超临界锅炉水冷壁管温度数值计算与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国火力发电行业近年来投运了大量超临界压力参数发电机组,超临界锅炉水冷壁管的安全运行已经成为倍受关注的重要研究课题。本文针对某电厂600MW超临界燃煤电站锅炉,对炉膛螺旋管圈水冷壁不同标高区段的壁面热负荷、管内工质在超临界及近临界压力区的状态变化、水冷壁管及鳍片截面温度场分布、最高管壁温度的位置及不同运行方式下的壁温变化规律进行了深入的研究,具体研究内容及主要研究成果如下:
     (1)采用矩量法对锅炉水冷壁温度场进行数值计算。在建立螺旋管圈水冷壁及鳍片截面的二维稳态导热方程的基础上,引入矩量法的基本计算原理,证明了矩量法与变分法的等价性。采用双线性四边形单元对截面进行剖分,推导了基于矩量法的有限元数值计算式。
     (2)根据炉内燃烧热负荷沿炉膛高度分布的特点,对600MW超临界锅炉炉膛螺旋管圈水冷壁进行了7个区段的合理划分,建立了各区段的热量平衡方程,进行了分区段热力计算,得到了各个区段上的平均壁面热负荷。在能量平衡的基础上,对分区段热力计算的热负荷结果进行了合理修正,确定了炉膛螺旋管圈水冷壁管外壁热负荷分布。
     (3)对超临界及近临界条件下的7个工况共计49个水冷壁管截面进行了温度场数值计算。计算中考虑了螺旋管圈的倾斜布置和半周加热的特点,计算了管内表面传热系数沿周向的分布值。
     (4)根据炉膛螺旋管圈水冷壁管在炉膛各个区段的不同的绕制方式,从冷灰斗水冷壁进口联箱开始,分析了因各管的不同几何长度所造成的吸热差异,确定了吸热最多的偏差管,对各个工况条件下螺旋管圈水冷壁偏差管出口处的管壁温度进行了计算,并与该锅炉在相应运行工况下的管壁温度实际测量值进行了比较,证明了本文所采用的螺旋管圈水冷壁温度场计算模型是比较合理的,计算结果是可信的。
     (5)在超临界工况条件下稳态温度场计算的基础上,计算和分析了在不同启动方式下的水冷壁管壁温度变化率,结果表明,在超临界压力区管壁内侧壁温变化较快,在极热态启动时会超过运行要求的管壁温度变化率。
     (6)在近临界工况条件下,沿炉膛高度对管内工质的汽化过程进行逐段计算与分析,以确定传热恶化可能出现的位置;计算与分析了传热恶化所引起的管壁超温,计算表明,汽化过程出现在燃烧器区段即热负荷最高区段,当工质在两相区发生传热恶化时会造成管壁温度飞升。
Many supercritical coal-fired boilers have been put into running in China in recent years. The safety operation of water-wall has become an important subject attracting concern. A 600MW supercritical boiler is studied in present paper. Heating load of spirally-wound water wall tube at different elevation and the thermal states of working medium at supercritical and near-critical conditions were determined. The temperature profiles at different running conditions were calculated, the changing characteristic of the temperature profile was analyzed, the positions of the highest temperature were determined. The research contents and results are as follows:
     (1) Numerical calculations of water-wall temperature profile of a 600MW supercritical boiler were conducted by the moment method. Two-dimensional heat conduction differential equations were established for the cross sections at different heights. The basic principle and calculation formula of moment method were introduced. The equivalency of matrix method and variational method has been proved. The mesh with bilinear quadrilateral grid has been generated, and numerical calculation formula of finite element based on moment method was deduced.
     (2)The spirally-wound water wall tube in furnace was partitioned into 7 zones along the height. The heat conservation equations for the 7 zones were established, and thermal calculations in the 7 zones were conducted and the heat loads were determined. The derived heat loads were modified based on the theory of energy balance.
