印度洋偶极子东西极演变机制及联系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印度洋偶极子(IOD)是发生在热带印度洋上的海气耦合事件,是年际尺度上热带印度洋变化的主要模态之一,同时也是全球气候系统年际变化的重要组成部分,其发生对周边乃至全球的气候有显著影响。探讨IOD事件的发生机制和发展过程及东、西极之间的联系对全球气候变化的研究有重要意义。
     本文使用HadISST、SODA等数据资料,较全面的分析了IOD期间热带印度洋海表面温度(SST)及温跃层深度的变化规律。并使用HYCOM模拟的结果进行混合层热收支分析,研究了混合层温度的变化与各海洋动力、热力过程的联系。分析了IOD期间流场的异常情况及其对IOD发展的作用。并通过一系列数值实验,对风场、热通量场,及印度洋不同区域的大气强迫场各自在IOD东、西极发展中所起的作用进行了评价。主要结论如下:
     一、IOD期间SST及温跃层深度的变化规律。西极SST的正异常3-4月开始发展,并可维持较长时间,其增暖以赤道以南部分为主。东极SST负异常9-10月达到峰值,随后经历了一个迅速的增暖过程,SST转化为显著的正异常。IOD东、西极SSTA的变化均与nino3.4指数呈正相关关系,东、西极SSTA的变化也为正相关。东、西极温跃层深度的变化为明显的负相关关系,且东极的变化提前西极两个月左右。
     二、应用混合层热收支分析,评价了独立及伴随El Nino发生的两类IOD事件中与海表面热通量、水平、垂向对流过程所起的作用。结果表明,独立IOD事件具有开始及达到峰值的时间提前,以东极的温度异常为主,消衰后不出现海盆一致增暖现象的特点。原因是1、独立IOD事件中风场异常出现较早,导致动力过程造成的东极降温的时间提前;2、伴随El Nino发生的IOD事件中,西极的增暖受垂向对流过程与海表面热通量正异常的共同影响。独立IOD事件中海表面热通量正异常很弱,且由于东风异常出现及结束的时间较早,因此动力过程不能继续对西极起到加温的作用,导致西极没有出现显著的增暖;3、伴随El Nino发生的IOD事件后期,海表面热通量的正异常不论强度还是作用区域都远远大于独立IOD事件,为东极的反弹提供了能量。且独立IOD事件中由于反弹的时间出现较早,此时沿岸动力过程造成的降温作用仍然存在,削弱了热通量带来的增暖作用。
     三、对IOD期间流场异常及流场EOF分解的结果表明,流场异常10月份前发展缓慢,10月显著增大,11月流场异常最强,这是与风场的变化相联系的。在两类IOD事件中,流场异常在三维空间中的分布和发展变化具有很强的一致性。各断面流场异常的EOF分解的第一模态均为与IOD事件相联系的模态。第一模态的时间系数在IOD年,包括发生独立IOD事件的年份,均出现了显著的峰值。可见,热带印度洋的流场的异常主要是受IOD事件控制的,而非受El Nino的影响。
     四、通过使用不同大气强迫场进行驱动的数值实验表明,仅用风场异常能够基本模拟出IOD的发展,但在东极SSTA的反弹及西极增暖延长的过程中,热通量扮演着比风场更重要的角色。在独立发生及伴随El Nino发生的两类IOD事件中,西极SSTA强度的差别主要是海表面热通量场的不同导致的。风场异常的过早结束和热通量场没有出现正异常是1994年西极没有出现明显异常的根本原因。
     东印度洋的SSTA信号可以通过Rossby波的西传影响到西印度洋,但东、西极SSTA主要是在当地强迫场的影响下产生和发展,相关性较弱。其中西极长时间增暖的现象也主要是西印度洋局地强迫产生的。与SSTA的变化不同,东、西极的温跃层深度异常总是同时发展的,表现出明显的偶极子型分布,具有相互诱导的关系。不论在中东印度洋还是西印度洋风场的强迫下,温跃层深度异常的分布趋势是大致一致的。东印度洋的强迫场对IOD期间的温跃层深度变化的影响大于西印度洋。
The Indian Ocean Dipole (IOD) is an air-sea coupled phenomenon. On the interannual time scale, it is one of the dominant modes in the tropical Indian Ocean. The IOD is considered as an important mechanism for the changes in the tropical Indian Ocean and global climate due to its significant impact on the climate of both the surrounding and remote regions. Understandings of the mechanisms of IOD have important significance on studies of climate change.
