhou H, Li Y, Jeyaseelan K, Armugam A, Chung TS. A novel method of AquaporinZ incorporation via binary-lipid Langmuir monolayers. Colloids Surf. B Biointerfaces,2012,89:283-288.
    [123]Wang H, Chung TS, Tong YW, Meier W, Chen Z, Hong M, Jeyaseelane K, Armugame A. Preparation and characterization of pore-suspending biomimetic membranes embedded with Aquaporin Z on carboxylated polyethylene glycol polymer cushion. Soft Matter,2011, 7:7274-7280.
    [124]Sun G, Chung TS, Jeyaseelan K, Armugam A. Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids Surf. B Biointerfaces, 21013,102:466-471.
    [125]Sun G, Chung TS, Jeyaseelan K, Armugamb A. A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Adv.,2013, 3:473-481.
    [126]Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W, Torres J, Helix-Nielsen C, Wang R, Hu X, Fane AG, Tang CY. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci.,2012,423-424:422-428.
    [127]Li X, Wang R, Wicaksanac F, Tang C, Torres J, Fane AG. Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z. J. Membr. Sci., 2014,450:181-188.
    [128]Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Nati. Acad. Sci. U.S.A.,2007,104:20719-20724.
    [129]Duong PHH, Chung TS, Jeyaseelan K, Armugam A, Chen Z, Yang J, Hong M. Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci.,2012,409-410:34-43.
    [130]Zhong PS, Chung TS, Jeyaseelan K, Armugam A. Aquaporin-embedded biomimetic membranes for nanofiltration, J. Membr. Sci.,2012,407-408:27-33.
    [131]Wang H, Chung TS, Tong YW, Jeyaseelan K, Armugam A, Chen Z, Hong M, Meier W. Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small,2012,8:1185-1190.
    [132]Wang H, Chung TS, Tong YW, Jeyaseelan K, Armugam A, Duong PHH, Fu F, Seah H, Yang J, Hong M. Mechanically robust and highly permeable AquaporinZ biomimetic membranes. J. Membr. Sci.,2013,434:130-136.
    [133]Walter P, Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol.,1983,96:84-93.
    [134]Endo'Y, Sawasaki T. Cell-free expression systems for eukaryotic protein production. Curr. Opin. Biotechnol.,2006,17:373-380.
    [135]Rothblatt JA, Meyer DI. Secretion in yeast:Reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell,1986, 44(4):619-628.
    [136]Ferrer-Miralles N, Domingo-Espin J, Corchero J, Vazquez E, Villaverde A. Microbial factories for recombinant pharmaceuticais. Microb. Cell Fact.,2009,8(1):17.
    [137]Iizuka N, Sarnow P. Translation-competent extracts from Saccharomyces cerevisiae: Effects of L-A RNA,5'cap, and 3'poly(A) tail on translational efficiency of mRNAs. Methods,1997,11(4):353-360.
    [138]Kurata S, Nielsen KH, Mitchell SF, Lorsch JR, Kaji A, Kaji H. Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP. Proc. Natl. Acad. Sci. U. S. A.,2010,107(24):10854-10859.
    [139]Wang X, Liu J, Zhao WM, Zhao KN. Translational comparison of HPV58 long and short L1 mRNAs in yeast (Saccharomyces cerevisiae) cell-free system. J. Biosci. Bioeng., 2010,110(1):58-65.
    [140]Wang X, Liu J, Zheng Y, Li J, Wang H, Zhou Y, Qi M, Yu H, Tang W, Zhao WM. An optimized yeast cell-free system:Sufficient for translation of human papillomavirus 58 L1 mRNA and assembly of virus-like particles. J. Biosci. Bioeng.,2008,106(1):8-15.
    [141]Hodgman CE, Jewett MC. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis. Biotechnol. Bioeng.,2013,110(10): 2643-2654.
    [142]Sambrook J, Fritsch E F, Maniatis T.分子克隆实验指南(第三版),北京:科学出版社,2002,26-99.