     (3)Temperature profiles of 49 cross sections under 7 supercritical and near-critical working conditions were calculated. The characteristics of the spirally-wound water wall tube inclination arrangement and circumferentially non-uniform heating were considered. The heat convection coefficient curve along the circumferential direction was determined.
     (4)The heat absorption difference was analyzed based on the different wound modes of the spirally-wound water wall tube in every furnace zone. The heat absorped difference of the water-wall tube caused by the dimension difference from the entrance header to the outlet of the spirally-wound water wall tube was analyzed in present paper. The deviation tubes which have the highest heat absorption were confirmed. The outlet temperatures of deviation tubes were calculated. The calculated results and the measured results were compared. And the model of the calculation of the water-wall temperature profile was proved reasonable, and the calculation result was credible.
     (5)The temperature rising rates of the water-wall under different start-up modes were studied on the basis of steady temperature profile calculation under supercritical pressure. The results indicate that the inner side temperature of the water-wall changed quickly. The change rate can exceed the operation requirement obviously.
     (6)Under near critical condition, the vaporization process was calculated and analyzed along the height. The position of heat transfer deterioration was determined. The overheating caused by transfer deterioration was analyzed. It is indicated that vaporization happened in the burner zone of the furnace. And the heat transfer deterioration in two-phase region can lead to overheating.
引文
[1]樊泉桂,阎维平.锅炉原理.北京:中国电力出版社,2004
    [2]袁德等.现代电站锅炉技术及其改造.北京:中国电力出版社,2006
    [3]西安交通大学《直流锅炉》编写组.直流锅炉.北京:水利电力出版社,1977
    [4]樊泉桂.超超临界及亚临界参数锅炉.北京:中国电力出版社,2007
    [5] Wdinlich.K.Development of the Supercritical Power-station Unit for Variable Pressure Operation.Siemens Rev, 1969, 36(10):373-380
    [6] Batunov G.K.Investigation and introduction of operating modes at variable Pressure in the TGMP-1202 Boiler of a 1200MW Generating Unit.Thermal Engineering, 1985, 32(6): 313-318
    [7] Tadashi , Sakaguchi. Pressure Drops in Supercritical Boilers.Bull JSME, 1977, 20(143):644-651
    [8] Kaneko.S., Hashimoto. Features and Operating Results of Tohoku Electric Power Co.,Inc.Haramachi No.1 1000MW Boiler. Technical Review-Mitsubishi Heavy Industries, 1998,35(3):61-65
    [9] Okabe , Kazuyuki. Design of 600MW Coal-Fired Variable Pressure Operation Supercritical Once-Through Steam Generator for Tomato-Atsuma Power Station No.2 Unit of the Hokkaido Electric Power Co.,Inc.IHI Engineering Review, 1984,17(2): 98-103