     Interannual variations in the surface and subsurface tropical Indian Ocean are studied using HadISST and SODA datasets. The relative role of ocean dynamics and surface heat flux in the initiation and development of the IOD is investigated by analyzing results from a general circulation ocean model (HYCOM).A series of experiments are conducted to assess the relative importance of the eastern and western Indian Ocean forcing fields in driving the IOD.The anomalous ocean circulation during IOD is also studied. The main conclusions are as follows:
     1.The surface and subsurface variations of the tropical Indian Ocean during IOD events are significantly different. A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process, which does not take place at the subsurface layer. In the western pole, the surface anomalies last longer than the subsurface anomalies.The subsurface anomalies are strongly correlated with ENSO, while the relationship between the surface anomalies and ENSO is much weaker. The subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer.
     2.The mixed layer heat budget analysis indicates that the vertical advection and the surface heat flux are both important to the western warming. In IOD years without El Nino,the positive heat flux anomalies are not obvious, and the vertical advection persists shorter than in the years that IOD co-occurred with El Nino.So the western warming is not evident in these years.The development of eastern cooling is mainly caused by vertical advection, the cooling begins earlier in IOD years without El Nino. As the IOD decays, the eastern pole begins to warm up.It is primarily induced by anomalous surface heat flux. In IOD years without El Nino, the surface heat flux anomalies are weaker. Also the eastern pole begins to warm in September, when the vertical advection caused cooling is still strong, so the eastern rebound in IOD years without El Nino is much weaker than IOD years with El Nino.
     3.The EOF analysis is applied to ocean circulation anomalies in several vertical sections of the tropical Indian Ocean. The results indicate that the first modes of anomalous current in these sections are all determined by IOD events. The influence of El Nino is relatively weaker.
     4.Ttest runs are performed to assess the relative importance of eastern and western Indian Ocean forcing fields in driving the IOD. In these runs the interannual variability of all atmospheric forcing fields are separately suppressed in the western and eastern tropical Indian Ocean. The results indicate that the SST anomalies of the eastern and western pole are mainly determined by local forcing fields.The long persistence warming of the western pole can mainly be attributed to local forcing. Different form the SST, the thermocline depth variations in the eastern and western Indian Ocean has the characteristic of entirety. The western deepening and eastern shoaling always happen together. Both the eastern and western forcing test runs can trigger this pattern.
引文
[1]Saji, N. H. and Goswami, B.N.,Vinayachandran, P. N. and Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature,1999,401:360~363
    [2]Drbohlav, H. L.,Gaualdi, S.and Navarra, A.A diagnostic study of the Indian Ocean dipole mode in El Nino and non-El Nino years.J. Climate,2007,20:2961~2977
    [3]Webster, P. J.,Moore, A. M.,Loshnigg, J. P. and Leben, R. R.Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-1998.Nature,1999,401:356~360
    [4]Guan, Z. and Yamagata, T. The unusual summer of 1994 in East Asia:IOD teleconnections. Geophys. Res.Lett.,2003,30:1544, doi:10.1029/2002GL016831
    [5]Saji, N. H. and Yamagata, T. Possible impacts of Indian Ocean dipole events on global climate. Climate Res.,2003a,25:151~169
    [6]Wang, X.,Li, C.Y. and Zhou, W. Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean. Int. J. Climate,2006,26:595~606
    [7]Li, C. Y. and Mu, M. Q. Influence of the Indian Ocean dipole on atmospheric circulation and climate.Adv. Atmos. Sci.,2001,18:831~843
    [8]Xiao, Z. N,Yan, H. M. and Li, C.Y. The relationship between Indian Ocean SSTA dipole index and the precipitation and temperature over China. J. Trop. Meteor.,2002,18:335~344
    [9]McPhaden,M. J. Genesis and evolution of the 1997-98 El Nino. Science,1999,283: 950~954.
