水压力作用下煤岩损伤弱化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上煤炭储量最丰富的国家之一,煤炭能源在国民经济发展中起着重要的基础作用。随着煤炭资源开采强度的不断加大,煤层开采效率越来越受到关注。水溶液对煤岩损伤弱化规律的研究是煤炭开采过程中的重大课题,由于我国急倾斜煤层分布广泛,因此水压力作用下对煤岩损伤弱化规律的研究更是对急倾斜煤层的开采方法优化的重要课题之一。
     本文以水溶液及孔隙水压力作用对煤岩体损伤弱化规律为主要研究对象。首先,通过水溶液对煤岩体强度损伤弱化的物理实验,得到了不同水溶液对煤岩含水率的改变不同及煤岩强度、弹性模量、泊松比与含水率的关系,试验表明:煤岩的强度、弹性模量随含水率的增加而减小,煤岩泊松比随含水率的增加而增大;其次,总结了水溶液对煤岩体力学性质三方面影响:从煤岩微元体强度服从Weibull分布的角度及密度、弹性模量变化的角度出发,建立了轴压与水压共同作用下煤岩体的统计损伤模型。引入孔隙水压力影响因子,证明孔隙水压力对煤岩体损伤情况。利用水压致裂理论,分析煤岩体孔隙水压作用原理,得出了煤岩裂纹初裂强度值,并对煤岩孔隙率进行了定性描述;最后,利用F-RFPA2D进行数值模拟,分析了孔隙水压力对煤岩加载损伤过程,对煤岩变形强度的影响,研究表明:当孔隙水压力恒定时,煤岩强度随围压的增加而增大;当围压相同时,孔隙水压力越高,煤岩强度越低。围压大小和起始水压力大小对孔隙水压力作用的影响显著。
China coal reserves is one of the richest countries on the world, coal energy plays an important role in the development of national economy, with the coal resources exploitation strength increasing, coal mining efficiency has been paid more and more attention. Aqueous to coal and rock damage weakening is the important topic of coal mining process, Because China's coal seam widely distributed, research the regularity of coal and rock damage to weaken under the action of water pressure is one of the important topics In steep coal seam mining method optimization.
     Based on the water pressure of coal and rock damage effect to coal and rock damage weakening as the main research object. First, through the physics experiment of aqueous to coal and rock mass strength damage reduction, get the relationship of the solution to the moisture content of different coal and coal rock strength changes, the elastic modulus and poisson ratio and the moisture content, Tests show: coal rock strength and elastic modulus decreases with the increase of the moisture content, petrographical poisson ratio increases with the moisture content; Secondly, summarizes the solution of coal and rock mechanics properties in three factors: Stress and strain characteristic, coupling of strength and solid-liquid. From angles of coal tiny intensity obey Weibull distribution and density, elastic modulus variation, establish statistical damage model of the axial compressive and pressure under the joint action of coal and rock. Introduced the pore water pressure influence factor, proof damage of pore water pressure to coal and rock. Using the theory of hydraulic fracturing to analyze the principle of pore water pressure effect to coal and rock, get coal and rock crack splitting strength value, and describe the coal and rock porosity, Finally, using the F-RFPA2D numerical simulation and analysis the pore water pressure to coal and rock damage process, influence to coal and rock deformation, Research shows that:
     When the pore water pressure constant, coal rock strength is increasing with confining pressure increases; When the same confining pressure, the higher of pore water pressure is, the lower of coal rock strength. Confining pressure size and size of water pressure on initial pore water pressure effect significantly.