    [10] Inoue,T. A model of fossil fueled plant with once-through boiler for power system frequency simulation studied.Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference,2000,(1):407
    [11] Kaneko,S., Yamamoto,K. Design and operation experience of a 1000MW ultra supercritical coal fired boiler with steam condition of 25.4MPa 604/602℃.Technical Review-Mitsubishi Heavy Industries, 1999, 36(3): 61-65
    [12] Laubli F., Fenton J. F.Flexibility of the supercritical boiler as a partner in power system design and operation-2 . IEEE Trans Power App Syst, 1971 ,PAS-90(4):1725-1733
    [13] Vera,R.L., Laney,B.E.Adaptation of a supercritical unit to a utility’s present and future generation management plans.ISA Transactions,22(2):49-65
    [14] Shvarts,A.L.Modification of high-pressure drum boilers and once-through boilers for operation at overcritical and supercritical steam parameters during the technological modernization of thermal power plants.Teploenergtika, 2004,(9):26-30
    [15] Dumont,M.-N., Heyen G.Mathematical modeling and design of an advanced once-through heat recovery steam generator.Computers and Chemical Engineering, 2004, 28(5): 651-660
    [16] Anon.World’s largest supercritical sliding pressure operation monotube boiler.TECH REV MITSUBISHI HEAVY IND, 1982, 19(1): 68-69
    [17] Suzuki, Yutaka. Simulation of supercritical once-through boiler. Simulation, 1979, 33(6): 181-193
    [18] Lipets, A.I. Some ways for improving a boiler and a power-generating unit having ultrasupercritical steam parameters.Teploenergetika, 1998, 45(6): 31-37
    [19] Wdinlich.K.Development of the Supercritical Power-station Unit for Variable Pressure Operation.Siemens Rev, 1969,36(10): 373-380
    [20] Batunov G.K. Investigation and introduction of operating modes at variable Pressure in the TGMP-1202 Boiler of a 1200MW Generating Unit.Thermal Engineering,1985,32(6): 313-318
    [21] Katsuya , Setoguchi. Changes of Material Properties and Maintenance of Pressure Parts of Thermal Power Plant Boilers under Long Term Service.Technical Review,1982, 19(3):191-201
    [22] Bertilsson J.E., Scarlin,R.B.Materials considerations in the design of advanced steam plant.American Society of Mechanical Engineers, 1986
    [23]潘乾刚.HCM2S钢材在我国锅炉上运用前景分析.东方锅炉,2004,(1):30-37
    [24] Shiff,V.K.Mathematical Modeling of Radiant Transfer in a Furnace.Thermal Engineering, 2003, 50(8): 664-668
    [25] LI Wenjian.Design of 600MW Supercritical Variable Pressure Operation Boiler With Vertical Water Wall.1999, American Society of Mechanical Engineers, 34:21
    [26] Shozo Kaneko. 1000MW Coar Fired Supercritical Variable Pressure Operation Boiler With Vertical Furnace Waterwall.Technical Review, 1996,33(3): 105-109
