液氧煤油模型发动机高频燃烧不稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频燃烧不稳定性在液体火箭发动机燃烧室中常常发生,对发动机的正常工作具有破坏性作用。然而,对高频燃烧不稳定性发生和演化的机理至今尚未完全理解。因此,开展液体火箭发动机中高频燃烧不稳定性的研究具有十分重要的学术意义和应用价值。
     实现了液氧煤油模型火箭发动机推力室内三维非稳态湍流两相燃烧与流动过程的RANS模拟。获得的流向平均速度分布和燃烧室压力与他人实验定量相符,并在初边值条件不施加任何扰动的情况下,得到了燃烧室内自激压力振荡过程,相应的主频与实验结果一致,表明本文所预测的自激高频压力振荡结果是可信的。
     在压力振荡随时间的变化中存在压力陡峰现象,对其形成原因进行分析表明,燃料液滴达到临界状态瞬时气化使燃烧室局部迅速形成可燃预混气团,并发生准等容燃烧过程,出现了压力和温度大幅上升的定容弹效应,从而产生“压力峰”。“压力峰”在燃烧室内的时空分布表明,其会频繁、随机地出现在燃烧室喷注器面板附近的区域,并在燃烧室中不断传播与反射,最终激励出高频燃烧不稳定现象。
     基于局部压力波传播时间与化学反应特征时间之比定义的第三Damk hler数与“压力峰”相对应,进一步揭示了引发“压力峰”的准等容燃烧机制,并可较好的区分燃烧室中的准等容燃烧,介于等容与等压之间的燃烧和等压燃烧过程。
     研究了室压、液滴直径和温度对自激压力振荡的影响。结果表明,当室压低于燃料临界压力时,因不具备“压力峰”的形成条件而稳定性较好。随着液滴直径由小变大,自激压力振荡将由弱变强再变弱。当液滴较小或较大时,因不存在“压力峰”的形成条件,或形成的“压力峰”远离喷注器壁面而不能与剧烈化学反应区相耦合,使得压力振荡难以维持;而当处于某一中间直径时,“压力峰”在传播过程中会与喷注器壁面附近的剧烈反应区耦合,从而形成高频、高幅值的压力振荡。随着液滴初始温度的增加压力振荡将加强,相应分析与液滴直径的影响分析一致。
     隔板对自激高频燃烧不稳定性抑制作用的研究表明,隔板可以有效抑制燃烧室内的压力自激振荡过程,但并不能消除“振源”,仅能抑制由“振源”产生的压力波的传播过程来减弱燃烧室内“振源”区之间的耦合作用。并且隔板存在最优的长度区间,大于这个区间,自激压力振荡将会在隔板腔内长时间驻留,从而耦合出较强的声学振荡而削弱抑制效果。
High frequency combustion instability happens frequently in the combustionchamber of liquid rocket engine, which often devastates the normal work of engine.However, the triggering and evolutionary mechanism has not yet been fully understood.Therefore, investigations of the mechanism of self-excited high-frequency combustioninstability in liquid rocket engine have very important academic significance andapplication value.
     Three dimensional transient turbulent two-phase reacting flow in the chamber ofLOX/kerosene bipropellant liquid rocket engine model is numerically investigated byusing RANS method in this paper. The predicted pressure and mean axial velocity arequalitatively consistent with the experimental measurements of other investigators.Self-excited pressure oscillations are obtained without any disturbance introducedthrough the initial and boundary conditions, and the corresponding frequency is in goodagreement with test data, which validates the results of self-excited high frequencypressure oscillations predicated by the present numerical simulation method.
     The phenomenon of “pressure peak” is observed in the time history of pressureoscillations. Corresponding analysis shows that the local combustible premixtures thatgenerated immediately by the instantaneous gasification of fuel droplets reaching theircritical state will go through the “quasi-constant volume combustion” and result in thebombing effects distinguished by the high amplitude increase of pressure andtemperature. It is the “quasi-constant volume combustion” that stimulates the “pressurepeak”. The temporal and spatial distribution of “pressure peak” indicates that it occursfrequently and stochastically in the region near the injector panel of combustionchamber, and its propagation and reflection in the chamber will ultimately stimulate theself-excited high frequency combustion instability.
     A third Damk hler number is defined as the ratio of the characteristic time of achemical reaction to the characteristic time of a pressure wave expansion, whichcorresponds to the “pressure peak” and further indicates the mechanism of“quasi-constant volume combustion” which stimulates the “pressure peak”. The thirdDamk hler number can well classify the combustion process in liquid rocket engine into quasi-constant volume combustion, constant pressure combustion and combustionwith partial expansion and pressure increase.
