中国对虾(Fenneropenaeus chinensis)育种的模型分析与遗传参数评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采集了中国沿海不同地理群体、朝鲜半岛群体以及黄海所培育的“黄海1号”和抗病品系“即抗98”等不同中国对虾群体,构建了基础群体。采用人工定向交尾和人工授精技术,共构建了中国对虾家系。以构建的家系为材料,以杂交育种和选择育种为目标,进行了系统的中国对虾杂交育种试验、不同性状遗传参数分析工作。结果表明以不同地理群体杂交作为基础群体,然后采用系统的多性状选择育种方法可以获得较好的选择效果。本文研究结果也表明,利用多性状复合育种技术,培育综合性状优良的中国对虾新品种是一个正确而必要的育种策略。这些试验结果为中国对虾合理系统的育种工作提供了理论基础和数据支持。其具体结果如下:
     1.对虾选择育种操作规程
     中国对虾选择育种操作规程主要包括:1)基础群体的建立:采集了中国沿海不同地理群体、朝鲜半岛群体以及黄海所培育的“黄海1号”和抗病品系“即抗98”等不同中国对虾群体,构建了基础群体。2)亲虾的越冬和促熟:通过摘除眼柄的方式增加产卵亲虾的比例。3)定向交尾和人工授精技术:在中国对虾家系建立过程中,我们采用定向交配对子代进行选育的方法;采用4种中国对虾人工授精方法,即整个精荚移植,精荚切块移植,输精管移植和精液移植。4)苗种培育与中间暂养:建立中国对虾苗种培育的技术。5)幼体标记:所有家系均在控制条件下育苗、养殖和抗wssv能力测试。6)养成:养成后对遗传上表现优良的家系所有备选个体分别用独特的眼柄进行标记。7)成体标记:采用个体眼柄标记的方法为养成个体提供身份标记。8)生长、存活率与wssv抗性性状的检测:不同家系标记的中国对虾在共同的环境中进行生长、存活率和wssv人工攻毒实验,并且记录所有与这些性状检测相关的信息。
     2.中国对虾家系的建立及其生长发育分析
     采用4种中国对虾人工授精方法建立中国对虾家系,共进行了155例雌虾的人工授精实验,有108尾雌虾成功产卵并孵化出仔虾,成功率为69.7%,在此基础上目前已经建立了101个全同胞家系(包括29个半同胞家系组)。在受精卵孵化、育苗的基础上,同时进行了不同家系幼体生长发育情况的研究,结果表明受精率、孵化率、存活率以及初期生长在4个实验组间都没有显著性差异(P>0.05)。另外对其他家系之间的比较也得出同样的结果,说明不同家系在早期的生长发育中,没有表现出显著性差异(P>0.05)。而在养成阶段,方差分析结果表明家系间在生长上表现出差异极其显著(P<0.01)。
     2.饵料和养殖密度对暂养期家系生长和存活的影响
     在实验用虾遗传背景一致的情况下,分析了3种饵料(配合饲料、冰冻鲜鱼肉和活卤虫)和4个不同的养殖密度对小水体中国对虾幼虾生长和存活率的影响。结果表明,饵料和饲养密度对中国对虾幼虾生长及存活率有显著影响。幼虾的生长在饵料、养殖密度单因子实验及饵料和养殖密度相结合的双因子实验,均表现出极其显著差异(P<0.01),活卤虫对幼虾的生长的效应尤为突出。而养殖密度对中国对虾的行为生物学、个体间体重增量均有影响。随着养殖密度的提高,中国对虾增重变慢;同时,个体间体重增量差异变大。随着养殖密度的增加,中国对虾幼虾的存活率呈下降趋势,但不同饵料对存活率影响变化幅度较大,波动在58.1%~85.2%之间,其中投喂活卤虫养殖密度为50尾/桶的存活率最高(85.2%);投喂配合饵料4个养殖密度梯度的存活率变化不明显;而投喂冰冻鱼肉4个养殖密度梯度的存活率变化较大。
     3.中国对虾不同群体间的杂交效果分析
     对中国对虾两个不同地理位置的选育群体—中国乳山湾选育群体(RS)和朝鲜半岛南海选育群体(KN)及其2个杂交组合后代、3个复式杂交组合后代的4月龄时生长发育情况和存活率进行了研究。结果表明,2个杂交后代在体长、体重、存活率3个指标上均表现不同程度的杂种优势(3.586%~13.892%),其中RS♀×KN♂杂交效果较好;ANOVA分析结果表明,中国乳山湾选育群体(RS)与朝鲜半岛南海选育群体(KN)及其杂交子一代4月龄时在体重和体长指标上在群体间均达到显著水平(P<0.05),而在在存活率指标上在群体间未达到显著水平(P>0.05);LSD多重比较结果显示,2个杂交后代在体长指标上与双亲差异显著(P<0.05)。在3个复式杂交组合后代中,RS♀×(KN'×RS')♂杂交在3个指标上均大于同龄(RS'×KN')♀×RS♂,比同龄(KN'×RS')♀×RS♂稍高;ANOVA分析结果表明,中国乳山湾选育群体(RS)与朝鲜半岛南海选育群体(KN)及其杂交子一代以及复式杂交后代的4月龄时在体长、体重指标上在群体间均达到显著水平(P<0.05); LSD多重比较结果显示,在体长和存活率指标上RS♀×(KN'×RS')♂与(RS'×KN')♀×RS♂差异显著。在所有两群体的纯繁后代、杂交组合后代和复式杂交组合后代中,RS♀×(KN'×RS')♂杂交后代生长发育最快,成活率最高。
     5.对虾早期生长的遗传参数估计的动物模型分析
     利用中国对虾21个父系半同胞组共1387个个体体重数据,将家系标记时的平均体重、全同胞组效应等因子组合,建立了4种不同的动物模型,应用BLUP法估计体重育种值。四种模型的估计结果分析表明,家系标记时的平均体重和全同胞家系效应是2个重要影响因子,建立的AFB动物模型比其它模型所估计的结果更准确。AFB动物模型估计中国对虾145d的体重遗传力为0.14~0.076,据此计算育种值并进行模拟留种分析,结果显示,在根据表型值或育种值选种的情况下,育种值选种的留种家系或个体的育种值比表型值选种分别提高50%和80.59%,育种值选择的效率更高。
     6.中国对虾体重、存活率和WSSV抗性的遗传参数评估
     利用单性状动物模型估计中国对虾170d的体重、抗WSSV存活时间和存活率三个性状的育种值,在家系水平上进行性状间表型值和育种值相关分析。估计的三个性状的遗传力分别为:0.22±0.16、0.14±0.12和0.03±0.021,并据此计算各性状个体育种值。家系性状表型值的相关分析表明,家系170d体重和抗WSSV存活时间之间存在一定程度相关(r=0.35,P<0.05),其余性状间相关系数很小,且差异不显著。三个性状家系育种值间的相关系数均较小,170d体重与抗WSSV存活时间的相关系数最高(0.038),170d体重与存活率,抗WSSV存活时间与存活率之间为负相关(r=-0.24,r=-0.027),并且统计检验未达到显著性水平。另用所有家系和个体估计得到的生长、存活率和抗WSSV的育种值计算了家系和个体的选择指数值,并且依据选择指数值进行了选种以生产下一代家系。
     7.应用BLUP法分析中国对虾选择的遗传进展
     为了评估中国对虾最佳线性无偏预测(BLUP)的育种效果,利用亲本评估的个体育种值,组建3个高育种值家系为实验组,3个平均值育种值家系为对照组,进行了生长对比测试。6个家系的苗种经过独立培育、中间暂养,体重达到1g左右时用荧光标记进行了标记,标记后的幼虾同时放养于对虾养殖池中。在生产养殖池中养殖63天后进行生长性状的测定。BLUP法预测结果显示:中国对虾一代选育后的预期遗传进展为0.78g,相对于选育前全群的平均值6.68g,提高了约11.68%。实际对比测试结果表明,高育种值家系后代平均体重为21.55g,平均育种值家系的平均体重为19.03g,选育一代的体重提高13.28%。结果表明:BLUP育种技术对中国对虾生长性状的选育效果显著。
Brood stock was collected from both domesticated breeds ("Huang Hai 1" and "Jikang-98") and wild populations in China and South Korea to establish a base population of Fenneropenaeus chinensis with a broad genetic variation. The families were successfully produced using oriented mating and artificial insemination. The crossbreeding of F. chinensis and genetic parameters estimates were carried out. The results indicated that obvious genetic improvement was gained in F. chinensis. Therefore, the multi-traits selection was necessary for shrimp genetic breeding program. The results would provide theoretic basis for indirect and early breeding for F. chinensis. The following is the results in detail.
     1.Technical operation of selective breeding for F. chinensis
