多巴结构用于材料表面的仿生修饰及其生物学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受到贝壳类海洋生物分泌的黏附性蛋白质的结构的启发,有许多学者报道了聚多巴胺的粘附机理和性能。结果表明,多巴胺(3,4-二羟基-苯丙氨酸)以及其他具有类似儿茶酚结构的化合物可沉积在不同材料基体的表面,包括有机、无机和金属材料。利用聚多巴胺层表面的基团进行进一步反应可以在材料表面形成其他的功能层,包括利用自组装形成单分子层、通过长链分子反应形成聚合物层,通过无电沉积形成金属层,以及通过大分子接枝形成的生物活性层。
     明胶是胶原的水解产物,其主要由组成相同且分子量分布较宽的氨基酸构成,分子量一般在几万至十几万。明胶分子结构上含有大量的羟基及少量的羧基和氨基,具有极强的亲水性。因此,明胶分子中的羧基可以与多巴胺的氨基发生缩合反应。明胶具有其他合成材料无法比拟的生物相容性、可降解性以及生物活性,如:低抗原性、促进细胞粘附等。
     血管内皮生长因子(VEGF)作为一种强有力的血管生长介质,不仅能特异性地作用于血管内皮细胞,刺激细胞分裂、增生和移行,而且在血管成熟和重塑中起着重要作用,从而达到治疗性血管新生的目的。为了检验固定的生长因子的长期性能,在无机材料表面上共价结合生长因子的方法是令人满意的。然而,共价结合的作用力很强而且是不可逆的,这种绑定的方式常常降低了生长因子的生物活性。适当的条件下,可解离的生长因子可以促进信号传导,并释放到组织中可以修复受损组织。因此,我们可以利用蛋白质工程的方法固定生长因子,此方法的亲和力比普通的物理吸附作用力强,而且是可逆性的。这种固定方法主要是依靠生长因子结合黏附性的多肽来实现的。
     本研究利用多巴胺基团中的氨基与重组人明胶分子的羧基发生了缩合反应,形成具有黏附性重组人明胶;通过在材料表面的固定效果和细胞学评价,证明黏附性重组人明胶可以稳定的固定在金属材料表面,有利于细胞的黏附和增殖;本研究首次利用直链淀粉树脂纯化柱和羟基磷灰石纯化柱提纯重组人血管内皮因子,并将重组人血管内皮生长因子和黏附性多肽DOPA在转肽酶A的作用下连接;通过在材料表面的固定效果和细胞学评价,证明了黏附性重组人血管内皮因子改性后的材料表面具有良好的细胞相容性,无论在游离状态下还是固定状态下的黏附性重组人血管内皮生长因子都可以促进细胞增殖。
More and more researchers focus on the high performance of biomaterials inthese years. The surface modification is considered to be an effective way to meet thenew demand of clinical treatment, besides design and preparation of new biomaterialswith good comprehensive properties. The biocompatibility of the resulting metallicmaterials was evaluated.
     Currently, the modification method of metallic surface including physisorption,chemical bonding and protein engineering. Compared with the other modificationmethod of metallic surface, protein engineering has prominent features:1. both idealinterface performance, but also the nature of the material itself does not affect;2.apply a surface modification of the complex material in a variety of shapes;3. affinitybinding is stronger than normal physisorption and is also reversible;4. can not reducethe bioactivity of bound biological macromolecules.
     Recently, inspired by and studied on the composition of adhesive proteins inmussels, the adhesive mechanisms and adhesive behaviors of polydopamine havebeen reported. The results indicate that dopamine (or3,4-dihydroxy-phenylalanine)and other catechol compounds perform well as binding agents for coating varioussubstrates, including organic and inorganic. The oxidative polymerization ofdopamine and the spontaneous deposition of polydopamine on various surfacesprovide a powerful route for surface modification and functionalization. Secondaryreactions with the polydopamine layer can be used to create a variety of ad-layers,including self-assembled monolayers, through the deposition of long-chain molecularbuilding blocks, metal films by electroless metallization and bioactive surface viagrafting of macromolecules.
     The gelatin is collagen hydrolyzate, and its main by the same composition andmolecular weight distribution of a wide amino acids, and generally has a molecularweight in the ten thousands. Gelatin on the molecular structure contains a largenumber of hydroxyl groups and a small amount of carboxyl group and an amino group, with a strong hydrophilic. The carboxyl group in the gelatin molecule canoccur with the amino group of the dopamine. Compare with other synthetic material,gelatin has significant biocompatibility, biodegradability and biological activity, suchas: low antigenicity, promoting cell proliferation and differentiation.
     The present study was to conjugating dopamine with recombinant human gelatinto further enhance the biological activity of the material surface of the metal substrateto investigate the impact of modified methods to its surface-modified biocompatiblematerial for tissue engineering.
     As a potential specific endothelial cell (EC) mitogen, Vascular EndothelialGrowth Factor(VEGF) promotes the division, proliferation and migration of ECs,andalso plays an important role in the maturing and remodeling of blood vessels. Toexamine the long-term performance of growth factors, the chemical covalent bondingof growth factors to the surfaces of inorganic materials is desirable. However, strongand irreversible immobilization of growth factors to surfaces often diminishes theirbiological functionality. The dissociation of the growth factors from the scaffold mayalso be necessary for signal transduction. Therefore, the reversible immobilization ofproteins on inorganic surfaces was developed with protein engineering using adhesivepeptide binding motifs.
     The present study was to conjugating VEGF with adhesive peptide DOPA whichsynthesized by solid-phase synthesis to further enhance the biological activity of thematerial surface of the metal substrate to investigate the impact of itssurface-modified biocompatible biological material for tissue engineering.
     1. Preparation and characterization of adhesive recombinant human gelatin
     Through the activation of carboxyl group, the condensation reaction, dialysis andfreeze-dried after a series of processes, the adhesive gelatin prepared, the adhesivegelatin chemical composition was visually observed as a brown flocculent solid, softand sticky.