    [27]黄莺,张亮.变压运行600MW超临界锅炉垂直水冷壁计算特性.锅炉制造,2003,5(2):10-11
    [28]王耀,钮家鳌.1025t/h UP炉上辐射水冷壁爆管原因分析.华东电力,1997,12:8-11
    [29] Kim.Tae-Woan, Kim.Jae-Choel, Hwang,et al.Structural analysis of utility boiler waterwall, Proceedings of the ASME Design Engineering Division, 2005, 118 B(2): 697-702
    [30] F.V., Tordonato, Sebastian, Latour, et al.Root cause failure assessment of the waterwall tubing at Newington Station, Unit 1, 2001 ASME Pressure Vessels and PipingConference, 2001, 427: 55-64
    [31] Zhu Jinrong, Zhang Mingyao.Safety analysis of the waterwall in one PFBC boiler by dynamic model, ISA Transactions, 2003, 42(4): 665-672
    [32] French,Stephen, Skelonis,Carl.Creep failure of a chromized waterwall tube in a supercritical boiler, American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication)PVP, 2005, 7: 223-237
    [33] Ellis F.V., Tordonato.Sebastian.Failure analysis and life assessment studies for boiler tubes.American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication)PVP, 1999, 392: 3-13
    [34]唐虹,杨瑞昌,鲁钟琪,等.300MW机组直流锅炉调峰运行水冷壁安全性分析.清华大学学报,1997,37(2):16-18
    [35]王广军,李勇,吴景兴,等.锅炉受热面热力过程通用数学模型.中国电机工程学报,1998,18(4):254-256
    [36]黄锦涛,陈听宽,罗毓珊.热敏感性对直流锅炉水冷壁安全运行的影响.西北电力技术,2000,2:7-9
    [37]王红.热水锅炉水冷壁爆管问题分析与研究.工业锅炉,2002,1:42-44
    [38]庄文贤,李瑜,曹佳鸣,等.直流锅炉与螺旋管圈水冷壁.锅炉技术,2001,32(9):1-4
    [39] Ellis F.V., Sebastian Tordonato.Failure Analysis Assessment Studies for Boiler Tubes.Service Experience in Fossil and Nuclear Power Plants. 1999, PVP(392):3-5
    [40]束国刚,李益民,梁昌乾,等.10CrMo910钢薄壁主汽管θ法寿命评估及其应用研究.热力发电,2000,4:36-40
    [41]陈乃武,韩传高.400t/h炉高温过热器管寿命诊断研究.华东电力,2000,10:39-42
    [42]胡新芳,于光强,王雪亮,等.德州发电厂2号炉水冷壁爆管原因分析.山东电力技术,2004,2:75-77
    [43]贺株莉.电厂锅炉过热器管失效分析及残余寿命预测.长沙铁道学院学报,2003,21(1):108-112
    [44]廖宏楷,杨华,马斌,等.电站锅炉四管剩余寿命评估模型的研究.动力工程,2002,22(3):1776-1780
    [45]廖远东,李耀君.高温锅炉管的失效与寿命管理.西北电力技术,2004,3:6-8
    [46] Ma Jin, Tong Zhensheng, Yu Rongsheng.A real time multi-loop model for evaporation system in power plant simulator, 2002 IEEE Region 10 Conference on Computer, Communications, Control and Power Engineering, 2002, 3(3): 1857-1860
    [47] K.YA,Davidenko. An Algorithm for Numerical Determination of Transient Processes in Supercritical Boilers.Heat Transfer, 1975, 7(5): 17-30
    [48]郑建学,陈听宽,陈学俊,等.超临界压力锅炉蒸发受热面动态数学模型及压力响应特性.工程热物理学报,1997,18(4):489-492
    [49]尹飞,陈听宽,罗毓珊,等.亚临界及近临界压力区倾斜管与垂直管中汽水沸腾传热特性比较.中国电机工程学报,2005,25(1):137-141
    [50]戚光泽,周一工,朱国桢.600MW超临界压力锅炉螺旋管圈水冷壁临界干度及干涸后传热的研究.锅炉技术,1997,12:1-4
    [51]盛春红,陈听宽,朱国桢,等.超临界压力锅炉螺旋管圈水冷壁传热及壁温研究.发电设备,1998,2:10-16
    [52]黄锦涛,陈听宽.超临界直流锅炉螺旋管圈水冷壁动态特性.锅炉技术,2000,31(1):12-17
    [53]徐二树,马岗,李恕康.500MW超临界压力直流锅炉机组实时仿真数学模型.热能动力工程,2000,15(7):405-407