     Technical operation of Selective breeding for F. chinensis is established.1) Composite of base population:base population was collected from both domesticated breeds ("Huang Hai 1" and "Jikang-98") and wild populations in China and South Korea to establish a base population of F. chinensis with a broad genetic variation.2) Over-wintered and ripened of spawners:the percentage of spawning females are increased by Eyestalk ablation.3) Oriented mating and Artificial insemination: F. chinensis families were produced by carrying out oriented mating so as to select the offsprings in selective breeding of F. chinensis. We used 4 different methods of artificial insemination (AI), namely the entire spermatophores transplantation, the fractional spermatophores transplantation, the sperm duct transplantation and the seminal fluid transplantation.4) Larvae rearing and post-larval nursing:larvae rearing of standardized technical operation for F. chinensis.5) Post-larvae tagging:family coding using elastomers:all families, which are cultured in the controlled environment, are challenged with White Spot Syndrome Virus (WSSV).6) Post-larval rearing.7) Individual tagging:at harvest, all breeding candidates from the genetically superior families are individually tagged using unique eye-tags.8) Testing of growth, survival and WSSV-challenge:tagged test animals from different families were tested with growth, survival and WSSV-challenge in a common test environment. The growth, pond survival and WSSV-resistance and pond survival were measured including all recorded data.
     2.Establishment of families and their growth and development for F. chinensis
     F. chinensis families were produced by carrying out 4 different methods of artificial insemination (AI).155 cases of artificial insemination experiment were totally applied,108 spawners succeeded in spawning and hatching the larvae, with 69.7% of the ratio. And then on basis of the experiment,101 full-sib families that included 29 half-sib families of F. chinensis were established. The larval growth and development were studied, such as fertilization rate, hatching rate, survival rate and growth were compared. There were no significant differences among four different experimental groups (RS (♀)×RS (♂),QD(♀)×RS(♂),KC (♀)×RS (♂) and KC (♀)×QD (♂)). In addition, there were no significant differences between other families that were studied in the experiment at early life history stage of F. chinensis. During growout, analyses of variance for growth indicated there was most significant difference (P<0.01) among families.
     3. The effects of different diets and stocking density on the growth and survival rate of post-larval nursing of families of F. chinensis
     Under the identical genetic ground, we studied the effect of different diets and stocking density on the growth and survival rate of juvenile shrimp F. chinensis in small water bodies. Groups of juvenile shrimps F. chinensis were cultured using three diets of artificial pellets, frozen fresh fish and living Artemia sp. at four stocking densities (50,100,150,200 shrimps per tank, respectively). The results showed that the diets and the stocking density had great effects on growth and survival rate of juvenile shrimps F. chinensis. Analyses of variance for growth of juvenile shrimps F. chinensis indicated there were significant differences among different diets, densities, diets and densities (P<0.01). The growth of juvenile shrimps F. chinensis fed on Artemia sp. was the fastest in growth. The behavior and the weight gain of shrimps were affected by stocking density. The results showed that shrimps held at the higher density showed lower weight gain than those at lower densities. The variation in shrimp weight gain was greatest in the highest density group. The results showed that the four different diets and stocking density had a significant effect on survival rates over the experimental period. Shrimps held at different stocking density showed with increase of stocking density the survival rates of fish was suppressed. However, different diets had different effect on survival rates from 58.1% up to 85.2%. The group of juvenile shrimps F. chinensis fed on Artemia sp. with stocking density (50 shrimps per tank) had the highest survival rate of 85.2%. The group of juvenile shrimps F. chinensis fed on artificial pellets had not significant effect on survival rates at four different stocking densities. The group of juvenile shrimps F. chinensis fed on frozen fresh fish had significant effect on survival rates.