     Respectively, using1H-NMR, mass spectroscopy, circular dichroism andultraviolet spectroscopy of four methods to characterized the molecular structure ofthe adhesive gelatin.
     The NMR spectrum of D-rhG showed the benzene ring peaks included in thedopamine at6-7ppm. It indicated dopamine was introduced in human gelatin successfully.
     The molecular weight of unmodified gelatin was89,612Da and of modifiedgelatin was90,634Da. The difference in the weights (1,022Da) between the modifiedand unmodified gelatins corresponded to about6dopamine molecules (152Da).
     CD spectra showed no significant conformational changes due to dopaminemodification,because small amount of dopamine groups was introduced in humangelatin, slightly conformational change was occurred in adhesive gelatin.
     Turbidity measurements were performed using a V-550spectrophotometer at awavelength of500nm. Although the color of unmodified gelatin was the same at allpH values, the color of modified gelatin was pH-dependent. At higher pH values, thecolor was dark yellow. The solution turbidity of D-rhG also depended on pH, withmore turbidity at higher pH values. It indicated polydopamine solution was occurredunder alkali condition. Although the amount of ligated dopamine is limited, but itaffects the activity of adhesive recombinant human gelatin.
     2. Characterization of modified material surface
     The present study was to conjugating dopamine with recombinant human gelatinto modified titanium surface. Using X-ray photoelectron spectroscopy, quartz crystalmicrobalance and ellipsometer three methods to characterized the modified surface.
     Bare titanium plate exhibited mainly titanium and oxygen peaks. After treatmentwith gelatin, a new nitrogen peak appeared and the carbon peak intensity increased,while the titanium and oxygen peaks were reduced. These results demonstrate thesurface coverage of titanium by gelatins. The relative magnitudes indicate that D-rhGcovered more of the surface than rhG, and this coverage was pH-dependent.
     The mass of bound rhG or D-rhG was measured by QCM. Although the bindingof rhG was almost the same as that of D-rhG at acidic pH, it was significantly lessthan that of D-rhG at neutral and basic pH values.
     This result was also confrmed by thickness measurements using ellipsometry.The thickness ranged from5to30nm. The thickness of D-rhG layers formed at pH8.5was about4times as thick as that formed at pH4.5, and was about6times asthick as rhG formed at pH8.5.
     3. Effect of modified material surface on cell behavior
     The effect of modified titanium surface on cell behavior was including cellattachment and cell growth.
     Cell attachment result shows that bound gelatin enhanced cell attachment, withhigher attachment on surfaces with more bound gelatin. In addition, the increase incell binding was greater for D-rhG-than rhG-treated surfaces at the same surfaceconcentration. This indicates that dopamine conjugation enhances the attachment ofboth modified gelatin and cells.
     Cell growth result shows the increase in cell growth with culture ongelatin-treated titanium in the presence of CBD-VEGF. Even without CBD-VEGF,D-rhG increased cell growth. The presence of CBD-VEGF significantly enhanced cellgrowth even further. In particular, surfaces treated with D-rhG at high pH lead toremarkably cell growth. As a result of the increase in growth factor binding, dopamineconjugation may enhance cell attachment and growth.
     4. VEGF purification
     Fusion protein MBP-VEGF was expressed in E.coli to obtain high levelexpressed MBP-VEGF. Utilizing amylose resin column and hydroxyapatite column topurified VEGF and SDS-PAGE to detect the result of purification. The result shows:only one band stained on the SDS-PAGE gel. And according to the known molecularweight, we can confirm to obtain the purified VEGF.
     5. Preparation and detection of adhesive VEGF(VEGF-DOPA)
     GG-XKXKX-Flag and GG-YKYKY-Flag were synthesized by solid-phasesynthesis. VEGF and a short peptide DOPA and Tyrosine were ligated by theenzymatic reaction of sortase A, which exchange the terminal amino acids of twopolypeptides. To examine the activity of VEGF and VEGF-DOPA by anti-hVEGFantibody. To detected DOPA was ligated or not by anti-FLAG antibody. The resultsindicated: western blot result is as same as SDS-PAGE result to further examine thepurification. And anti-FLAG antibody detection result showed that a band appeared atthe position about18k Da, according to the known molecular weight of VEGF (15836Da) and peptide DOPA (1978Da) to confirm that peptide DOPA was introduced inVEGF, and obtained the adhesive VEGF.
     6. Characterization of modified material surface
     Using X-ray photoelectron spectroscopy and immunological method tocharacterized the unmodified and modified surface. After treatment with VEGF,VEGF-Y and VEGF-DOPA, the carbon and nitrogen peak intensity increasedgradually, while the chrome peak intensity was reduced. The result indicated thebinding effect of DOPA is better than tyrosine.
     7. Effect of modified material surface on cell behavior
     The bioactivity of VEGF, VEGF-Y and VEGF-DOPA under soluble andimmobilized condition on cell behavior was examined by cell growth. The cell growthresults indicated that all the soluble VEGF, VEGF-Y and VEGF-DOPA promoted cellgrowth compare with control. And the cell growth was enhanced even further underhigh concentration of VEGF, VEGF-Y and VEGF-DOPA solutions. The cell growthon the cr. surface was enhanced after VEGF, VEGF-Y and VEGF-DOPA treatmentcompare with control. The bound VEGF-DOPA has higher bioactivity than the boundVEGF and VEGF-Y, whereas the activity of soluble VEGF-DOPA was slightly lowerthan soluble VEGF.