     The effects of chamber pressure, initial droplet diameter and temperature on theself-excited pressure oscillations are investigated. If the average chamber pressure islower than the critical pressure of propellants with weak volatility, the combustionchamber will have better stability because of no appropriate conditions of forming“pressure peak”. It is shown that the intensity of self-excited pressure oscillations willbe augmented first and then weakend with the increase of droplet diameter. For thedroplet with smaller or larger diameter, there is no suitable conditions for forming“pressure peak” or the “pressure peak” occurs far away from the injector panel whichwill result in little coupling effect with the severe chemical reaction there, so highamplitude pressure oscillations can not be stimulated or sustained; For the droplet withmediate diameter, the propagation of “pressure peak” will couple with the severechemical reaction in the region of injector panel, thus the high frequency and amplitudepressure oscillations will be stimulated and sustained. When the initial temperature ofpropellant increases, the amplitude of pressure oscillation will be augmented, thecorresponding analysis is consistent with that of the droplet diameter.
     The damping mechanism of baffles on the self-triggered high-frequencycombustion is investigated, which indicates that baffles can effectively restrain thepressure oscillations in the combustion chamber. However, the “oscillating source”which stimulates the “pressure peak” can not be eliminated completely. The effects ofbaffle can be interpreted as blocking wave propagation process induced by the“oscillating source” and weakening the coupling between different regions where thereare “oscillating sources”. Furthermore, an optimal length interval of baffle is obtained,which indicates that the damping effect of baffle will be reduced if baffle length isbeyond this interval, because self-excited pressure oscillation will have a long timeresidence in the cavity of baffles which will enhance the coupling effect betweenpressure oscillation and acoustic characteristic of the chamber.
引文
[1]哈杰D T,里尔登F H.液体推进剂火箭发动机不稳定燃烧.朱宁昌,张宝炯,译.北京:国防工业出版社,1980.
    [2]杨V,安德松W E.液体火箭发动机燃烧不稳定性.张宝炯,洪鑫,陈杰,译.北京:科学出版社,2001.
    [3] Smith A J, Reardon F H. The sensitive time lag theory and its application to liquid rocketcombustion instability problems. Aerojet General Corp, AFRPL-TR-67-314,1968.
    [4] Priem R J, Heidmann M F. Propellant vaporization as a design criterion for rocket-enginecombustion chambers. NASA TR R-67, l960.
    [5] Priem R J, Guentert D C. Combustion instability limits determined by a nonlinear theory anda one-dimensional model. NASA TN D-1409,1962.
    [6] Hoffman R J, Wright R D, Breen B P. Combustion instability prediction using a nonlinearbipropellant vaporization model. NASA CR-920,1968.
    [7] Burstein S A, Chinitz W, Schechter H S. A nonlinear model of combustion instability in liquidpropellant rockets engines. AIAA Paper,1972-l146.
    [8] Yang V. Liquid-propellant rocket engine injector dynamics and combustion processes atsupercritical conditions. Final Technical Report for AFOSR, ADA428947,2004.
    [9] Yang V. High-pressure combustion chamber dynamics. Istanbul: International Symposium onEnergy Conversion Fundamentals,2004.
    [10] Zong N, Yang V. Cryogenic fluid jets and mixing layers in transcritical and supercriticalenvironments. Combustion Science and Technology,2006,178:193-227.
    [11]聂万胜,丰松江.液体火箭发动机燃烧动力学模型与数值计算.北京:国防工业出版社,2011.
    [12] Levine R S. Experimental status of high frequency liquid rocket combustion instability.Symposium (International) on Combustion,1965,10(1):1083-1099.
    [13] Rayleigh L. The Theory of Sound. New York: Dover,1945:226-235.
    [14] Zinn B T. Pulsating Combustion//Weinberg F J. Advanced Combustion Methods: Chapter II.London: Academic Press,1986:113-181.
    [15]黄玉辉.液体火箭发动机燃烧稳定性理论、数值模拟和试验研究[博士学位论文].长沙:国防科学技术大学航空宇航推进理论与工程系,2001.
    [16] Crocco L. Aspects of combustion instability in liquid propellant rocket motors. J ARS,1951,21:63-178;1952,22:7-16.
    [17] Coates R L, Horton M D. Further consideration on the interaction of sound and flow in rocketmotors and T-Burners. Combustion Science and Technology,1974,9:95-102.