    [143]Coligan JE, Dunn BM, Speicher DW, Wingfield PT.精编蛋白质科学实验指南,北京:科学出版社,2007,291-334.
    [144]Klammt C, Schwarz D, Eifler N, Engel A, Piehler J, Haase W, Hahn S, Dotsch V, Bernhard F. Cell-free production of G protein-coupled receptors for functional and structural studies. J. Struct. Biol.,2007,159:194-205.
    [145]Goshi I, Mie G, Mihoro S. Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr. Purif., 2005,41:27-37.
    [146]Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang S. Efficient cell-free production of olfactory receptors:Detergent optimization, structure, and ligand binding analyses. Proc. Natl. Acad. Sci. U. S. A.,2008,105:15726-15731.
    [147]Sung JH, Ko HJ, and Park TH. Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens. Bioelectron.,2006,21:1981-1986.
    [148]Wu C, Du L, Wang D, Zhao L, Wang P. A biomimetic olfactory-based biosensor with high efficiency immobilization of molecular detectors. Biosens. Bioelectron.,2012,31: 44-48.
    [149]Ahn JH, Hwang MY, Lee KH, Choi CY, Kim DM. Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts. Nucleic Acids Res.,2007,35:e21.
    [150]Lian J, Ma Y, Cai J, Wu M, Wang J, Wang X, Xu Z. High-level expression of soluble subunit b of FIFO ATP synthase in Escherichia coli cell-free system. Appl. Microbiol. Biotechnol.,2009,85:303-311.
    [151]Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc. Natl. Acad. Sci. U. S. A.,2011,108:9049-9054.
    [152]Corin K, Baaske P, Ravel DB, Song J, Brown E, Wang X, Wienken CJ, Jerabek-Willemsen M, Duhr S, Luo Y, Braun D, Zhang S. Designer lipid-like peptides:a class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS One,2011,6:e25067.
    [153]Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S. Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr. Purif.,2005,41(1):27-37.
    [154]Bush CF, Hall RA. Olfactory receptor trafficking to the plasma membrane. Cell Mol. Life Sci.,2008,65:2289-2295.
    [155]Trowell SC, Home IM, Dacres H, Leitch V. Measuring G protein coupled receptor activation. U. S. Patent,13/141,661,2012-03-09.
    [156]Wuu JJ. cell-free synthesis of integral membrane proteins. [PH.D Degree Dissertation]. Stanford, Stanford University,2007,82.
    [157]Nardin C, Hirt T, Leukel J, Meier W. Polymerized ABA triblock copolymer vesicles. Langmuir,2000,16:1035-1041.
    [158]Brewer J, Bernardino de la Serna J, Wagner K, Bagatolli LA. Multiphoton excitation fluorescence microscopy in planar membrane systems. Biochim. Biophys. Acta,2010,1798: 1301-1308.
    [159]Vacha R, Siu SW, Petrov M, Bockmann RA, Barucha-Kraszewska J, Jurkiewicz P, Hof M, Berkowitz ML, Jungwirth P. Effects of alkali cations and halide anions on the DOPC lipid membrane. J. Phys. Chem. A,2009,113:7235-7243.
    [160]Sovago M, Wurpel GW, Smits M, Muller M, Bonn M. Calcium-induced phospholipid ordering depends on surface pressure. J. Am. Chem. Soc.,2007,129:11079-11084.
    [161]Mureev S, Kovtun O, Nguyen U T, Alexandrov K. Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol.,2009,27(8):747-752.
    [162]Kai L, Roos C, Haberstock S, Proverbio D, Ma Y, Junge F, Karbyshev M, Dotsch V, Bernhard F. Systems for the cell-free synthesis of proteins. Methods Mol. Biol.,2012,800: 201-225.
    [163]Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU. Production of complex human glycoproteins in yeast. Science,2003,301:1244-1246.
    [164]Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science,2006,313(5792):1441-1443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700