     Conclusions: In this study, the amino group in dopamine and the recombinanthuman gelatin molecules carboxyl group occurrence of a condensation reaction, ashaving a new adhesive recombinant human gelatin—D-rhG is formed; through theanchoring effect of the surface of the material and cytologic evaluation proved D-rhGstable fixed to the surface of the metallic material, is conducive to cell adhesion andproliferation; This is the first using amylose resin column and hydroxyapatite columnto purified vascular endothelial growth factor(VEGF). VEGF and peptide DOPAwere ligated by the enzymatic reaction of sortase A; through the immobilized effect ofthe surface of the material and cytologic evaluation proved the surface treated withVEGF-DOPA has cell compatibility; VEGF-DOPA promoted the cell growth undersoluble and immobilized condition.
引文
[1] Langer RS, Vacanti JP. Tissue Engineering. Science,1993;260(8):920.
    [2] Tabata Y. Recent progress in tissue engineering. KKT vol6, no1, January2001.
    [3] Damien CJ and Parsons JP. Bone graft and bone graft substitutes: a review ofcurrent technology and applications. Apply Biomater,1991;2(3):2303-11.
    [4] Watt FM, Hogan BLM. Out of eden: stem cells and their niches [J]. Science,2000,287:1427-1430.
    [5] Pollak RA, Edington H, Jensen JL, et al. A human dermal replacement for thetreatment of diabetic foot ulcers [J]. Wounds,1997,9:175-183.
    [6] Ryan EA, Lakey JR, Rajotte RV, et al. Clinical Outcomes and Insulin SecretionAfter Islet Transplantation With the Edmonton Protocol [J]. Diabetes,2001,50(4):710-719.
    [7] Strom SC, Chowdhury JR, Fox IJ. Hepatocyte transplantation for the treatmentof human disease [J]. Sem Liver Dis,1999:19:39-48.
    [8] Strain AJ, Neuberger JM. A bioartificial liver-state of the art [J]. Science,2002,295:1005-1009.
    [9] Potten, CS. Stem Cells [M]. London:Academic Press Ltd, HarcourtBrace&Company,1997.
    [10] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell linesderived from human blastocysts [J]. Science,1998,252:1145-47.
    [11] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells frommouse embryos [J]. Nature,1981,292(5819):154-156.
    [12] Martin GR. Isolation of a pluripotent cell line from early mouse embryoscultured in medium conditioned by teratocarcinoma stem cells [J]. Proceedingsof the National Academy of Sciences,1981,78(12):7634-7638.
    [13] Matsuura K, Masuda S, Haraguchi Y, et al. Creation of mouse embryonic stemcell-derived cardiac cell sheets [J]. Biomaterials,2011,32(30):7355-7362.
    [14] Willems E, Cabral-Teixeira J, Schade D, et al. Small moleculemediated TGFβtype II receptor degradation promotes cardiomyogenesis in embryonic stemcells [J]. Cell Stem Cell,2012,11(2):242-252.
    [15] Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stemcells into corneal epithelial-like cells by in vitro replication of the cornealepithelial stem cell niche [J]. Stem Cells,2007,25(5):1145一1155.
    [16] Akanuma H, Qin XY, Nagano R, et al. Identification of stage-specific geneexpression in response to retinoic acid during the neural differentiation ofmouse embryonic stem cells [J]. Frontiers in Genetics,2012,141(3):1-12.
    [17] Toh WS, Lee EH, Cao Tong. Potential of human embryonic stem cells incartilage tissue engineering and regenerative medicine [J]. Stem Cell Reviewsand Reports,2011,7(3):544-559.
    [18] Halvorsen YD, Franklin D, et al. Extracellular matrix mineralization andosteoblast gene expression by human adipose tissue-derived stromal cells[J].Tissue Eng,2001,7:729-741.
    [19] Dragon JL, et al. Bone induction by BMP-2-transduced stem cells derived fromhuman fat [J]. Orthop Res,2003,21:622-629.
    [20] Winter A, et a1. Cartilage-like gene expression in differentiated human stem cellspheroids: a comparison of bone marrow-derived and adipose tissue-derivedstromal cells [J]. Arth Rheum,2003,48:418-429.
    [21] Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells informing not only the follicle but also the epidermis [J]. Cell,2000,102:451-461.
    [22] Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stemcells from the dermis of mammalian skin [J]. Nat Cell Biol,2001,3:778-784.
    [23] Hench LL, Polak JM. Third-generation biomedical materials. Science.2002,295(5557):1014-10170.
    [24] Shi DL. Introduction to biomaterials [M]. Beijing: Tsing hua University Press.2006.
    [25] Hutmacher DW. Scaffold design and fabrication technologies for engineeringtissues state of the art and future perspectives [J]. J Biomater Sci Polym Ed.2001,12(1):107.
    [26]龚泰芳,方彩云,陈文,等.海藻酸盐的理化特性及其在组织工程研究和临床中的应用[J].中国组织工程研究与临床康复.2007,11(18):3613-3616.
    [27] Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response toionic dissolution products from bioactive glasses and glass-ceramics [J].Biomaterials.2011,32(11):2757.
    [28] Yu, Liu Y, Wang Y, et al. Preparation and Bioactivity of the Composite of PLGAand Hydroxyapatite Nanocrystals Surface-grafted with L-lactic Acid Oligomer[J]. Chem. J. Chinese Universities.2009,30(7):1439-1444.
    [29] Dong SJ, Yu T, Wei JC, et al. Preparation Surface Properties and BiologicalActivity of the Composite of Poly(lactide-co-glycolide) and BioglassNanoparticles Surface Grafted with Poly(L-lactide)[J]. Chem. J. ChineseUniversities.2009,30(7):1439-1444.
    [30] Wang L, Li CY, He P, et al. Preparation and Bioactivities ofPLGA/Nano-hydroxyapatite Scaffold Containing Chitosan Microspheres forControlled Delivery of Mutifuncational Peptide-adrenomedullin [J]. Chem. J.Chinese Universities.2011,32(7):1622-1628.
    [31] Cui WW, Liu Y, Wang ZL, et al. Preparation and Biological Evaluation ofElectrospun MSM/PLGA Dressing Containing Nano-silver [J]. Chem. J.Chinese Universities.2013,34(3):679-685.