    [18] Culick F E C. Stability of three-dimensional motion in a combustion chamber. CombustionScience and Technology,1975,10:109-124.
    [19] Priem R J. Theoretical and experimental models of unstable rocket combustors. Proceedingsof the9th Symposium(International) on Combustion.1963:982-992.
    [20] Heidmann M F, Wieber P R. Analysis of n-heptane vaporization in unstable combustor withtravelling transverse oscillations. NASA TN D-3424,1965.
    [21] Yang V. Modeling of supercritical vaporization, mixing, and combustion processes inliquid-fueled propulsion systems. Proceedings of the Combustion Institute,2000,28(1):925-942.
    [22] Tong A Y, Sirignano W A. Oscillatory vaporization of fuel droplets in an unstable combustor.Journal of Propulsion and Power,1989,5(3):257-261.
    [23] Sirignano W A, Delplanque J P, Chiang C H, et al. Liquid-propellant droplet vaporization: arate controlling process for rocket combustion instability.//Yang V, Anderson W E. LiquidRocket Engine Combustion Instability: Progress in Astronautics and Aeronautics. Washington,D.C.: American Institute of Aeronautics and Astronautics,1995,169:307-343.
    [24] Bhatia R, Sirignano W A. One-dimensional analysis of liquid-fueled combustion instability.Journal of Propulsion and Power,1991,7(6):953-961.
    [25] Abramzon B, Sirignano W A. Droplet vaporization model for spray combustion calculations.International Journal of Heat and Mass Transfer,1989,32(9):1605-1618.
    [26] Chiang C H, Raju M S, Sirignano W A. Numerical analysis of convecting, vaporizing fueldroplet with variable properties. International Journal of Heat and Mass Transfer,1992,35(5):1307-1324.
    [27] Chiang C H. Isolated and interacting, vaporizing fuel droplets: field calculation with variableproperties[Ph.D. Thesis]. Irvine, CA: Department of Mechanical Engineering, University ofCalifornia,1990.
    [28] Duvvur A. Numerical solution of convective droplet vaporization in an oscillatory gas flow:application to liquid propellant longitudinal mode combustion instability [Ph.D. Thesis].Irvine, CA: University of California,1992.
    [29] Duvvur A, Chiang C H, Sirignano W A. Oscillatory fuel droplet vaporization: drivingmechanism for combustion instability. Journal of Propulsion and Power,1996,12(2):358-365.
    [30] Delplanque J P, Sirignano W A.Transcritical liquid oxygen droplet vaporization: effect onrocket combustion instability. Journal of Propulsion and Power,1996,12(2):349-357.
    [31] Wieber P R. Calculated temperature histories of vaporizing droplet to the critical point. AIAAJournal,1963,1(12):2764-2770.
    [32] Curtis E W, Farrell P V. Droplet vaporization in a supercritical microgravity environment.Astronautica Acta,1988,17(11-12):1189-1193.
    [33] Hsieh K C, Shuen J S, Yang V. Droplet vaporization in high-pressure environments.1.NearCritical Conditions. Combustion Science and Technology,1991,76(1-3):111-132.
    [34] Yang V, Hsiao C C, Shuen J S. Pressure-coupled vaporization and combustion responses ofliquid fuel droplet in high-pressure envrionments. AIAA Paper,1991-2310.
    [35] Yang V, Lin N N, Shuen J S. Vaporization of liquid oxygen(LOX) droplets at supercriticalconditions. AIAA Paper,1991-0078.
    [36] Litchford R J, Jeng S M. LOX vaporization in high-pressure hydrogen-rich gas. AIAA Paper,1990-2191.
    [37] Oschwald M, Smith J J, Branam R. Injection of fluids into supercritical environments.Combustion Science and Technology.2006,178:49-100.
    [38] Gross A H, Osherov A, Gany A. Heat transfer amplification due to transverse modeoscillations. Journal of Thermophysics and Heat Transfer.2003,17(4):521-525.
    [39] Richecoeur F, Scouflaire P, Ducruix S, et al. High-frequency transverse acoustic coupling in amultiple-injector cryogenic combustor. Journal of Propulsion and Power,2006,22(4):790-799.
    [40] Rey C, Ducruix S, Richecoeur F, et al. High frequency combustion instabilities associatedwith collective interactions in liquid propulsion. AIAA Paper,2004-3518.
    [41] Richecoeur F, Scouflaire P, Ducruix S, et al. Interactions between propellant jets and acousticmodes in liquid rocket engines: experiments and simulations. AIAA Paper,2006-4397.