    [10]Bell, G. D., and Halpert, M. S.Climate assessment for 1997.Bull.Amer. Meteor. Soc.,1998, 79:S1-S50.
    [11]李崇银,穆明权.赤道印度洋海温偶极子型振荡及其气候影响.大气科学,2001a,25:433~443
    [12]Webster, P.J. The variable and interactive monsoon.In:Fein, J. S.and Stephens, P. J.(eds). Monsoons.New York:Wiley,1987.269~330
    [13]Schott, F., and McCreary, J. P. The monsoon circulation of the Indian Ocean. Prog. Oceanogr.,2001,51:1~123
    [14]胡瑞金.热带印度洋热收支与经向环流的研究:[博士学位论文].青岛:中国海洋大学,2003
    [15]Lighthill, M. J. Dynamic response of the Indian Ocean to onset of the Southwest Monsoon. Phil.Tans. Roy. Soc.,London.1969,265,45~92
    [16]Rao, R. R. and Sivakumar, R. On the possible mechanisms of the evolution of a mini-warm pool during the presummer monsoon season and the genesis of onset vortex in the southeastern Arabian Sea. Q. J. R. Meteo. Soc.,2000,125:789~809
    [17]陈烈庭,金祖辉,罗绍华.印度洋和南海海温变化的特征及其与大气环流的某些联系.海 洋学报,1985,7(1):103~110
    [18]周天军,宇如聪,李薇等.20世纪印度洋气候变率特征分析.气象学报,2001,59(3):257~271
    [19]Annamalai, H. and Murtugudde, R. Role of the Indian Ocean in regional climate variability. Geophys.Monogr. Amer. Geophys. Union,2004,147:213-246
    [20]周天军,俞永强,宇如聪等.印度洋对ENSO事件的响应:观测与模拟.2004,大气科学,28(3):357~373
    [21]刘琳,热带太平洋—印度洋年际尺度海气相互作用研究:[博士学位论文].青岛:中国海洋大学,2006
    [22]Nigam, S.,and Shen, H.S.Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I:COADS observations. J.Clim.,1993,6: 657-676
    [23]Liu, Z. and Alexander, M. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys.,2007,45,RG2005,doi:10.1029/2005RG000172
    [24]Klein, S.A.,Soden, B.J. and Lau, N.C. Remote sea surface temperature variations during ENSO:Evidence for a tropical atmospheric bridge. J. Clim.,1999,12:917-932
    [25]Xie, S.P., Annamalai, H.,Schott, F. and McCreary, J.P. Structure and Mechanisms of south Indian Ocean climate variability. J. Climate,2002,15:864-878
    [26]Huang, B.H. and Kinter, J. L. The interannual variability in the tropical Indian Ocean and its relations to El Nino-Southern Oscillation. J.Geophys.Res.,2002,107,3199, doi: 10.1029/2001JC 001278
    [27]Du, Y.,Xie, S.P. Huang, G.and Hu, K. M. Role of air-sea interaction in the long persistence of El Nino-induced North Indian Ocean warming. J. Climate,2009,22:2023-2038
    [28]Saji, N.H.,and Yamagata, T. Structure of SST and surface wind variability during Indian Ocean Dipole Mode years:COADS observations.J.Climate,2003b,16:2735-2751
    [29]Ihara, C.,Kushnir, Y. and Cane, M. A.Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J. Climate,2008,21:2035-2046
    [30]Du, Y. and Xie, S. P. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys.Res.Lett.,2008,35:L08712, doi: 10.1029/2008GL033631.