     4. Studies on hybridization among the different populations of shrimp F. chinensis
     F. chinensis were collected from two different geographic areas in Rushan Bay of China and the South Coast of the Korean Peninsula. Intra-and intercross populations were produced between Rushan (RS) and Korean (KN) selected populations. Descendants of 3 groups were produced using hybrid duplex. All descendants of the above group were selected for the research on the growth trait and viability at the end of fourth month. The results indicated that growth trait and viability of two intercross populations showed a range of heterosis, ranging from 3.586% to 13.892%, and that KN♀×RS♂has a stronger heterosis than KN♀×RS♂. The result of ANOVA indicated that there was significant difference (P<0.05) on BL, BW of hybrids of Rushan (RS) and Korean (KN) selected populations with their parental populations while Sur was not significantly different (P>0.05). The multiple comparisons of LSD test indicated that the two intercross populations were significantly different (P<0.05) from their parents in BL. The results of hybrid duplex indicated that RS♀×(KN'×RS')♂had a better growth and viability than (KN'×RS')♀×RS♂and (RS'×KN')♀×RS♂, (KN'×RS')♀×RS♂had a better growth and viability than (RS'×KN')♀×RS♂. The result of ANOVA indicated that the descendants of all populations and cross combinations were significantly different in BL and Sur. The multiple comparisons of LSD test indicated that there was significantly difference between RS♀×(KN×RS)♂and (RS×KN)♀×RS♂(P<0.05) in BL and Sur. In addition, among descendants of intra-, intercross populations and hybrids duplex RS♀×(KN×RS)♂had a best growth and viability.
     5. Analysis of Animal Models and Estimation of Genetic Parameters of growth in juvenile F. chinensis
     Based on the data of 1387 animals from 21 half-sib groups of Fenneropenaeus chinensis, breeding value of body weight of all individuals were estimated using four kinds of animal (A、AB、AF、AFB) models of BLUP (Best linear unbiased prediction). These models were composing of different combinations which included average body weight when tagging family (covariate) or full-sib group effect (uncorrelated random effect) or these two factors. Results implied that these two factors were very import for estimating breeding value of body weight. The accuracy of breeding value estimated by ABF model was higher than other models. The heritability estimated of 145d body weight by ABF model was 0.14±0.076. For body weight selection, the efficency of breeding value selection is increased by 50% and 80.59% in family selection and individual selection, compared to phenotypic value selection.
     6. Estimation of genetic parameters of body weight, survival rate and resistance to WSSV in shrimp F. chinensis
     The breeding values of three traits about the body weight of 170 days, the survival time for resistance to White Spot Syndrome Virus (WSSV) and the survival rate were estimated using single trait animal model, and the correlation analyses between the phenotypic value and the breeding value among traits was performed at family level. The results indicated that the estimated heritability of three traits were 0.22±0.16,0.14±0.12 and 0.03±0.021, respectively, and the breeding value of each trait was calculated basing on these values. At family level, the correlation analyses of trait phenotypic value showed that the correlation coefficient between the average body weight of 170 days and the resistance to WSSV is positive and significant (r=0.35, P<0.05), and the correlation coefficients among other traits were very small, and the differences were not distinct. The correlation coefficients of family breeding value between three traits were all small, among which the correlation coefficient between body weight of 170 days and resistance to WSSV was highest (0.038), and the correlations between body weight of 170 days and tank survival, between the survival time of resistance to WSSV and pond survival were negative (r=-0.24, r=-0.027), respectively, and their differences were not distinct. Estimated breeding values for the above traits were combined in a multi-trait selection index to estimate a total breeding value of the breeding candidates. The next generation of families were Selected to produced based on Selection index values.
     7.Genetic gain for selection of F. chinensis applying BLUP method
     In order to evaluate genetic gain of BLUP (best linear unbiased prediction) for Fennropenaeus chinensis, the experiment on growth comparison of breeding generation of F. chinensis was carried out. Groups of the experiment on growth comparison consisted of three breeding sires of families of the high breeding value as the experimental group and three middling breeding value as the control group. The offspring of six families were stocked into separate larvae-culture tanks for rearing until tagging. The six families produced were tagged with a unique family code by injecting different colors of "Visible Implant Fluorescent Elastomers" (VIE). The animals had an average body weight of 1.0 grams at tagging. The breeding candidates were stocked in the tanks and harvested after 18 weeks. The expecting genetic gain of the growth trait was estimated to be 0.78g,11.68% increased to average value 6.68g. The test results show that the average body weight of the offspring of high breeding value families was 21.56g, the average body weight of the offspring of the middling breeding value families was 19.03g, the phenotypic gain of the body weight was 13.28%. The results indicated that obvious genetic improvement was gained by BLUP breeding value estimation.
引文
[1]邓景耀,金显仕.渤海越冬场渔业生物资源量和群落结构的动态特征.自然资源学报,2001,16(1):42~46
    [2]Ponzoni R W. Editors. Development of Aquatic Animal Genetic Improvement and Dissemination Programs:Current Status and Action Plans. in:B.O. Acosta and A.G. Ponniah, (eds). WorldFish Center Conference Proceeding.2006,73,120p
    [3]Gall G A E, Bakar Y, Famula T. Estimating genetic change from selection. Aquaculture,1993, 111:75~88
    [4]Gall G A E, Bakar Y. Application of mixed-model techniques to fish breed improvement: analysis of breeding-value selection to increase 98-day body weight in tilapia. Aquaculture,2002, 212:93~113
    [5]Hulata G, Wohlfarth G W, Halevy A. Mass selection for growth rate in Nile tilapia. Aquaculture, 1986,57:177~184
    [6]Huang C M, Liao I C. Response to mass selection for growth rate in O. niloticus. Aquaculture, 1990,85:199~205
    [7]Ponzoni R W, Hamzah A, Tan S. Genetic parameters and response to selection for live weight in the GIFT strain of Nile Tilapia (Oreochromis niloticus). Aquaculture,2005,247:203~210
    [8]Neira R, Diaz N F, Gall G A E. Genetic improvement in Coho salmon (Oncorhynchus kisutch). I:Selection response and inbreeding depression on harvest weight. Aquaculture,2006,257:9~17
    [9]Kause, A. and Ritola, O. Improved salmonid quality throught selective breeding. Global aquaculture advocate,2003,6:2~24
    [10]楼允东.鱼类育种学.中国农业出版社,北京,1999
    [11]Basavaraju Y, Deveraj K V, Ayyar S P. Comparative growth of reciprocal carp hybrids between Catla catla and Labeo fimbriatus. Aquaculture,1995,129:187~191
    [12]Kirpichnikov V S. Genetic basis of fish selection. Berlin, Springer Verlag.1981.410
    [13]Linhart O, Flajshans M, Gela D, et al. Breeding programme of common carp in the Czech Republic. ⅩⅧ-the Genetic Days,1998, Ceske Budejovice
    [14]Smitherman R O and Dunham R A. Genetics and breeding. In C.S. Tucker, ed. Channel catfish culture, Amsterdam, Elsevier Scientific Publishing,1985:283~316.