    [54]徐二树,李恕康,孙志英,等.大容量超临界直流锅炉锅内过程全工况实时仿真数学模型及动态特性.动力工程,2003,23(4):2500-2504
    [55] Bowen B D,Fournier M,Grace J R.Heat transfer in membrane waterwalls.Int. J. Heat Mass Transfer,1991(34):1043-1057
    [56] Gendelev V.G., Belyakov I.I. Critical Heat Transfer in the Waterwall Tubes of Steam Boilers.1988, Thermal Engineering, 35(9):521-527
    [57] Kanzaka. Heat Transfer Characteristics of Horizontal Smooth Tube in High Pressure Region.Heat Transfer,Proceedings of the International Heat Transfer Conference, 5: 2173-2178
    [58] Hendricks. Two-Phase Flows and Heat Transfer Within Systems with Ambient Pressure Above the Thermodynamic Critical Pressure.Heat Transfer, Proceedings of the International Heat Transfer, 1986,5: 2331-2336
    [59] Iwabuchi, Makio. Prediction of Heat Transfer Coefficient and Pressure Drop in Rifled Tubing at Subcritical and Supercritical Pressure.1987: 669-676
    [60]盛春红,陈听宽.膜式水冷壁温度分布的数值计算.热能动力工程,1998,13(1):61-65
    [61]郑建学,变压运行直流锅炉水冷壁内螺纹管壁温变化规律研究.发电设备,1997,10:2-5
    [62]张志正,孙保民,徐鸿,等.膜式水冷壁特定点温度相关性的研究.动力工程,2005,25(6):805-808
    [63]王灵梅,李王斌,孟恩隆.漳泽电厂4#炉水冷壁温度场数值计算.电力学报,2000,15(1):9-12
    [64] Shchetkin, V.S. Temperature conditions of the front waterwall tubes of a BKZ-420-natural-gas-fired boiler [for CHP applications], Thermal Engineering, 2000, 47(1):35-37
    [65] Glusker B.N. Temperature Conditions of Waterwall Tubes of Supercritical Boilers when Unlosding at Variable Pressure in the Entire Steam-Water Circuit. Thermal Engineering, 1985, 32911,599-604
    [66] Taler,J., Weglowski. Monitoring of Thermal Stresses in Pressure Components of Large Steam Boilers.VGB PowerTch, 2002, 82(1): 73-78
    [67]沈玉华.600MW超临界压力锅炉50%负荷时后水冷壁超温问题探讨.中国电力,1997,30(3):33-34
    [68]戚光泽,朱国桢,周一工.600MW超临界压力锅炉螺旋管圈水冷壁壁温计算程序的研制.锅炉技术,1997,11:1-4
    [69]唐必光,刘勇,余艳芝,等.锅炉水冷壁两种壁温波动特点及其原因分析.华中理工大学学报,1999,27(8):110-112
    [70]刘勇,唐必光,熊立红,等.水冷壁管壁温度波动原因分析.热力发电,2001,(2):15-17
    [71] Shchetkin V. S . Temperature Conditions of the Front Waterwall Tubes of a BKZ-420-140NGM Natural-Gas-Fired Boiler.Thermal Engineering, 2000, 47 (1):53-37
    [72] Kholshchev V.V.Temperature conditions of Waterwall Tubes and Control of Their State.Thermal Engineering. 2000, 47(8): 699-704
    [73] Galin N.M., Lipov M.Yu. The Effect of Hydrodynamic Unsteadiness in Boiler Furnaces on Temperature Conditions of the Metal of Waterwall Tubes.Thermal Engineering, 1985,32(3): 156-157
    [74]阎维平,陈华桂.电站锅炉高温对流受热面管壁温度的校核算法.动力工程,2002,(3): 1768-1771
    [75] Glusker B.N. Temperature Conditions of Waterwall Tubes of Supercritical Boilers when Unloading at Variable Pressur in the Entire Steam-Water Circuit.Thermal Engineering, 1985,32(11), 599-604
    [76] Singh P.M., Mahmood J.Stress corrosion cracking of Type 304L stainless steel in sodium sulfide-containing caustic solutions. Corrosion, 2003, 843-850