    [31]Schott, F. A.,Xie, S.P. and McCreary, J. P. Jr. Indian Ocean circulation and climate variability. Rev. Geophys.,2009,47,RG1002, doi:10.1029/2007RG000245
    [32]Reverdin, G., Cadel, D. and Gutzler, D. Interannual displacements of convection and surface circulation over the equatorial Indian Ocean.Q. J.R. Meteorol.Soc.,1986,112:43-67
    [33]Hastenrath, S.,Nicklis, A.and Greischar,L. Atmospheric hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J. Geophys. Res.,1993,98(20): 219~235
    [34]Meyers, G.Variation of Indonesian Throughflow and the El Nino-Southern Oscillation. J. Geophys. Res.,1996,101(C5):12,255~12,263
    [35]Vinayachandran, P. N.,Saji, N. H. and Yamagata, T. Response of the equatorial Indian Ocean to an unusual wind event during 1994.Geophys. Res. Lett.,1999,26(11):1613~1616, doi:10.1029/1999GL900179
    [36]Behera, S.K.,Krishnan, R. and Yamagata, T. Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994.Geophys. Res.Lett.,1999,26:3001~3004, doi:10.1029/ 1999GL010434
    [37]谭言科,刘会荣,李崇银等.印度洋偶极子的季节位相锁定可能原因.大气科学,2008,32(2):197~205
    [38]Annamalai, H.,Murtugudde, R.,Poremra, J.,Xie, S.P.,Liu, P. and Wang, B.Coupled dynamics over the Indian Ocean:spring initiation of the Zonal Mode. Deep-Sea Res II,2003, 50:2305~2330
    [39]Murtugudde, R., McCreary, J. P.and Busalacchi, A.J. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998.J. Geophys. Res.,2000, 105:3295~3306
    [40]Li, T., Wang, B.,Chang, C.P. and Zhang, Y. S.A theory for the Indian Ocean dipole-zonal mode. J. Atmos.Sci.,2003,60:2119~2135
    [41]王东晓,刘赞,刘钦燕等.1997~1998年El Nino期间印度洋和西太平洋上层海洋的联系.自然科学进展,2003,13(9):957~963
    [42]Hong, C. C.,Liu, M. M. and Kanamitsu, M. Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J Geophys.Res.,2008,113: D08107,doi:10.1029/2007JD009151
    [43]Yuan, D. L. and Liu, H. L. Long-wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr.,2009,39:1115~1132
    [44]Han, W., Shinoda, T.,Fu, L. and McCreary, J. P.Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole during the 1990s. J. Phys.Oceanogr.,2006,36:670~ 690
    [45]Li, T.,Zhang, Y.,Lu, E.,et al. Relative Role of Dynamic and Thermodynamic Processes in the Development of the Indian Ocean Dipole:An OGCM Diagnosis. Geophys.Res. Lett., 2002,29(23),2110, doi:10.1029/2002GL015789
    [46]Prasad, T. G. and McClean, J. L. Mechanisms for anomalous warming in the western Indian Ocean during dipole mode events. J. Geophys. Res.,2004,109:C02019, doi: 10.1029/2003JC001872
    [47]Neelin, J. D. The slow sea surface temperature mode and the fast wave limit:Analytical theory for tropical interannual oscillation and experiments in a hybrid coupled model.J. Atmos. Sci.,1991,48:584~606.
    [48]Li, T. Phase transition of the El Nino-Southern Oscillation:A stationary SST mode. J. Atmos. Sci.,1997,54:2872~2887
    [49]Schopf, P. S.and Suarez, M. J. Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci.,1988,45:549~566.
    [50]Sobel, A.H.,Held, I. M. and Bretherton, C.S.The ENSO signal in tropical tropospheric temperature. J. Climate,2002,18:2702~2706
    [51]Murtugudde, R. and Busalacchi,A.J.Interannual variability of the dynamics and thermodynamics, and mixed layer processes in the Indian Ocean. J. Climate,1999,12: 2300~2326
    [52]Behera, S.K.,Salvekar, P. S. and Yamagata, T. Simulation of interannual SST variability in the tropical Indian Ocean. J. Climate,2000,13:3487~3489
    [53]Perigaud, C.and Delecluse, P.Interannual sea level variations in the tropical Indian Ocean from Geosat and shallow-water simulations.J.Phys. Oceanogr.,1993,23:1916~1934.