    [15]Nguenga D, Teugels G G, Richter C J J, et al. Fertilization, hatching, survival and growth rates in reciprocal crosses of two strains of an African catfish, Heterobranchus longifilies hatchery conditions. African Fisheries Diversity and Utilisation. Poissons et Peches Africains Diversite et Utilisation,1998.224~225
    [16]Argue B J, Liu Z, Dunham R A. Dress-out and fillet yields of channel catfish, Ictalurus punctatus, blue catfish, Ictalurus furcatus, and their F1, F2 and backcross hybrids. Aquaculture, 2003,228:81~90
    [17]Nwadukwe F O. Hatchery propagation of five hybrid groups by artifical hybridization of Clarius gariepinus (B) and Heterobranchus longifilis (Val.) (Clariidae) using dry, powdered carp pituitary hormone. Aquacult,1995, Trop.10:1~11
    [18]Shokita S. Larval development of interspecif ic hybrid between Machrobrachi um asperulum from Taiwan and Marobrachium shokitai from the Ryukyus. Bulletin of t he Japanese Society of Scientific Fisheries,1978,44:1187~1195
    [19]Lin M N, Ting Y Y, Hanyu I. Hybridization of two close-thelycum penaeid species Penaeus monodon×P. penicillatus and P. penicillatus×P. monodon, by means of spermatophore transplantation. Bull Taiwan Fish Res Inst,1988,45:83~101
    [20]Carlberg J M, Vanolst J, Ford R. A comparison of larval and juvenile stages of the lobsters Homarus americanus, Homarus gammarus, and their hybrids. Proc World Maricult Soc.,1978, 11:488~499
    [21]Sandifer P A and Lynn J. Artificial insemination of caridean shrimp. In:Clark W H, Adams H S, eds. Recent advances in invertebrate rep roduction. Elsevier, Amsterdam, The Netherlands.1980, 271~288
    [22]Benzie J A H, Kenway M, Ballment E, et al. Interspecific hybridization of the tiger prawns Penaeus monodon and Penaeus esculentus. Aquaculture,1995,133:103~111
    [23]Misamore M and Browdy C L. Evaluating hybridization potential between Penaeus setiferus and Penaeus vannamei through natural mating, artificial insemination and in vitro fertilization. Aquaculture,1997,150:1~10
    [24]Reddy P V G K. Genetic resources of Indian major carps. FAO Fish. Tech. Pap.,2005,387:76
    [25]童一中,高瑾南.作物遗传育种知识.上海科学技术出版社,上海,1975
    [26]Gjerde B. Growth and reproduction in fish and shellfish. Aquaculture,1986,57:37~55
    [27]Gjerde B, Korsvoll A. Realised selection differentials for growth rate and early sexual maturity in Atlantic salmon. Aquac. Eur,1999,99:73~74
    [28]Longalong F M, Eknath A E, Bentsen HB. Response to bidirectional selection for frequency of early maturing females inNile tilapia(Oreochromis hiloticus). Aquaculture,1999,178:13~25
    [29]Gall G A E, Bakar Y. Application of mixed-model techniquesto fish breed improvement:analysis of breeding-value selection to increase 98-day body weight in tilapia. Aquaculture,2002, 212:93~113
    [30]Hershberger W K, Myers J M, Iwamoto R N. Genetic changes in the growth of Coho salmon (Oncorhynchus kisutch) in marine net-pens, produced by ten years of selection. Aquaculture, 1990,85:187~197
    [31]Neira R, Diaz N F, Gall G A E. Genetic improvement in Coho salmon (Oncorhynchus kisutch). Ⅰ:Selection response and inbreeding depression on harvest weight. Aquaculture,2006, 257:9~17
    [32]Kincaid H L, Bridges W R, Von L B. Three generations of selection for growth rate in fall spawning rainbow trout. Trans. Am. Fish. Soc.,1977,106:621~628
    [33]Rezk M A, Smitherman R O, Williams J C. Response to three generations of selection for increased body weight in channel catfish, Ictalurus punctatus, grown in earthen ponds. Aquaculture,2003,228:69~79
    [34]Tran M T, Nguyen C T. Selection of common carp (Cyprinus carpio L.) in Vietnam. Aquaculture, 1993,111:301~302
    [35]Fjalestad K T, Gjedrem T, Carr W H. Final report:the shrimp breeding program. Selective breeding of Penaeus vannamei. AKVAFORSK Rep.,1997,17/97.85 pp
    [36]Hetzel D J S, Crocos P J, Davis G P. Response to selection and heritability for growth in the Kuruma prawn, Penaeus japonicus. Aquaculture,2000,181:215-223
    [37]Jerry D R, Purvis I W, Piper L R. Selection for faster growth in the freshwater crayfish Cherax destructor. Aquaculture,2005,247:169~176
    [38]Ward R D, English L J, McGoldrick D J. Genetic improvement of the Pacific oyster Crassostrea gigas (Thunberg) in Australia. Aquaculture Research,2000,31:35~44
    [39]江西省水产学会.江西婺源荷包红鲤提纯、选优.淡水渔业,1982,(1):20~31
    [40]薛耀怀.选育前后兴国红鲤的生长对比试验.淡水渔业,1988,(6):26~26
    [41]李健,刘萍,何玉英等.中国对虾快速生长新品种“黄海1号”的人工选育.水产学报,2005,29(1):1~5
    [42]田传远,王如才,梁英.6-DMAP诱导太平洋牡蛎三倍体-抑制受精卵第二极体释放.中国水产科学,1999,6(2):1~4
    [43]戴继勋,包振民,张全启.中国对虾三倍体的诱发研究—温度休克.遗传,1993,15(5):15~18
    [44]包振民,张全启,王海等.中国对虾三倍体的诱导研究—细胞松弛素B处理.海洋学报,1993,15(3):101~105
    [45]相建海,周岭华,刘瑞玉等.中国对虾四倍体诱导研究.海洋科学,1992,4:55~61
    [46]高连勇,刘英杰,王玉梅.对虾遗传育种研究进展.河北渔业,1992,62(1):8~10
    [47]Stanley J G, Hidu H, Allen S K Jr. Growth of American oysters increased by polyploidy induced by blocking meiosis I but not meiosis II. Aquaculture,1984,37:147~155