    [77]华永明,周强泰.1025t/h直流锅炉水冷壁应力特性理论研究.锅炉技术,2000,31(4):11-15
    [78]徐通模,袁益超.超大容量超超临界锅炉的发展趋势.动力工程,2003,23(3):2363-2369
    [79]车东光,吴少华.超超临界锅炉水冷壁传热特性和温度偏差.锅炉制造,2006,5(2):1-5
    [80]黄锦涛,陈听宽.超临界直流锅炉蒸发受热面动态过程特性.西安交通大学学报,1999(9):71-75
    [81] Viswanathan R., Henry J.F . U.S . Program on Materisls Technology for Ultra-Supercritical Coal Power Plants . Journal of Materials Engineering and Performance,2005, 14(3): 281-292
    [82] Viswanathan R. , Bakker W . Materisls for Ultra Supercritical Coal Power Plants—Boiler Materials.Journal of Materials Engineering and Performance,2001, 10(1): 81-95
    [83] Bender R., Schutze M.The Role of Alloying Elements in Commercial Alloys for Resistance in Oxidizing-Chloridizing Atmospheres.Materials and Corrosion. 2003, 54: 567-586
    [84] Rezinskikh V.F. , Shkol’nikova B.E.Promising Steels for the Superheaters of Supercritical-Pressure Boilers.Thermal Tngineering. 2000,47(10):899-903
    [85] Naoi, Hisashi.Development of tubes and pipes for ultra-supercritical thermal power plant boilers.Nippon Steel Technical Report, 1993,57: 22-27
    [86]韩肇俊.ASME批准认可的第三代新型铁素体耐热钢的性能及应用.中国锅炉压力容器安全. 2005 , 21(1): 49-53
    [87]向军,刘胜荣,唐必光,等.锅炉水冷壁管故障诊断专家系统研究.华中理工大学学报,1999,27(9):33-35
    [88]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998
    [89] Petukhov B.S., Popov V.N. Theoretical calculation if Heat exchange and frictional resistance in turbulent flow in tubes of an incompressible fluid with variable physical properties. High Temperature, 1963, (l): 69-83
    [90] Krasnoshekov E.A., Protopopov V.S.Experimental study of heat exchange in carbon dioxide in pipes under supercritical conditions.High Temperature, 1966, 4(3):376-382
    [91] Jackson J.D., Fewster. J.AERE_R8158.Harwell, 1975
    [92] Swenson H.S., Carver J.R., Kakarala C.R.Heat transfer to supercritical water in smooth-bore tubes.ASME, J.of Heat Transfer, 1965, 87(4): 477-484
    [93] Yamagata K., Nishikawa K., Hasegawa S., et al.Forced convective heat transfer to supercritical water flowing in tubes.Int.J. Heat Mass Transfer, 1972, 15: 2575-2593
    [94] Miropolskii L., Shitmmsn M.E.Heat transfer to water and steam at variable specific heat(in near critical region) . Soviet Physics-Technical Physics, 1957, 2(10): 2196-2208
    [95]胡志宏.超临界和近临界压力区垂直上升及倾斜管传热特性研究:[博士学位论文] .西安:西安交通大学,2001
    [96] Miropolskiy Z.L.Heat transfer in film boiling of steam water mixture in steam generating tubes.Teploenergetika, 1963
    [97] Slaughterback D.C., Vesely W.E.Statistical regression analyses of experimental data for flow film boiling heat transfer.ASME-AICHE Heat Transfer Conference, Atlanta, 1973