    [42] Richecoeur F, Scouflaire P, Ducruix S, et al. Experimental investigation of high-frequencycombustion instabilities in liquid rocket engine. Acta Astronautica,2008,62(1):18-27.
    [43] Richecoeur F, Ducruix S, Scouflaire P, et al. Effect of temperature fluctuations on highfrequency acoustic coupling. Proceedings of the Combustion Institute.2009,32(2):1663-1670.
    [44] Laverdant A M, Poinsot T, Candel S M, et al. Mean temperature field effect on acoustic modestructure in dump combustor. Journal of Propulsion and Power,1986,2(4):311-316.
    [45] Truffin K, Poinsot T. Comparison and extension of methods for acoustic identification ofburners. Combutsion and Flame.2005,142(4):388-400.
    [46] Schuller T, Durox D, Candel S. Self-induced combustion oscillations of laminar premixedflames stabilized on annular burner. Combustion and Flame.2003,135(4):525-537.
    [47] Lieuwen T, Rajaram R, Neumeier Y, et al. Measurements of incoherent acoustic wavescattering from turbulent premixed flames. Proceedings of the Combustion Institute,2002,29(2):1809-1815.
    [48] Lieuwen T. Analysis of acoustic wave interactions with turbulent premixed flames.Proceedings of the combustion institute,2002,29(2):1817-1824.
    [49] Burnley V S, Culick F E C. Influence of random excitations on acoustic instabilities incombustion Chambers. AIAA Journal,2000,38(8):1403-1410.
    [50] Pieringer J, Sattelmayer T, Fassl F. Simulation of combustion instabilities in liquid rocketengines with acoustic perturbation equations. Journal of Propulsion and Power,2009,25(5):1020-1031.
    [51] Habiballah M, Lourme D, Pit F. PHEDRE-numerical model for combustion stability studiesapplied to the Ariane Viking engine. Journal of Propulsion and Power,1991,7(3):322-329.
    [52] Dubois I, Habiballah M, Lecourt R. Numerical analysis of liquid rocket engines combustioninstabilities. AIAA Paper,1995-0607.
    [53] Kim Y M, Chen C P, Ziebarith J P, et al. Prediction of high frequency combustion instabilitiesin liquid propellant rocket engines. AIAA Paper,1992-3763.
    [54] Litchford R J. Comment on tangential wave motion in unstable combustors. AIAA Paper,1993-2199.
    [55] Grenda J M, Venkateswaran S, Merkle C L, et al. Multi-dimensional analysis of combustioninstabilities in liquid rocket motors. AIAA Paper,1992-3764.
    [56] Grenda J M, Venkateswaran S, Merkle C L. Three-dimensional analysis of combustioninstabilities in liquid rocket engines. AIAA Paper,1993-0235.
    [57] Priem R J. Roundrobin calculation of wave characteristic in a fixed geometry-Operatingcondition liquid rocket using given simplified combustion equations. JANNAF Workshop onNumerical Method in Combustion Insatbility, Orlando,1990.
    [58] Chao C C, Heister S D. Contributions of atomization to F-1engine combustion instability.Engineering Analysis with Boundary Elements,2004,28(9):1045-1053.
    [59]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型与应用.长沙:国防科技大学出版社,1995.
    [60]刘卫东.液体火箭发动机不稳定燃烧数值分析模型研究[博士学位论文].长沙:国防科学技术大学航天技术系,1996.
    [61]赵文涛.液体火箭发动机非线性不稳定燃烧分析[博士学位论文].长沙:国防科学技术大学航天技术系,1997.
    [62]聂万胜.自燃推进剂火箭发动机燃烧稳定性研究[博士学位论文].长沙:国防科学技术大学航天技术系,1998.
    [63] Hannum N P, Scott H E. The effect of several injector face baffle configurations on screech ina20,000pound thrust hydrogen-oxygen rocket. NASA TM X-52251,1966.
    [64] You D, Yang V. Linear stability analysis of baffled combustion chamber with radial andcircumferential blades. AIAA Paper,2005-0930.
    [65] Kim H J, Lee K J, Seo S, et al. Stability rating tests of KSR-III baffled chamber using pulsegun. AIAA Paper,2004-3364.
    [66] Kim S K, Kim H J, Seol W S. Acoustic stability analysis of liquid propellant rocketcombustion chambers. AIAA Paper,2004-4142.
    [67] Frendi A, Nesman T, Canabal F. Control of combustion-instabilities through various passivedevices. AIAA Paper,2005-2832.