    [48]姜卫国,许国强,林岳光等.合浦珠母贝三倍体和二倍体的生长比较.热带海洋,1991,10(3):1~7
    [49]曾志南,林琪,吴建绍,等.二倍体和三倍体太平洋牡蛎(Crassostrea gigas)肉重和生化成分的周年变化.海洋科学,1999,5:54~56
    [50]常亚青,相建海,张国范等.虾夷扇贝三倍体诱导与培育技术的研究.中国水产科学,2001,8(1):18~22
    [51]常亚青,相建海,王子臣等.药物诱导虾夷扇贝四倍体的初步研究.海洋与湖沼,2002,33(1):105~112
    [52]Guo X, Allen S K Jr. Viable tetraploids in the Pacific oysters (Crassostrea gigas Thunberg) produced by inhibiting polar body I in eggs from triploids. Molecular Mar Biol Bio technology, 1994,3(1):42~50
    [53]Guo X, Allen S K Jr. All-triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploidsand diploids. Aquaculture,1996,142 (324):149~161
    [54]王清印.海洋生物技术在海水养殖动植物品种培育和病害防治中的应用.生物工程进展,1996,16(6):41~48
    [55]周百成,曾呈奎.藻类生物技术与海洋产业发展.生物工程进展,1996,16(6):13~16
    [56]谭海东,张波,郝景泉等.转基因鱼的研究进展.大连水产学院学报,1999,14(2):54~61
    [57]Palmiter R D, Brister R L, Hammer R E, et al. Dramatic growth of mice that develop from eggs microinjected with metallothione in growth hormone fusion genes. Nature,1982,300:611~615
    [58]孙效文,闫学春,梁利群等.用直接注射法生产转基因鱼.生物技术,1993,3(3):12~14
    [59]Chen T T, Powers D A. Transgenic fish. Trends in Biotch.1990,8:209~215
    [60]Fletecher G L, King M J. Evidence for antifreeze protein gene transfer in Atlantic salmon (Salmo salar) Canadian Journal of Fisheries and Aquatic Sciences,1988,45:352~357
    [61]刘萍,孔杰,李健.中国对虾精子做载体将生长激素基因导入受精卵的研究.中国水产科学,1996,3(1):6~10
    [62]刘萍,孔杰,王清印.显微注射生长激素基因导入中国对虾受精卵的研究.中国水产科学,1996,3(4):35~38
    [63]Xiang J H, Clark W H, Griffin F, et al. Study on feasibility of chromosome set manipulations in the marine shrimp, sicyonia ingentis. International Crustacea Conference Brisbane, Australia, 1990.
    [64]戴继勋,包振民,张全启.中国对虾三倍体的诱发研究—温度休克.遗传,1993,15(5):15~18
    [65]蔡难儿,林峰,柯亚夫等.中国对虾人工诱导雌核发育的研究Ⅰ—四步诱导法.海洋科学,1995,3:35~41
    [66]陈本难,蔡难儿,李光友.中国对虾人工诱导雌核发育的研究—紫外线辐射对精子顶体反应和受精能力的影响.海洋科学,1997,1:41~47
    [67]Postlethwait J H, Johnson S L, Midson C N, et al. A genetic linkage map for the zebrafish. Science,1994,264:699~703
    [68]Gates M A, Kim L, Egan E S, et al. A genetic linkage map for z ebrafish comparative analysis and localization of genes and expressed sequences. Genome Res.,1997,9:334~34
    [69]Kelly P D, Chu E, Woods L G, et al. Genetic linkage mapping of zebrafish genes and ESTs. Genome Research,2000,10:559~567
    [70]Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics,2000,155:1331~1345
    [7]] Kocher T D, Lee W J, Sobolewsha H, et al. A genetic linkage map of a cichlid fish, the Tilapia (Oreochromis niloticus). Genetics,1998,148:1225~1232
    [72]Agresti J J, Seki S, Cnaani A, et al. Breeding new strains of tilapia:development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture,2000,185: 43~56
    [73]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报).中国水产科学,2000,7(1):1~5
    [74]Moore S S, Whan V, Davis G P, et al. The development and application of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture,1999,173:19~32
    [75]Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeus mondon with amplified fragment length polymorphism. Aquaculture,2002,204:297~300
    [76]Waldbieser G C, Bosworth B G, Nonneman D J, et al. A microsatellite-based genetic map for channel catfish. Genetics,2001,158:427~434
    [77]Wada H, Naruse K, Shimada A, et al. Genetic linkage map of a fish, the Japanese madaka Oryziao latipes. Mol. Mar. Biol. Biotech.,1995,4(3):269~274
    [78]Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of Medaka, Oryzias latipes: compatative genomics and genome evolution. Genetics,2000,154:1779~1784
    [79]Lush J L. Animal Breeding Plans 3rd edn. Iowa State College Press:Ames, IA,1937
    [80]Falconer D S. Patterns of response in selection experiments with mice. Cold Spring Harbor Symp. Quant Biol.,1955,20:178~196
    [81]盛志廉.单元内同胞相关法.动物数量遗传通讯,1981(2):18~29
    [82]陈瑶生.遗传参数估计原理探讨—亲本间亲缘相关时的参数估计方法.遗传学报,1990,17(2):116~129
    [83]吴常信.计算“全同胞Q半同胞”混合家系亲缘系数的近似公式.北京农业大学学报,1981,7(2)71~76
    [84]张文灿.家畜亲缘系数的研究.遗传学报,1983,10(4):306~310
    [85]庞航.混合家系亲缘相关的计算及其遗传力估计问题的探讨,湖南农业大学学报(自然科学版),1983(2):107~117
    [86]陈瑶生.混合家系遗传参数估计方法研究.遗传学报,1991,18(3):219~227
    [87]陈斌,施启顺,柳小春.单元内混合家系相关法估算遗传力及遗传相关的探讨.遗传,1991,13(1):18~20
    [88]Wright S. The results of crosses between inbred strains of guinea pigs, differing in number of digits. Genetics,1934,19:537~551
    [89]Falconer D S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann Hum Genet,1965,29:51~76
    [90]Reich T, James J, Morris C. The use of multiple thresholds in determining the mode of transmission of semi-continuous traits. Ann Hum Genet,1972,36:163~184
    [91]Falconer D S, Machay T F C. Introduction of Quantitative Genetics. Fourth edition. London: Longman
    [92]Snell E J, Snell E J. A scaling procedure for ordered categorical data. Biometrics,1964,20: 592~607
    [93]盛志廉,陈瑶生.数量遗传学.北京:科学出版社,2001
    [94]Hazel L N. The genetic basis for constructing selection indexes. Genetics,1943,28:316~330