    [32] Narayan R. Biomedical materials [M]. New York: Springer,2009.
    [33] Montalcini RL, Cohen S. Effects of the extract of the mouse submaxillarysalivary glands on the sympathetic system of mammals [J]. Ann NY Acad Sci.1960,85(3):324-341.
    [34] Tabata Y. The importance of drug delivery systems in tissue engineering [J].Pharm. Sci. Technol.2000,3:80-89.
    [35] Bongso A, Fong CY, Gauthaman K. Taking stem cells to the clinic: majorchallenges. J Cell Biochem.2008,105:1352-1360.
    [36] D. A. Puleo, R. A. Kissling and M. S. Sheu. A technique to immobilize bioactiveproteins, including bone morphogenetic protein-4(BMP-4), on titanium alloy.Biomaterials,2002,23,2079-2087.
    [37] T. Y. Lim, W. Wang, Z. L. Shi, C. K. Poh and K. G. Neoh. Human bonemarrow-derived mesenchymal stem cells and osteoblast differentiation ontitanium with surface-grafted chitosan and immobilized bone morphogeneticprotein-2. J. Mater. Sci.: Mater. Med.,2009,20,1-10.
    [38] K. Kashiwagi, T. Tsuji and K. Shiba. Directional BMP-2for functionalization oftitanium surfaces. Biomaterials,2009,30,1166-1175.
    [39] M. Wiemann, H. P. Jennissen, H. Rumpf, L. Winkler, M. Chatzinikolaidou, I.Schmitz and D. Bingmann. A reporter-cell assay for the detection of BMP-2immobilized on porous and nonporous materials. J. Biomed. Mater. Res.,2002,62,119-127.
    [40] H. Schliephake, A. Aref, D. Scharnweber, S. Bierbaum, S. Roessler and A.Sewing, Clin. Effect of immobilized bone morphogenic protein2coating oftitanium implants on peri-implant bone formation. Oral Implants Res.,2005,16,563-569.
    [41] Z. L. Shi, K. G. Neoh, E. T. Kang, C. Poh and W. Wang. Titanium withsurface-grafted dextran and immobilized bone morphogenetic protein-2forinhibition of bacterial adhesion and enhancement of osteoblast functions. TissueEng. A,2009,15,417-426.
    [42] Z. L. Shi, K. G. Neoh, E. T. Kang, C. K. Poh and W. Wang. Surfacefunctionalization of titanium with carboxymethyl chitosan and immobilizedbone morphogenetic protein-2for enhanced osseointegration.Biomacromolecules,2009,10,1603-1611.
    [43] J. Hall, R. G. Sorensen, J. M. Wozney and U. M. E. Wikesjo, J. Clin. Boneformation at rhBMP-2-coated titanium implants in the rat ectopic model.Periodontol.2007,34,444-451.
    [44] J. Kang, M. Sakuragi, A. Shibata, H. Abe, T. Kitajima, S. Tada, M. Mizutani, H.Ohmori, H. Ayame, T. I. Son, T. Aigaki and Y. Ito, Mater. Sci. Eng., C,2012,32,2552-2561.
    [45] S. H. Park, S. Y. Seo, J. H. Kang, Y. Ito and T. I. Son, J. Appl. Polym. Sci.,2013,127,154-160.
    [46] E. Kokubu, M. Yoshinari, K. Matsuzaka and T. Inoue. Behavior of rat periodontalligament cells on fibroblast growth factor-2-immobilized titanium surfacestreated by plasma modification. J.Biomed. Mater. Res., Part A,2009,91A,69-75.
    [47] H. Mutsuzaki, A. Ito, M. Sakane, Y. Sogo, A. Oyane and N. Ochiai. Fibroblastgrowth factor-2-apatite composite layers on titanium screw to reduce pin tractinfection rate. J. Biomed. Mater. Res., Part B,2008,86B,365-374.
    [48] Q. L. Ma, W. Wang, P. K. Chu, S. L. Mei, K. Ji, L. Jin and Y. M. Zhang.Concentration-and time-dependent response of human gingival fibroblasts tofibroblast growth factor2immobilized on titanium dental implants. Int. J.Nanomed.,2012,7,1965-1976.
    [49] U. Fischer, U. Hempel, D. Becker, S. Bierbaum, D. S charnweb er, H. Worch andK. W. Wenz el. Transforming growth factor beta1immobilized adsorptively onTi6Al4V and collagen type I coated Ti6Al4V maintains its biological activity.Biomaterials,2003,24,2631-2641.
    [50] C. K. Poh, Z. L. Shi, T. Y. Lim, K. G. Neoh and W. Wang. The effect of VEGFfunctionalization of titanium on endothelial cells in vitro. Biomaterials,2010,31,1578-1585.
    [51] X. F. Hu, K. G. Neoh, Z. L. Shi, E. T. Kang, C. Poh and W. Wang. An in vitroassessment of titanium functionalized with polysaccharides conjugated withvascular endothelial growth factor for enhanced osseointegration and inhibitionof bacterial adhesion. Biomaterials,2010,31,8854-8863.
    [52] Q. Wang and P. W. Bohn, Thin Solid Films,2006,513,338-346.
    [53] R. Goncalves, M. C. L. Martins, M. J. Oliveira, G. Almeida-Porada and M. A.Barbosa. Bioactivity of immobilized EGF on self-assembled monolayers:optimization of the immobilization process. J. Biomed. Mater. Res. A,2010,94A,576-585.
    [54] T. Ohyama, T. Nishide, H. Iwata, H. Sato, M. Toda, N. Toma and W. Taki.Immobilization of basic fibroblast growth factor on a platinum microcoil toenhance tissue organization in intracranial aneurysms. J. Neurosurg.,2005,102,109-115.