    [68] Feng Songjiang, Nie Wansheng, He Bo, et al. Control effects of baffle on combustioninstability in a LOX/GH2rocket engine. Journal of Spacecraft and Rockets,2010,47(3):419-426.
    [69] Launder B E, Spalding D B. The numerical computation of turbulent flow. Computer methodsin applied mechanics and engineering.1974,3(2):269-289.
    [70] Spalding D B. Mixing and chemical reaction in steady confined turbulent flames.13thInternational Symposium on Combustion,1971,13(1):649-657.
    [71] O’Rourke P J. Collective drop effects on vaporizing liquid sprays[Ph.D. Thesis]. US:Princeton University,1981.
    [72] Williams F A.燃烧理论—化学反映流动系统的基础理论.庄逢辰,杨本濂,译.2版.北京:科学出版社,1990.
    [73] Dang A L, Navaz H K. Numerical analysis of bipropellant combustion in liquid thrustchambers by an Eulerian-Eulerian approach. AIAA Paper,1992-3735.
    [74] Gosman A D, Ioannides E. Aspects of computer simulation of liquid-fuelled combustors.AIAA Paper,1981-0323.
    [75] Crowe C T, Sharma M P, Stock D E. The Particle-Source-In-Cell (PSI-Cell) model for gasdroplet flows. Journal of Fluids Engineering,1977,99(2):325-333.
    [76] Rabin E, Schallenmuller A R, Lawhead R B. Displacement and shattering of propellantdroplets. AFOSRTR-60-75,1960.
    [77] Zhu G S, Aggarwal S K. Transient supercritical droplet evaporation with emphasis on theeffects of equation of state. International Journal of Heat and Mass Transfer,2000,43(7):1157-1171.
    [78] Lafon P, Habiballah M. Numerical analysis of droplet vaporization and burning underhigh-pressure conditions. AIAA Paper,1994-2909.
    [79]波林B E,普劳斯尼茨J M,奥康奈尔J P.气液物性估算手册.赵红玲,译.5版.北京:化学工业出版社,2006.
    [80] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer inthree-dimension parabolic flows. International Journal of Heat and Mass Transfer,1972,15(10):1787-1806.
    [81] Date A W. Numerical prediction of natural convection heat transfer in horizontal annulus.International Journal of Heat and Mass Transfer,1986,29(10):1457-1464.
    [82] Gridharan M G, Krishnan A, Przekwas A J. Computational analysis of variable thrust engine(VTE) performance. Final Report, NASA-CR-193852,1993.
    [83] Issa R I. Solution of the implicity discretised fluid flow equations by Operator-Spliting.Journal of Computational Physics,1986,62(1):40-65.
    [84] Issa R I. The computation of compressible and incompressible recirculating flows by anon-iterative implicit scheme. Journal of Computational Physics,1986,62(1):66-82.
    [85] Lambiris S, Combs L P, Levine R S. Stable combustion processes in liquid propellant rocketengines.//Hagery P R. Combustion and Propulsion Fifth AGARD Colloquium. Oxford:Pergamon Press,1962:569-636.
    [86] Lambiris S, Combs L P. Steady-state combustion measurements in a LOX/RP-1rocketchamber and related spray burning analysis.//Penner S S, Williams F A. Detonation andTwo-Phase Flow. New York: Academic Press,1962:269-304.
    [87] James A, Maciej Z, Giridharan M G. Simulation of spray combustion instabilities in liquidrocket engines.II-Application. AIAA Paper,1997-0695.
    [88] Jiang T L, Chiu H H. Bipropellant combustion in a liquid rocket combustion chamber. Journalof Propulsion and Power,1992,8(5):995-1003.
    [89] Birdi K S. Handbook of Surface and Collid Chemistry. US: CRC Press,2008.
    [90] Hsiao G C, Meng H, Yang V. Pressure-coupled vaporization response of n-pentane fueldroplet at subcritical and supercritical conditions. Proceedings of the Combustion Institute,2011,33(2):1997-2003.
    [91] Daimon W, Gotoh Y, Kimura I. Mechanism of explosion induced by contact of hypergolicliquid. Journal of Propulsion and Power,1991,7(6):946-952.
    [92] Burstein S A, Chinitz W, Schechter H S. A nonlinear model of combustion instability in liquidpropellant rocket engine. AIAA Paper,1972-1146
    [93]李龙飞,陈建华,陈战国.大推力液氧煤油补燃发动机高频燃烧不稳定性的控制方法.导弹与航天运载技术,2011,(3):16-19.
    [94]张贵田.高压补燃液氧煤油发动机.北京:国防工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700