    [95]Friars G W, Bailey J K, Coombs K A. Correlated responses to selection for grilse length in Atlantic salmon. Aquaculture,1990,85:171~176
    [96]O'Flynn F M, Bailey J K, Friars G W. Responses to two generations of index selection in Atlantic salmon Salmo salar. Aquaculture,1999,173:143~147
    [97]Dunham R A, Majumdar K, Hallerman, E. Status of aquaculture genetics and prospects for the third millenium. Proceedings Conference on Aquaculture in the Third Millenium. Bangkok,2001. 129~157
    [98]Henderson C R. Best linear unbiased estimation and prediction under a selection model. Biometrics,1975,31:423~447
    [99]Henderson C R. Applications of Linear Models in Animal Breeding. Guelph Univ. Press, Guelph, Canada,1984
    [100]Van Arendonk J A M, Bink M C A, Bijma P. Use of phenotypic and molecular data for genetic evaluation of livestock. The world congress of from lush to genomics. IOWA,1999.60-69
    [101]Gjoen H M, Gjerde B. Comparing breeding schemes using individual phenotypic values and BLUP breeding values as selection criteria. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, vol.27. University of New England, Armidale, New South Wales, Australia,1998:111~114
    [102]Gall G A E, Huang N.. Heritability and selection schemes of rainbow trout:body weight. Aquaculture,1988,73:43~56
    [103]Haggar C. Effects of selecting on phenotype, on index or on breeding value, on expected response, genetic relationships and accuracy of breeding values in an experiment. J. Anim. Breed. Genet.,1991,108:102~110.
    [104]Ponzoni R W, Hamzah A, Tan S, Kamaruzzaman N. Genetic parameters and response to selection for live weight in the GIFT strain of Nile Tilapia(Oreochromis niloticus). Aquaculture, 2005,247:203~210.
    [105]Neira R, Diaz N F, Gall G A E, et al. Genetic improvement in coho salmon (Oncorhynchus kisutch). Ⅱ:Selection response for early spawning date. Aquaculture,2006,257(1-4):1~8.
    [106]Kause A, Ritolab O, Paananenb T, et al. Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout(Oncorhynchus mykiss). Aquaculture,2005,247:177~187
    [107]Gallardoa J A, Garcia X, Lhorenteb J P. Inbreeding and inbreeding depression offemale reproductive traits in two populationsof Coho salmon selected using BLUP predictors of breeding values. Aquaculture,2004,234:111~122
    [108]殷宗俊,张勤.主基因—多基因混合模型下种畜标记辅助遗传评定的效率.安徽农业大学 学报,2005,32(2):141~145
    [109]俞英,张沅.畜禽遗传评定方法的研究进展.遗传,2003,25(5):607~610
    [110]Fernando R L, Grossman M. Marker assisted selection using bestling unbiased prediction. Gen. Sel.1989,21:467-477
    [111]Van Arendonk J A M, Tier B, Kinghorn B P. Use of multiple genetic markers in prediction of breeding values. Genetics,1994,137:319~329
    [112]Smith I R, Sheridan A K, Nell J A. Evaluation of growing methods for use in a Sydney rock oyster Saccostrea commercialis (Iredale and Roughley) selective breeding program. Aquaculture, 1995,131:189~195
    [113]Lester L J. Developing a selective breeding program for penaeid shrimp mariculture. Aquaculture,1983,33:41~50
    [114]Brock J A, Gose R-B, Lightner D V, et al. Recent developments and an overview of Taura Syndrome of farmed shrimp in the Americas. In:T.W. Flegel & I.H. MacRae, eds. Diseases in Asian Aquaculture Ⅲ. Fish Health Section, Asian Fisheries Society, Manila,1997.275~283
    [115]Preston N P, Crocos P J, Keys S J, et al. Comparative growth of selected and non-selected Kuruma shrimp Penaeus (Marsupenaeus) japonicus in commercial farm ponds; implications for broodstock production. Aquaculture,2004,231:73~82
    [116]Goyard E, Patrois J, Peignon J M, et al. Selection for better growth of Penaeus stylirostris in Tahiti and New Caledonia. Aquaculture,2002,204:461~468
    [117]刘萍,孔杰.白斑综合症病毒(WSSV)在对虾养殖过程中传播途径的调查.海洋水产研究.2000,21(3):9~12
    [118]张庆文,刘萍,王伟继等.中国对虾抗病群体选育的初步研究.海洋水产研究,2002,23(2):53~57
    [119]邓景耀,叶昌臣,刘永昌.渤黄海的对虾及其资源管理.北京:海洋出版社,1990.36~164
    [120]邓景耀,金显仕.渤海越冬场渔业生物资源量和群落结构的动态特征.自然资源学报,2001,16(1):42~46
    [121]王清印.养殖对虾的优良品种选育与海洋生物技术.海洋高新技术产业化高级论坛,2000,192~201
    [122]王清印,杨丛海.中国对虾健康养殖的发展现状及展望.中国水产,2005,1:21~24
    [123]Sandifer P A, Lynn J W. Artifical insemination of caridean shrimp in:W. h. Clark, Jr., T. S. Adam, eds, Advances in Invertebrate Reproduction Elsevier, North-Holland, Amsterdam,1980. 271~288
    [124]王清印,杨丛海,麻次松等.对虾输精管用于人工授精的研究.海洋水产研究,1989,10:69~72
    [125]Ibarra A M, Cruz P, Romero B A. Effects of inbreeding on growth and survival of selffertilized catarinas callop larvae, Argopecten circularis. Aquaculture,1995,134:37~47
    [126]Cruz P, Ibarra A M. Larval growth and survival of two catarinas callop(Argopecten circularis, Sowerby,1835) populations and their reciprocal crosses. J Exp Mar Biol Ecol,1997,212: 95~110
    [127]李春喜,王志和,王文林.生物统计学(第二版).北京:科学出版社,2000.184~194
    [128]穆迎春,王芳,董双林等.不同盐度波动幅度对中国明对虾稚虾蜕皮和生长的影响.海洋学报,2005,27(2):122~126
    [129]Argue B J, Arce S M, Lotz J M. Selective breeding of pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture,2002,204: 447~460.