    [55] T. Ohyama, T. Nishide, H. Iwata, H. Sato, M. Toda and W. Taki. Vascularendothelial growth factor immobilized on platinum microcoils for the treatmentof intracranial aneurysms: experimental rat model study. Neurol. Medico-Chir.,2004,44,279-285.
    [56] M. Sasaki, M. Inoue, Y. Katada and T. Taguchi, Colloids Surf., B,2012,92,1-8.
    [57] J. Park, S. Bauer, A. Pittrof, M. S. Killian, P. Schmuki and K. Synergistic controlof mesenchymal stem cell differentiation by nanoscale surface geometry andimmobilized growth factors on TiO2nanotubes. von der Mark, Small,2012,8,98-107.
    [58] T. Nakaji-Hirabayashi, K. Kato, Y. Arima and H. Iwata. Oriented immobilizationof epidermal growth factor onto culture substrates for the selective expansion ofneural stem cells. Biomaterials,2007,28,3517-3529.
    [59] F. R. Kloss, R Gassner, J. Preiner, A. Ebner, K. Larsson, O. Hachl, T. Tuli, M.Rasse, D. Moser, K. Laimer, E. A. Nickel, G. Laschober, R. Brunauer, G.Klima, P. Hinterdorfer, D. S teinmuller-Nethl a nd G. Lepperdinger,Biomaterials,2008,29,2433-2442.
    [60] C. Boucher, B. Liberelle, M. Jolicoeur, Y. Durocher and G. De Crescenzo.Epidermal growth factor tethered through coiled-coil interactions induces cellsurface receptor phosphorylation. Bioconjugate Chem.,2009,20,1569-1577.
    [61] M. Nakajima, T. Ishimuro, K. Kato, I. K. Ko, I. Hirata, Y. Arima and H. Iwata.Combinatorial protein display for the cell-based screening of biomaterials thatdirect neural stem cell differentiation. Biomaterials,2007,28,1048-1060.
    [62] J. Ichinose, M. Morimatsu, T. Yanagida and Y. Sako. Covalent immobilization ofepidermal growth factor molecules for single-molecule imaging analysis ofintracellular signaling. Biomaterials,2006,27,3343-3350.
    [63] K. Ogiwara, M. Nagaoka, C. S. Cho and T. Akaike. Effect ofphoto-immobilization of epidermal growth factor on the cellular behaviors.Biochem. Biophys. Res. Commun.,2006,345,255-259.
    [64] P. R. Kuhl and L. G. Griffith-Cima. Tethered epidermal growth factor as aparadigm for growth factor-induced stimulation from the solid phase. Nat. Med.,1996,2,1022-1027.
    [65] C. Brose, D. Schmitt, H. von Briesen and M. Reimann. Directed differentiationof pancreatic stem cells by soluble and immobilised signalling factors. Ann.Anat.,2009,191,83-93.
    [66] T. Pompe, K. Salchert, K. Alberti, P. Zandstra and C. Werner. Immobilization ofgrowth factors on solid supports for the modulation of stem cell fate. Nat.Protoc.,2010,5,1042-1050.
    [67] Y. Ito, H. Hasuda, H. Terai and T. Kitajima. Culture of human umbilical veinendothelial cells on immobilized vascular endothelial growth factor. J. Biomed.Mater. Res., Part A,2005,74A,659-665.
    [68] R. Schnettler, P. D. Knoss, C. Heiss, J. P. Stahl, C. Meyer, O. Kilian, S. Wenischand V. Alt. Enhancement of bone formation in hydroxyapatite implants byrhBMP-2coating. J. Biomed. Mater. Res. B,2009,90B,75-81.
    [69] Y. Liu, Y. Lu, X. Z. Tian, G. Cui, Y. M. Zhao, Q. Yang, S. L. Yu, G. S. Xing and B.X. Zhang, Biomaterials,2009,30,6276-6285.
    [70] M. Sakuragi, T. Kitajima, T. Nagamune and Y. Ito. Recombinant hBMP4incorporated with non-canonical amino acid for binding to hydroxyapatite.Biotechnol. Lett.,2011,33,1885-1890.
    [71] P. R. Chen, M. H. Chen, F. H. Lin and W. Y. Su. Release characteristics andbioactivity of gelatin-tricalcium phosphate membranes covalently immobilizedwith nerve growth factors. Biomaterials,2005,26,6579-6587.
    [72] L. Winkler, D. Bingmann and M. Wiemann. Heat treatment of BMP-2depots onimplant materials generates an immobilized layer of BMP-2with pronouncedbioactivity. J. Biomed. Mater. Res., Part A,2006,79A,895–901.
    [73] E. Bergeron, M. E. Marquis, I. Chretien and N. Faucheux. Differentiation ofpreosteoblasts using a delivery system with BMPs and bioactive glassmicrospheres. J. Mater. Sci.: Mater. Med.,2007,18,255-263.
    [74] N. Ichinohe, Y. Kuboki and Y. Tabata. Bone regeneration using titaniumnonwoven fabrics combined with fgf-2release from gelatin hydrogelmicrospheres in rabbit skull defects. Tissue Eng. A,2008,14,1663–1671.
    [75] K. Na, S. W. Kim, B. K. Sun, D. G. Woo, H. N. Yang, H. M. Chung and K. H.Park. Osteogenic differentiation of rabbit mesenchymal stem cells inthermo-reversible hydrogel constructs containing hydroxyapatite and bonemorphogenic protein-2(BMP-2). Biomaterials,2007,28,2631-2637.
    [76] C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides and R. G.Nuzzo, J. Am. Chem. Soc.,1989,111,321-335.
    [77] I. K. Ko, K. Kato and H. Iwata. Parallel analysis of multiple surface markersexpressed on rat neural stem cells using antibody microarrays. Biomaterials,2005,26,4882-4891.
    [78] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surfacechemistry for multifunctional coatings. Science.2007;318(5849):426-430.