    [54]Masumoto, Y. and Meyers, G.Forced Rossby waves in the southern tropical Indian Ocean.J. Geophys.Res.,1998,103(27):589~602
    [55]Chambers, D. P.,Tapley, B.D.and Stewart, R. H. Anomalous warming in the Indian Ocean coincident with El Nino, J.Geophys. Res.,1999,104:3035~3047
    [56]Rao, S.A.and Behera, S.K. Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn.Atmos.Oceans,2005,39:103~135
    [57]Baquero-Bernal, A.and Latif, M.Wind-driven oceanic Rossby waves in the tropical South Indian Ocean with and without an active ENSO. J. Phys.Oceanogr.,2005,35:729~746
    [58]Shinoda, T.,Alexander, M. A.and Hendon, H.H.Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate,2004a,17:362~372
    [59]Tokinaga, H.,and Tanimoto, Y.Seasonal transition of SST anomalies in the tropical Indian Ocean during El Nino and Indian Ocean dipole years. J. Meteor. Soc. Japan,2004,82: 1007~1018.
    [60]Hastenrath, S.Dipoles, temperature gradients, and tropical climate anomalies.Bull. Amer. Meteor. Soc.,2002,83:735~740.
    [61]Allan, R. J.,et al.Is there an Indian Ocean Dipole independent of the El Nin-o-Southern Oscillations?,CLIVAR Exch.,2001,6(3):18~22.
    [62]Nicholls, N. and Drosdowsky, W. Is there an equatorial Indian Ocean SST dipole, independent of the El Nino-Southern Oscillation? Preprints, Symp.on Climatic Variability, the Oceans, and Societal Impacts, Albuquerque, NM, Amer. Meteor. Soc.,2001,17-18.
    [63]Yamagata, T.,Behera, S.K., Rao, S.A., Guan, Z.,Ashok, K. and. Saji, H. N.Comments on "Dipoles, Temperature Gradient, and Tropical Climate Anomalies". Bull.Am.Meteorol. Soc.,2003,84:1418~1422.
    [64]巢纪平,袁绍宇,蔡怡.热带印度洋的大尺度海气相互作用事件.气象学报,2003,61(2):251~256
    [65]Rao, S.A.,Behera, S.K.,Masumoto, Y. and Yamagata, T. Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea ResⅡ,2002,49:1549~1572
    [66]Tian, J. W.,Liu, H. and Qian, W. A dipole mode at thermocline layer in the tropical Indian Ocean. Acta Oceanologica Sinica,2003,22(1):15~24
    [67]赵永平,陈永利,王凡等,热带印度洋Dipole事件的两种模态,2008,中国科学D辑:地球科学,38(10):1318~1328
    [68]Yamagata, T.,Behera, S.K., Rao, S.A.,et al. The Indian Ocean dipole:A physical entity. CLIVAR Exch,2002,24:15~18
    [69]Ashok, K.,Guan, Z. and Yamagata, T. A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan,2003,81:41~56
    [70]Yu, L. and Rienecker, M. M. Mechanisms for the Indian Ocean warming during the 1997-98 El Nino, Geophys. Res.Lett.,1999,26:735~738
    [71]Meehl, G. A.The south Asian monsoon and the tropospheric biennial oscillation. J. Climate, 1997,10:1921~1943
    [72]Gill, A. E. Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc.,1980,106:447~462
    [73]Behera, S.K., Luo, J. J.,Masson, S.,Rao, S.A.,Sakuma, H. and Yamagata, T. A CGCM study on the interaction between IOD and ENSO.J. Climate,2006,19:1688~1705
    [74]李崇银,穆明权,潘静.印度洋偶极子和太平洋海温异常.科学通报,2001,41(20):1747~1751
    [75]巢纪平,袁绍宇.热带印度洋与太平洋海气相互作用事件的协调发展.海洋科学进展,2002,22(3):247~252
    [76]Baquero-Bernal, A.,Latif,M. and Legutke, S.On dipolelike variability of sea surface temperature in the tropical Indian Ocean,2002, J. Climate,15:1358~1368
    [77]Yu, J. Y. and Lau, K. M. Contrasting Indian Ocean SST variability with and without ENSO influence:A coupled atmosphere-ocean GCM study. Meteorol.Atmos. Phys.,2004,90: 179~191,doi:10.1007/s00703-004-0094-7
    [78]Loschnigg, J., Meehl, G.A.,Webster, P. J.,Arblaster, J. M.,and Compo, G. P. The Asian monsoon, the Tropospheric Biennial Oscillation, and the Indian Ocean Zonal Mode in the NCAR CSM,J. Climate,2003,16:1617~1642
    [79]Fischer, A. S.,Terrey, P., Guly, E.,et al.Two independent triggers for the Indian Dipole/zonal mode in a coupled GCM. J. Climate,2005,18:3428~3448
    [80]Yu, J.Y., Lau, K. M. Contrasting Indian Ocean SST variability with and without ENSO influence:a coupled atmosphere-ocean GCM study. Meteorol. Atmos. Phys.,2005,90(3~4): 179-191
    [81]Nagura, M. and Konda, M. The seasonal development of an SST anomaly in the Indian Ocean and its relationship to ENSO. J. Clim.,2007,20:38~52
    [82]Kalnay, E. et al.The NCEP/NCAR 40-year reanalysis project. Bull.Amer. Meteor. Soc., 1996,77:437~470
    [83]Large, W. and Yeager, S.Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies, Tech. Note NCAR/TN-460+ STR, CGD Div. of the Natl.Cent.for Atmos. Res., Boulder,2004, Colo.