    [130]Benzie J A H, Ballment E B, Frusher S. Genetic structure of Penaeus monodon in Australia: concordant results from mtDNA and allozymes. Aquaculture,1993,111:89~93
    [131]Hetzel D J S, Crocos P J, Gerard P D. Response to selection and heritability for growth in the Kuruma prawn, Penaeus japonicus. Aquaculture,2000,181:215~223
    [132]Goyard E, Patrois J, Peignon J M, et al. Selection for better growth of Penaeus stylirostris in Tahiti and New Caledonia. Aquaculture,2002,204:461~468
    [133]Finley L M, Haley L. The genetic of aggression in the juvenile American lobers, Homarus americanus. Aquaculture,1983,33:135~139
    [134]Malecha S R, Masuno S, Onizuka D. The feasibility of measuring the heritability of growth pattern variation in juvenile fresh water prawns, Macochium rosenbergu. Aquaculture,1984,38: 347~368
    [135]Lester L J. Difference in lavel growth among families of Penaeus stylirostris Stimpson and P. vannamei Boone. Aquacult Fish Manage,1988,19:243~251
    [136]张硕,董双林.饵料和盐度对中国对虾幼虾能量收支的影响.大连水产学院学报,2002,17(3):227~233
    [137]董双林,堵南山,赖伟.日本沼虾生理生态学研究:Ⅱ温度和体重对能量收支的影响.海洋与湖沼,1994.25(3):238~242
    [138]张乃禹,林如杰,曹登宫等.中国对虾的摄食量、生长率的初步研究.海洋与湖沼,1983,14(5):482~487
    [139]李健,孙修涛,赵法箴.水温和溶解氧含量对中国对虾摄食量影响的观察.水产学报,1993,17(4):333~336
    [140]张嘉萌,张伟权.中国对虾Penaeus orientalis Kishinouye存活和生长的初步研究.青岛海洋大学学报,1989,19(2):49~60
    [141]王清印,杨丛海.中国对虾健康养殖的发展现状及展望.中国水产,2005,(1):21~24
    [142]李德尚.水产养殖手册.北京:农业出版社,1993.355~357
    [143]王克行.虾蟹类增养殖学.北京:农业出版社,1997.62~69
    [144]滕世栋,丁增明.贻贝幼体在对虾育苗中的应用.海洋科学,1999,(3):18~20
    [145]林琼武,单保党,黄加祺.不同饵料搭配对日本对虾人工育苗存活率的影响.台湾海峡,2001,20:44~48
    [146]兰国宝,阎冰,廖思明.南美白对虾集约化养殖产量与密度关系研究.水产养殖,2003,24(4):38~39
    [147]解承林,王永恩.对虾养殖与病害防治.济南:山东科学技术出版社,1997,113~118
    [148]徐晓群,朱小明,费亮亮等.不同饵料、密度和池底对锯缘青蟹大眼幼体蜕皮变态的影响.厦门大学学报,2005,44(2):268~271
    [149]Collins J P, Cheek J E.. Effect of food and density on development of typical and cannibalism salamander larvae in Ambystoma tigrinum Nebulosum. Am. Zool.,1983,23:77~84
    [150]Semlitsch R D, Reichling S B. Density dependent injury in larval salamanders. Oecologia,1989, 81:100~103
    [151]张国范,刘晓,阙华勇等.贝类杂交及杂种优势理论和技术研究进展.海洋科学,2004,28(7):54~60
    [152]Argue B J, Liu Z, Dunham R A. Dress-out and fillet yields of channel catfish, Ictalurus punctatus, blue catfish, Ictalurus furcatus, and their backcross hybrids. Aquaculture,2003,228: 81~90
    [153]Bartley D M, Rana K, Immink A J. The use of inter-specific hybrids in aquaculture and fisheries. Rev Fish Biol Fish,2001,10:325~337
    [154]Bryden C A, Heath J W, Heath D D. Performance and heterosis in farmed and wild Chinook salmon (Oncorhynch us tshawytscha) hybrid and their parents crosses. Aquaculture,2004,235: 249~261
    [155]Gjerde B, Reddy P V G K, Mahapatra K D, et al. Growth and survival in two complete diallele crosses with five stocks of Rohn carp(Labeor ohita). Aquaculture,2002,209:103~115.