    [79] D. S. Hwang, J. H. Waite and M. Tirrell. Promotion of osteoblast proliferation oncomplex coacervation-based hyaluronic acid-recombinant mussel adhesiveprotein coatings on titanium. Biomaterials,2010,31,1080-1084.
    [80] M. J. Harrington, A. Masic, N. Holten-Andersen, J. H. Waite and P. Fratzl.Iron-clad fibers: a metal-based biological strategy for hard flexible coatings.Science,2010,328,216–220.
    [81] D. S. Hwang, Y. Gim, H. J. Yoo and H. J. Cha. Practical recombinant hybridmussel bioadhesive fp-151. Biomaterials,2007,28,3560-3568.
    [82] B. H. Choi, Y. S. Choi, D. G. Kane, B. J. Kim, Y. H. Song and H. J. Cha. Cellbehavior on extracellular matrix mimic materials based on mussel adhesiveprotein fused with functional peptides. Biomaterials,2010,31,8980-8988.
    [83] C. J. Xu, K. M. Xu, H. W. Gu, R. K. Zheng, H. Liu, X. X. Zhang, Z. H. Guo andB. Xu. Dopamine as a robust anchor to immobilize functional molecules on theiron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc.,2004,126,9938-9939.
    [84] T. He, Z. L. Shi, N. Fang, K. G. Neoh, E. T. Kang and V. Chan. The effect ofadhesive ligands on bacterial and fibroblast adhesions to surfaces. Biomaterials,2009,30,317-326.
    [85] K. Y. Ju, Y. Lee, S. Lee, S. B. Park and J. K. Lee. Bioinspired polymerization ofdopamine to generate melanin-like nanoparticles having an excellentfree-radical-scavenging property. Biomacromolecules,2011,12,625-632.
    [86] F. Bernsmann, V. Ball, F. Addiego, A. Ponche, M. Michel, J. J. D. Gracio, V.Toniazzo and D. Ruch. Dopamine-melanin film deposition depends on the usedoxidant and buffer solution. Langmuir,2011,27,2819-2825.
    [87] Z. L. Shi, K. G. Neoh, E. T. Kang, C. Poh and W. Wang. Bacterial adhesion andosteoblast function on titanium with surface-grafted chitosan and immobilizedRGD peptide. J. Biomed. Mater. Res., Part A,2008,86A,865-872.
    [88] A. Postma, Y. Yan, Y. J. Wang, A. N. Zelikin, E. Tjipto and F. Caruso, Chem.Mater.,2009,21,3042-3044.
    [89] S. H. Ku, J. Ryu, S. K. Hong, H. Lee and C. B. Park. General functionalizationroute for cell adhesion on non-wetting surfaces. Biomaterials,2010,31,2535-2541.
    [90] S. H. Yang, S. M. Kang, K. B. Lee, T. D. Chung, H. Lee and I. S. Choi.Mussel-inspired encapsulation and functionalization of individual yeast cells. J.Am. Chem. Soc.,2011,133,2795-2797.
    [91] S. H. Ku, J. S. Lee and C. B. Park. Spatial control of cell adhesion and patterningthrough mussel-inspired surface modification by polydopamine. Langmuir,2010,26,15104-15108.
    [92] M. E. Lynge, R. Ogaki, A. O. Laursen, J. Lovmand, D.S. Sutherlandand B. Stadler. Polydopamine/liposome coatings and their interaction withmyoblast cells. ACS Appl. Mater. Interfaces,2011,3,2142-2147.
    [93] S. Kim and C. B. Park. Dopamine-induced mineralization of calcium carbonatevaterite microspheres. Langmuir,2010,26,14730-14736.
    [94] W. H. Zhou, C. H. Lu, X. C. Guo, F. R. Chen, H. H. Yang and X. R. Wang, J.Mater. Chem.,2010,20,880-883.
    [95] H. Lee, J. Rho and P. B. Messersmith. Facile Conjugation of Biomolecules ontoSurfaces via Mussel Adhesive Protein Inspired Coatings. Adv. Mater.,2009,21,431.
    [96] B. Li, W. P. Liu, Z. Y. Jiang, X. Dong, B. Y. Wang and Y. R. Zhong. Ultrathin andstable active layer of dense composite membrane enabled by poly(dopamine).Langmuir,2009,25,7368-7374.
    [97] Q. Wei, B. J. Li, N. Yi, B. H. Su, Z. H. Yin, F. L. Zhang, J. Li and C. S. Zhao.Improving the blood compatibility of material surfaces viabiomolecule-immobilized mussel-inspired coatings. J. Biomed. Mater. Res., PartA,2011,96A,38-45.
    [98] K. Sun, L. S. Song, Y. Y. Xie, D. B. Liu, D. Wang, Z. Wang, W. S. Ma, J. S. Zhuand X. Y. Jiang. Using self-polymerized dopamine to modify the antifoulingproperty of oligo(ethylene glycol) self-assembled monolayers and its applicationin cell patterning. Langmuir,2011,27,5709-5712.
    [99] M. Rodenstein, S. Zurcher, S. G. P. Tosatti and N. D. Spencer. Fabricatingchemical gradients on oxide surfaces by means of fluorinated, catechol-based,self-assembled monolayers. Langmuir,2010,26,16211-16220.
    [100] I. You, S. M. Kang, Y. Byun and H. Lee. Enhancement of blood compatibility ofpoly(urethane) substrates by mussel-inspired adhesive heparin coating.Bioconjugate Chem.,2011,22,1264-1269.
    [101] X. W. Fan, L. J. Lin, J. L. Dalsin and P. B. Messersmith. Biomimetic anchor forsurface-initiated polymerization from metal substrates. J. Am. Chem. Soc.,2005,127,15843-15847.
    [102] X. W. Fan, L. J. Lin and P. B. Messersmith. Cell fouling resistance of polymerbrushes grafted from ti substrates by surface-initiated polymerization: effect ofethylene glycol side chain length. Biomacromolecules,2006,7,2443-2448.