    [84]Rayner, N. A.,Parker, D.E., Horton, E.B.,Folland, C. K., Alexander, L. V.,Rowell, D. P., Kent, E. C.and Kaplan, A.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.,2003, Vol.108(D14),4407
    [85]Carton, J. and Giese, B.A.reanalysis of ocean climate using simple ocean data assimilation (soda). Mon.Wea. Rev.,2008,136(8):2999~3017.
    [86]Bleck, R.,Halliwell, G.,Wallcraft, A.,Carroll, S.,Kelly, K. and Rushing, K. Hybrid Coordinate Ocean Model (HYCOM) User's Manual:Details of the numerical code.,2002
    [87]Large, W. G., Mc Williams, J. C.and Doney, S.C.Oceanic vertical mixing:A review and a model with a non-local boundary layer parameterization. Rev. Geophys.,1994,32:363~403
    [88]Large, W.G.,Danabasoglu, G.,Doney, S.C.and McWilliams, J. C.Sensitivity to surface forcing and boundary layer mixing in a global ocean model:Annual-mean climatology. J. phys.Oceanogr.,1997,27:2418~2447
    [89]Canuto, V. M.,Howard, A., Cheng, Y.and Dubovikov, M. S.Ocean turbulence.Part Ⅰ: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 2001,31:1413~1426
    [90]Canuto, V. M.,Howard, A.,Cheng, Y. and Dubovikov, M. S.Ocean turbulence.Part Ⅱ: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys.Oceanogr., 2002,32:240-264
    [91]Mellor, G.L. and Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys.,1982,20:851~875.
    [92]Price, J.F., Weller, R. A.and Pinkel,R. Diurnal cycling:Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J.Geophys. Res.,1986, 91:8411~8427
    [93]Kraus, E. B.and Turner, J. S.A one-dimensional model of the seasonal thermocline. Tellus, 1967,19:98-106.
    [94]Halliwell, G. R. Jr. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid Coordinate Ocean Model (HYCOM). Ocean Modelling,2004,7:285~322
    [95]Kara, A.B.,Pochford, P. A. and Hurlburt, H. E. Efficient and accurate bulk parameterizations of air-sea fluxes for use in general circulation models. J. Atmos. Ocean Tech.,2000,17: 1421-1438
    [96]高松HYCOM模式对黑潮的气候态模拟:[硕士学位论文].青岛:中国海洋大学,2007
    [97]Shinoda, T., Hendon, H. H. and Alexander, M. A.Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res II,2004b,51:619~635
    [98]张东凌,何卷雄.热带印度洋上层洋流的动力统计诊断.气候与环境研究,2005,10(3):387~400
    [99]李东辉,张铭,张瑰等.热带印度洋偶极子发生和演变机制的数值研究.海洋科学进展,2005,23(2):135~143
    [100]Feng, M. and Meyers, G. Interannual variability in the tropical Indian Ocean:A two-year time scale of IOD. Deep Sea Res., Part Ⅱ,2003,50(12-13):2263~2284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700