    [156]Yang Y, Lin C K, Diana J S. Hybrid catfish (Clarias macrocephalus C. gariepinus) and Nile tilapia (Oreochromis niloticus) culture in an integrated pencum-pond system:Growth performance and nutrient budgets. Aquaculture,2003,217:395~408
    [157]Benzie J A H, Kenway M, Ballment E, et al. Interspecific hybridization of the tiger prawns Penaeus monodon and Penaeus esculentus. Aquaculture,1995,133:103~111
    [158]Misamore M, Browdy C L. Evaluating hybridization potential between Penaeus setiferus and Penaeus vannamei through natural mating, artificial insemination and invitro fertilization. Aquaculture,1997,150:1~10
    [159]Bierne N, Beuzart I, VonanV, et al. Microsatellite-associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirostris. Aquaculture,2000,184:203~219
    []60]耿绪云,马维林,孙金生.海水生态养殖理论与技术:第七节中华绒螯蟹不同种群一龄阶段生长性能比较.中国水产学会2004全国海水生态养殖学术研讨会,2004:213~220
    [161]Cruz P, Ibarra A M. Larval growth and survival of two catarina scallop(Argopecten circularis, Sowerby,1835) populations and their reciprocal crosses. J Exp Marine Biol Ecol,1997,212: 95~110
    [162]Liu X L, ChangY Q, Xiang J H, et al. Studies on hybridization effects of different geographic population of Chlamys farreri. Acta Oceanologica sinica,2003,25(2):255~263
    [163]Migue I A, Rio-Portilla D, Andy R B. Larval growth, juvenile size and heterozygosityin laboratory reared mussels, Mytilus edulis. J Exp Marine Biol Ecol,2000,254:1~17
    [164]王清印.养殖对虾的优良品种选育与海洋生物技术.海洋高新技术产业化高级论坛,2000:192~201
    [165]王清印,杨丛海.中国对虾健康养殖的发展现状及展望.中国水产,2005,(1):21~24
    [166]Nakadate M, Shikano T, Taniguchi N. Inbreeding depression and heterosis in various quantitative traits of the guppy, Poecilia reticulate. Aquaculture,2003,220:219~226
    [167]周劲松,曹哲明,杨国梁等.罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性能与SRAP分析.中国水产科学,2006,30(6):667~673
    [168]Bentsen H B, Eknath A E, Palada-de Vera M S, et al. Genetic improvement of farmed tilapias: Growth performance in a complete diallel cross experiment with eight strains of Oreochromis niloticus. Aquaculture,1998,160:145~173
    [169]刘小林,常亚青,相建海等.栉孔扇贝不同种群杂交效果的初步研究:Ⅰ.中国种群与俄罗斯种群的杂交.海洋学报,2003,25(1):93~99
    [170]夏宣炎,熊远著.应用动物模型BLUP法估计猪个体育种值研究.华中农业大学学报,2000,19(2):142~146
    [171]李玉荣,李金泉,高佃平.动物模型BLUP法估计内蒙古白绒山羊育种值的研究.遗传学报,2000,27(9):777~786
    [172]程胜利,姚军.绵羊肉用性状BLUP模型筛选试验研究.草食家畜,2005,128(3):19~22
    [173]Belonsky G M, Kennedy B W. Selection on individual phenotype and best linear unbiased predictor of breeding-value in a closed swine herd. J. Anim. Sci.1988,66:1124~1131
    [174]Rye M, Lillevik K M, Gjerde B. Survival in early life of Atlantic salmon and rainbow trout: estimates of heritabilities and genetic correlations. Aquaculture,1990,89:209-216
    [175]Crandell PA, Gall G A E. The effect of sex on heritabilitiy estimates of body weight determined from data on individually tagged rainbow trout (Oncorhynchus mykiss). Aquaculture,1993,113: 47~55
    [176]Silverstein J T, Hershberger W K. Genetic parameters of size pre-and post-smoltification in coho salmon (Oncorhynchus kisutch). Aquaculture,1994,128:67~77
    [177]Gjedrem T. Genetic improvement of cold-water fish species. Aquac Res,2000,31:25~33
    [178]Crenshaw J W, Heffernan P B, Walker R L. Heritability of growth rate in the southern bay scallop, Argopecten irradians concentricus (Say,1822). J. Shellfish Res.,1991,10(1):55~63
    [179]Heffernan P B, Walker R L, Ryan M. Second heritability estimate of growth rate in the southern bay scallop, Argopecten irradians concentricus (Say,1822). J. Shellfish Res.,1993,12(1):151
    [180]Ibarra A M, Ramirez J L, Ruiz C A, et al. Realized heritabilities and genetic correlation after dual selection for total weight and shell width in catarina scallop (Argopecten ventricosus). Aquaculture,1999,175:227~241
    [181]Toro J E, Newkirk G F. Divergent selection for growth rate in European oyster Ostrea edulis: response to selection and estimate of genetic parameter. Mar. Ecol. Prog. Ser.,1990,62(3): 219~227
    [182]Jarayabhand P, Thavornyutikarn M. Realized heritability estimate on growth rate of oyster, Saccostrea cucullata Born,1778. Aquaculture,1995,138:111~118
    [183]Coman G J, Crocos P J, Preston N P, et al. The effect of temperature on the growth, survival and biomass of different families of juvenile Penaeus japonicus Bate. Aquaculture,2002,214: 185~199
    [184]Gitterle T, Rye M, Salte R, Cock J, et al. Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture, 2005,243:83~92
    [185]Winkelman A W, Peterson R G. Genetic parameters (heritabilities, dominance ratios and genetic correlations) for body weight and length of Chinook salmon after 9 and 22 months of saltwater rearing. Aquaculture,1994,125:31~36
    [186]Su G, Liljedahl L E, Graham A E. Genetic and environmental variation of female reproductive traits in rainbow trout(Oncorhynchus mykiss). Aquaculture,1997,154:115~124
    [187]Fevolden S E, Roed K H, Fjalestad K T, Selection response of cortisol and lysozyme in rainbow trout and correlation to growth. Aquaculture,2002,205:61~75
    [188]Bolivar R B, Newkirk G F. Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model. Aquaculture,2002,204:371~381
    [189]Quinton C D, McMillan I, Glebe D. Development of an Atlantic salmon (Salmo salar) genetic improvement program:Genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture,2005,247:211~217
    [190]Henryon M, Jokumsen A, Berg P, et al. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture,2002,209:59~76
    [191]杨翠华.中国对虾与抗性相关性状的遗传学参数分析.青岛:中国海洋大学,博士学位论文,2007
    [192]Gilmour A R, Bullis B R, Welham S J, et al. ASREML reference manual. NSW Agric. Biometric Bulletin, vol.3. Orange Agricultural Institute, Orange, Australia.1999
    [193]李思发.我国水产种苗工程进展和展望.见:迈向21世纪的渔业科技创新.2000年中国水产学会学术年会论文集.北京:海洋出版社,2000
    [194]刘小林,常亚青,相建海等.中间球海胆生长性状的双向选择反应和现实遗传力.海洋湖沼学会学术研讨会论文集,2004,10,78~80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700