    [103] J. Y. Wach, B. Malisova, S. Bonazzi, S. Tosatti, M. Textor, S. Zurcher and K.Gademann. Protein-resistant surfaces through mild dopamine surfacefunctionalization. Chem.–Eur. J.,2008,14,10579-10584.
    [104] S. J. Yuan, D. Wan, B. Liang, S. O. Pehkonen, Y. P. Ting, K.G. Neoh and E. T.Kang. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainlesssteel hybrids and their antifouling and antibacterial surfaces. Langmuir,2011,27,2761-2774.
    [105] K. I. Sano, H. Sasaki and K. Shiba. Specificity and biomineralization activitiesof Ti-binding peptide-1(TBP-1). Langmuir,2005,21,3090-3095.
    [106] Mieke C. vander Leeden, Are conformational changes, induced by osmoticpressure variation, the underlying mechanism of controlling the adhesiveactivity of mussel adhesive proteins [J], Langmuir,2005,21,11373-11379.
    [107] Haeshin Lee, Bruce P. Lee, Phillip B. Messersmith, A reversible wet/dryadhesive inspired by mussels and geckos[J]. Nature,2007,448,338-342.
    [108] Li Qun Xu, Wen Jing Yang, Koon-Gee Neoh, En-Tang Kang, Guo Dong Fu,Dopamine-induced reduction and functionalization of Graphene OxideNanosheets[J], Macromolecules,2010,43,8336-8339.
    [109] Qiang Wei, Fulong Zhang, Jie Li, Beijia Li, Changsheng Zhao, Oxidant-induceddopamine polymerization for multifunctional coatings[J]. Polymer Chemistry,2010,1,1430-1433.
    [110]. Fei Yu, Shougang Chen, Yan Chen, Houmin Li, Lejiao Yang, Yuanyuan Chen,Yansheng Yin, Experimental and theoretical analysis of polymerization reactionprocess on the polydopamine membranes and its corrosion protection propertiesfor304Stainless Steel[J]. Journal of molecular structure,2010,982,152-161.
    [111]. Lian Hong, John D. Simon, Current Understanding of the Binding Sites,Capacity, Affinity, and Biological Significance of Metals in Melanin[J]. Journalof physical and chemical B,2007,111,7938-7947.
    [112] Bruno Szpoganicz, Shirley Gidanian, Philip Kong, Patrick Farmer, Metalbinding by melanins: studies of colloidal dihydroxyindole-melanin, and itscomplexation by Cu(Ⅱ) and Zn(Ⅱ) ions [J]. Journal of inorganic biochemistry,2002,89,45-53.
    [113] B. Fei, B. Qian, Z.Y. Yang, R.H. Wang, W.C. Liu, C.L. Mak, John H. Xin,Coating carbon nanotubes by spontaneous oxidative polymerization ofdopamine[J]. Carbon,2008,46(13),1795-1797.
    [114] Y. Liao, Y.Q. Wang, X.X. Feng, W.C. Wang, F.J. Xu, L.Q. Zhang, Antibacterialsurfaces through dopamine functionalization and silver nanoparticleimmobilization[J]. Materials chemistry and physics,2010,121,534-540.
    [115] Xiaolong Wang, Qian Ye, Tingting Gao, Jianxi Liu, Feng Zhou, Self-assemblyof catecholic macroinitiator on various substrates and surface-initiatedpolymerization[J]. Langmuir,2012,28,2574-2581.
    [116] Hasson JE, Megerman J, Abbott WM. Increased compliance near vascularanastomoses. J Vasc Surg1985;2:419.
    [117] Eberhart RC, Munro MS, Williams GB, Kulkarni PV, Shannon WA Jr., BrinkBE, Fry WJ. Albumin adsorption and retention on C18-alkyl-derivatizedpolyurethane vascular grafts. Artificial Organs1987; l1:375.
    [118] Tsai CC, Huo HH, Kulkarni P, Eberhart RC. Biocompatible coatings with highalbumin affinity. Trans Am Soc Artif Intern Organs1990;36: M307.
    [119] Rumisck JD, Wade CE, Brooks DE, Okerberg CV, Barry MJ, Clarke JS.Heat-denatured albumin-coated Dacron vascular grafts: physical characteristicsand in vivo performance. J Vasc Surg1986;4:136.
    [120] Kottke-Marchant K, Anderson JM, Umemura Y, Marchant RE. Effect ofalbumin coating on the in vitro blood compatibility of Dacron. arterialprostheses. Biomaterials1989;10:147.
    [121] Goeau-Brissonniere O, Mercier F, Nicolas MH, Bacourt F, Coggia M, LebraultC, Pechere JC. Treatment of vascular graft infection by in situ replacement witha rifampin-bonded gelatin-sealed Dacron graft. J Vasc Surg1994;19:739.
    [122] Jarrell BE, Williams SK. Microvessel derived endothelial cell isolation,adherence, and monolayer formation for vascular grafts. J Vasc Surg.1991;13:733.
    [123] Wakefield TW, Lindblad B, Graham LM, Whitehouse WM Jr., Ripley SD, PetryNA, Spaulding SA, Burkel WE, Stanley JC. Nuclide imaging of vasculargraft-platelet interactions: comparison of indium excess and technetiumsubtraction techniques. J Surg, Res.1986;40:388
    [124] Jensen N, Lindblad B, Bergovist D. Endothelial ceil seeded dacronaortobifurcated grafts: platelet deposition and long-term follow-up. J CardiovascSurg,1994;35:425.
    [125] Zilla P, Deutsch M, Meinhart J, Puschmann R, Eberl T, Minar E, Dudczak R,Lugmaier H, Schmidt P, Noszian I. Clinical in vitro endothelialization offemoropopliteal bypass grafts: an actuarial follow-up over three years. J VascSurg1994;19:540.