引文
[1]谢和平.可持续发展与煤炭工业报告文集[M].北京:煤炭工业出版社, 1998
    [2]张文杰,周创兵等.裂隙岩体渗流特性物模试验研究进展[J].岩土力学, 2005, 26 (9): 1517~1524
    [3]盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学,1 998 (2): 92~98
    [4]曾亿山,卢德唐等.单裂隙流—固耦合渗流的试验研究[J].实验力学, 2005, 20 (1):10~17
    [5] Lomize G M. Flow in Fractured Rocks. Moscow: Gosemergoizdat, 1951
    [6] Louis C. Rock Hydraulics in Rock Mechanics,Ed. By L Muller, 1974
    [7] Amadei B. Illangasekare T A. Mathematical model for flow and solute transport in nonhomogeneous rock fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994 (18): 719~731
    [8]速宝玉等.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报, 1995, 17 (5): 19~24
    [9]沈洪俊,高海鹰等.应力作用下裂隙岩体渗流特性的试验研究[J].长江科学院院报, 1998, 15 (3): 35~38
    [10]周创兵.裂隙岩体渗流场与应力场耦合分析研究[博士论文].武汉:武汉水利电力大学, 1995
    [11]夏筱红,杨伟峰.采场底板岩石渗透性试验研究[J].矿业安全与环保, 2006, 33 (3): 20~23
    [12]李全寿,马占国等.煤系地层岩石渗透特性试验研究[J].实验力学, 2006, 21 (2): 129~134
    [13]姜振泉,季梁军.岩石全应力—应变过程渗透性试验研究[J].岩土工程学报, 2001 23 (2): 153~156
    [14]尹双增.断裂损伤理论及应用[M].北京:清华大学出版社, 1992
    [15]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社, 1993
    [16] Griffth.A.A., The phenomena of rupture and flow in solids,Phil.Trans.Royal Soc.London,SeriesA, 1921, 163~171
    [17] Griffith,A.A. The theory of rupture Preceeding of 1st International congress applied Mechanics,lst De1ft, 1924, 55~63
    [18] Poston.T.and Stewart,I.catastrophe Theory and Its Application.Pitman, London, SanFrancissco, Melbourne, 1978
    [19] Lajtai E.Z. Brittle Fracture in compression. Int.Frac.1977, 10 (4): 129~137
    [20] Dournary E, Mclennan et al. Poroelastic concepts explain some of the hydraulic fracturing mechanism. SPE 1990, 152~162
    [21] Bruno M S,Nakagawa F M.Pore Pressure influence on tensile fracture propagation insedimentary rock.Int.J.Rock Mech.Min Sci.Geomech.Abstr.,1991, 28(4): 261~273
    [22] Jeffrey R G,Mills K W. Hydraulic fracturing applied to including longwall coal mine goaf falls.PacifficRock,Girard,Liebman,Breeds,Doe(eds).Balkeman,Rotterdam.2004,423~430
    [23]黄润秋,王贤能等.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报, 2000 (9): 573~576
    [24]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩体力学, 2000 21(1): 64~67
    [25]邓广哲.煤体致裂软化理论与应用[M].西安:陕西科学技术出版社, 2004
    [26]张嘉凡.急斜综放合理段高及滞放关键域注水弱化[博士论文].西安:西安科技大学, 2009
    [27]徐靖南.压剪应力作用下多裂隙岩体的力学特性—理论分析与模型试验[硕士论文],武汉:中科院武汉岩土所, 1993
    [28]邓广哲.裂隙岩体流变学[M].西安:世界图书出版社, 1999
    [29]朱珍德,孙均.裂隙岩体非稳定渗流场与损伤场耦合分析模型[J].水文地质工程地质, 1999, 26 (2): 35~42
    [30]杨天鸿,唐春安.岩石破坏过程中渗流-损伤关系的认识[J].岩石力学与工程学报, 2004, 23(24): 4254~4257
    [31]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社, 2005
    [32] Liste John R,Kerr Ross C. Fluid-mechanical models of crack propagation and their application to magma transport in Dykes[J]. J.Geophys.Res.,1991, 96(B6): 10049~10 077
    [33] Freiman S W. Effects of chemical environments on slow crack growth in glasses and ceramics[J]. J. Geophys. Res., 1984, 89(B6): 4072~4076