    [98] Bishop A.A., Sandberg R.O., Tong L.S.Forced convection heat transfer at high pressure after the critical heat flux.ASME 65-HT-31, 1965
    [99] Herkenrath H.The heat transfer crisis for water with forced flow at high pressures, PartII.Heat transfer in the crisis region, AERE-Trans. 1970: 1129
    [100]陈听宽.两相流与传热研究.西安:西安交通大学出版社,2004
    [101]孙丹.临界压力区光管和内螺纹管不同加热方式的传热特性研究:[博士学位论文] .西安:西安交通大学,2002
    [102]林宗虎,徐通模.实用锅炉手册.北京:化学工业出版社,1999
    [103] Iwabuchi,Makio. Prediction of Heat Transfer coefficient and Pressure Drop in Rifled Tubing at Subcritical and supercritical Pressure.1987, 669-676
    [104] Masayoshi, Hori.Features of Heat Transfer Study of Two-Phase Flow in Furnace Wall Tube for Variable Pressure Operation Supercritical Once-through Steam Generator.IHI Engineering Review, 1982, 15(1): 31-38
    [105]陈听宽,罗毓珊,胡志宏,等.超临界锅炉螺旋管圈水冷壁传热特性的研究.工程热物理学报,2004,25(2):247-250
    [106]孙丹,陈听宽,罗毓珊,等.垂直上升光管内临界压力区水的传热特性研究.西安交通大学学报,2001,35(1):10-14
    [107]杨冬,李斌,陈听宽.核态沸腾存在时垂直管内环状流换热数值计算.核动力工程,2004,25(5):408-411
    [108]周云龙,孙斌,陈听宽,等.螺旋管中汽-水两相流强制对流沸腾传热研究.核科学与工程,2002,22(3):217-219
    [109]胡志宏,陈听宽,孙丹.近邻界及超临界压力区垂直光管和内螺纹管传热特性的实验研究.热能动力工程,2001,16(5):267-270
    [110]陈听宽,徐进良,罗毓珊.两相临界流实验研究.工程热物理学报,2002,23(5):623-626
    [111]华永明,周强泰,丁昭,等.1025t/h直流锅炉水冷壁水动力特性理论研究.锅炉技术,1998,3:9-13
    [112]樊泉桂.亚临界与超临界参数锅炉水动力特性的分析.华北电力大学学报,1999,26(4):33-38
    [113]樊泉桂.超临界锅炉水冷壁工质温度的控制.动力工程,2006,26(1):38-41
    [114]张志正,孙保民,徐鸿,等.沁北发电厂超临界压力电站锅炉水冷壁截面温度场分析.中国电机工程学报,2006,26(7):25-28
    [115]周校先.工程中的非稳态温度场和热应力场问题的分析.华南理工大学学报,1995,23(4):87-92
    [116]李朝阳,张艳春.燃机涡轮盘三维瞬态温度及应力计算分析.动力工程,2006,26(2):211-214
    [117]哈林登.计算电磁场的矩量法.北京:国防工业出版社,1981.22-23
    [118] Jones D S.A critique of the variational method in scattering problems.IRE Trans.,1956:297-301
    [119]范谨,贾鸿祥,陈听宽.膜式水冷壁温度场解析.热力发电,1996,3:10-17
    [120]范谨,贾鸿祥,陈听宽,等.电站锅炉膜式水冷壁鳍片管温度场、热应力场分析.西安交通大学学报,1997,31(5):75-79
    [121]盛春红,陈听宽.矩形鳍片膜式水冷壁辐射角系数的求解.锅炉技术,1997,8:8-11
    [122]周一工.膜式水冷壁表面热流密度分布的精确解.锅炉技术,1991,1:1-5
    [123]华永明,周强泰,丁昭,等.1025t/h直流锅炉水冷壁壁温特性理论研究.锅炉技术,1999,30(1):8-13
    [124]程乐鸣,施正伦,骆仲泱,等.循环流化床锅炉膜式水冷壁管与鳍片上的温度分布.动力工程,2002,22(2):1674-1680
    [125]李志宏,刘文铁,刘石.膜式水冷壁壁温影响因素的数值分析.热能动力工程,2003,18(3):173-176
    [126]张志正,孙保民,郭永红,等.超(超)临界压力锅炉膜式水冷壁危险点壁温在线监测方法研究.中国电机工程学报,2005,25(3):130-134
    [127]王洪跃,毕小龙,司风琪,等.USC直流炉水冷壁壁温监测有限元分析.热能动力工程,2006,21(3):303-306
    [128] B.弗里曼特.应用数学原理与方法.北京:高等教育出版社.1958.1-2
    [129]黄学良,胡敏强,周鹗.电机三维温度场新的有限元计算模型.中国电机工程学报,1998,18(2):78-82.
    [130]张志明,徐鸿,郑善和,等.一种基于有限体积法计算汽轮机汽缸轴向膨胀的新方法.中国电机工程学报,2006,26(11):47-50
    [131]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1986.42-43
    [132] Moaveni S.有限元分析——ANSYS理论与应用.北京:电子工业出版社,2004.293-295
    [133]阎维平,欧宗现.电站炉膛分区段改进热力计算方法.锅炉技术,2007(5):11-14
    [134]锅炉机组热力计算标准方法,1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700