    [126] Magometschnigg H, Kadletz M, Vodrazka M, Dock W, Grimm M,Grabenwoger M, Minar E, Staudacher M, Fenzl G, Wolner E. Prospectiveclinical study with in vitro endothelial cell lining of expandedpolytetrafluoroethylene grafts in aural repeat reconstruction. J Vasc Surg,1992;15:527.
    [127] Pasic M, Muller-Glauser W, von Segesser LK, Lachat M, Mihaljevic T, TurinaMI. Superior late patency of small-diameter Dacron grafts seeded with omentalmicrovascular cells: an experimental study. Ann Thorac Surg1994;58:677.
    [128] Gray JL,Kang SS, Zenni GC, Kim DU, Kim PI, Burgess WH, Drohan W,Winkles JA, Haudenschild CC, Greisler HP. FGF-1affixation stimulates ePTFEendothelialization without intimal hyperplasia. J Surg Res,1994,57:596.
    [129] Reilly CF, Kindy MS, Brown KE. Heparin prevents vascular smooth cellprogression through the G1phase of the cell cycle. J Biol Chem1989;264:6990.
    [130] Au TYP, Keagy RD, Clowes MM. Mechanisms of inhibition by heparin ofvascular smooth muscle cell proliferation and migration. Hamostasis1993;23:177.
    [131] Kang SS, Gosselin C, Ren D, Greisler HP. Selective stimulation of endothelialcell proliferation with inhibition of smooth muscle cell proliferation byfibroblast growth factor-1plus heparin delivered from fibrin glue suspensions.Surgery1995;118:280.
    [132] Gosselin C, Ren D, Ellinger J, Greisler HP. In vivo platelet deposition onpolytetrafluoroethylene coated with fibrin glue containing fibroblast growthfactor1and heparin in a canine model. J. Am J Surg1995;170:126
    [133] Greisler HP, Ellinger J, Schwarcz TH, Golan J, Raymond RM, Kim DU.Arterial regeneration over polydioxanone prostheses in the rabbit. Arch Surg1987;122:715.
    [134] Greisler HP, Schwarcz TH, Ellinger J, Kim DU. Dacron inhibition of arterialregenerative activities. J Vasc Surg1986;3:747.
    [135] Greisler HP, Dennis JW, Endean ED. Endothelial cells: Derivation of neointimain vascular grafts. Circulation1988;78:1-6.
    [136]杨志明.组织工程基础与临床.四川科学技术出版社,四川成都,2000, pp.2390
    [137] lto RK, Rosenblatt MS, Contreras MA. Trans Am Soc Artif Intern Organs1990;36: M175.
    [138] Cameron BL, Tsuchida H, Connall TP, Nagae T, Furnkawa K, Wilson SE. Highporosity PTFE improves endothelialization of arterial grafts without increasingearly thrombogenicity.J Cardiovasc. Surg.1993;34:281.
    [139] Clowes AW, Kohler T. Graft endothelialization: the role of angiogenicmechanisms. J Vasc Surg1991;13:734.
    [140] Wissink MJB, Beernink R, Scharenborg NM, Poot AA, Engbers GHM,Beugeling T, van Aken WG, Feijen J. Endothelial cell seeding of (heparinized)collagen matrices: effects of bFGF pre-loading on proliferation (after lowdensity seeding) and pro-coagulant factors. J Control Release2000;67:141.
    [141] Wissink MJB, Beernink R, Poot AA, Engbers GHM, Beugeling T, van AkenWG, Feijen J. Improved endothelialization of vascular grafts by local release ofgrowth factor from heparinized collagen matrices. J Control Release2000;64:103.
    [142] Takahashi K. Adsorption of basic fibroblast growth factor onto Dacron vascularprosthesis and its biological efficacy. Artif Organs1997;21:1041.
    [143] Greisler H. Growth factor release from vascular grafts. J Control Release1996;39:267
    [144] Coury AJ, Slaikeu PC, Cahalan PT, Stokes K, Hobot CM. Factors andinteractions affecting th performance of polyurethane elastomers medicaldevices. J. Biomaterials Applications1988;3:130
    [145] Phaneuf M, Berceli S, Bide M, Quist W, Loderfo F. Synthesis of a novel smalldiameter polyurethane vascular graft with reactive binding sites. ASA101998;44: M506.
    [146] Dempsey D, Phaneuf M, Bide M, Szycher M, Quist W, Loderfo F. ASAIO1998;44: M653.
    [147] Kito H, Matsuda T. Biocompatible coatings for luminal and outersurfaces of small-caliber artificial grafts. J Biomed Mater Res1996;30:321.
    [148] Laemmel E, Penhoat J, Warocquier-Clerout R, Sigot-Luizard M. Heparinimmobilized on protein usable for arterial proshess coating:Growth inhibitionof smooth-muscle cell. J Biomed Mater Res1998;39:446.
    [149] Werkmeister J, Edwards G, White J, Casagranda F, Hunt J, Williams D,Ramshaw J. J Biomed Mater Res1999;47:316.
    [150] Walpoth B, Rogulenko R, Tikhvinskaia E, Gogolewski S, Schaffner T, Hess O,Althaus U. Improvement of patency rate in heparin-coated small syntheticvascular grafts. Circulation1998;98II.
    [151] Porte-Durrieu MC, Aymes-Chodur C, Vergne C, Betz N, Baquey C. Surfacetreatment of biomaterials by gamma and swift heavy ions grafting. Nucl Instrummeth B1999;151:404.
    [152] Kitajima T, Obuse S, Adachi T, Tomita M, Ito Y. Recombinant human gelatinsubstitute with photoreactive properties for cell culture and tissue engineering.Biotechnol Bioeng.2011;108(10):2468-2476.
    [153] Kang J, Tada S, Kitajima T, Son TI, Aigaki T, Ito Y. Immobilization of bonemorphogenetic protein on DOPA-or dopamine-treated titanium surfaces toenhance osseointegration. BioMed Res Intern.2014; in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700