    [34] Rebinder P A,Schreiner L A,Zhigach K F. Hardness Reducers in Driling : a Physico-Chemical Method of Faclitating Mechanical Destruction of Rocks During[M]. Moscow: Akad Naunk,Tansl. by Melboune: CSIRO, 1994
    [35]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性—第一部分:试验研究[J].岩石力学与工程学报, 2000, 19(4): 403~407
    [36]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性—第二部分:时间分形分析[J].岩石力学与工程学报, 2000, 19(5): 551~556
    [37]汤连生,张鹏程,王洋.岩体复合型裂纹的扩展规律II.有水作用条件下[J].中山大学学报(自然科学版), 2003, 42(1): 90~94
    [38]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报, 2002, 21(3): 314~319
    [39]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报, 2002, 21(4): 526~531
    [40]冒海军,杨春和等.不同含水条件下板岩力学实验研究与理论分析[J].岩土力学, 2006, 27 (9): 1637~1642
    [41] Dunning J D. Petrovski D. Schuyler J. et al. The effects of aqueous chemical environments on crack propagation in quartz[J]. J. Geophys. Res, 1984
    [42]汤连生,张鹏程,王思敬.水—岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报, 2002, 21 (4): 526~531
    [43] Brace W F. Permeability of granite under high pressure[J]. Journal of Geophysical Research, 1968, 73: 225~236
    [44] Keighin C W, Sampath K. Evaluation of pore geometry of some low-permeability sandstone-Uinta Basin[J]. Journal of Petroleum Technology, 1982, 34: 65~70
    [45]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率—应变方程[J].岩土工程学报, 1995, 17 (2): 231~235
    [46]张守良,沈深,邓金根.岩石变形及破坏中渗透率变化规律的实验研究[J].岩石力学与工程学报, 2000 19(增): 885~888
    [47]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究.岩土工程学报[J]. 2001, 23(1), 68~70
    [48]陈宗基.康文法.在岩石破坏和地震之前与时间有关的扩容[J].岩石力学与工程学报, 1983, 2(1): 11~21
    [49]石必明.矿业瓦斯防治[M], 2002
    [50]戴永浩,陈卫忠,伍国军.非饱和岩体弹塑性损伤模型研究与应用[J].岩石力学与工程学报, 2008, 27(4)
    [51]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究[J].岩土工程学报, 2004, 26(6): 820~823
    [52]张子明,赵吉坤,吴昊等.混凝土单轴荷载下细观损伤的数值模拟[J].河海大学学报:自然科学版, 2005, 33(3): 422~425
    [53]陈忠辉,傅宇方,唐春安.岩石破裂声发射过程的围压效应[J].岩石力学与工程学报, 1997, 16(1): 65~70
    [54]杨更社,张长庆.岩体损伤及检测.西安:陕西科学技术出版社, 1998
    [55]周飞平,刘光延.饱和软岩受压硬化、强度折减及本构模型[J].水利水运工程学报, 2002, 12(4): 39~43
    [56]赵明阶,徐蓉.裂隙岩体在受荷条件下的变形特性分析[J].岩土工程学报, 2000, 22 (4): 466~471
    [57]梁卫国等. 240℃内盐岩物理力学特性的实验研究[J].岩石力学与工程学报, 2004, 23 (14): 2365~2369
    [58]夏小和,王颖秩等.高温作用对大理岩强度及变形特性影响的实验研究[J].上海交通大学学报, 2004, 38 (6): 996~998
    [59] Mohamed A.Shahin,Mark B.Jaksa. Holger R.Maier Artificial neural network applications in geotechnical engineering[J]. Australian Geomechanics, 2001, (3): 49~62
    [60] Hojjat Adeli.Neural networks in civil engineering: 1989-2000[J]. Computer-aided Civiland Infrastructure Engineering, 2001, 16:126~142
    [61]佘跃心,刘汉龙,高玉峰.寻求相关距离的神经网络方法[J].岩土力学, 2003, 24 (5): 719~722
    [62]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特征[M].北京:科学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700