近水平管内低含液量气—油—水三相流动模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油天然气工业中,低含液量气-油-水三相流动广泛存在于湿气管道中,是三相流动的典型现象之一。湿气输送管道内经常含有水和碳氢化合物冷凝液,这些液体会诱发低含液量三相流动,少量冷凝液的存在会导致沿管路的压降明显增加。工程实际中的截面含液率是决定清管频率和设计接收装置的重要因素。对于选择合适的管道尺寸和材料,精确地进行压力梯度预测也是非常重要的。因此,在湿气输送过程中,研究低含液量气-油-水三相流动的流动特性是非常重要的。
     对于近水平管内低含液量气-油-水三相流动,本文建立了以气相、油相以及水相动量方程为基础的控制方程,并对控制方程的各个计算参数,给出相应的计算闭合关系式,从而建立完整的近水平管内低含液量气-油-水三相流动模型。根据近水平管内低含液量气-油-水三相流型实验观察结果,分析各个流型的流动特性,从而提出了适用于低含液量的三相流型划分方法,以气-液流型为主,对油-水流型进行划分,并给出相应的判断准则。
     结合实验数据,根据已建立的近水平管内低含液量气-油-水三相流动模型,对闭合关系式进行优化选择,主要进行了气-壁摩擦因子、气-油界面摩擦因子以及气-液界面形状的筛选或优化。通过对比分析,本文建立了气-油界面摩擦因子组合关系式,并对于气-液水平界面适用范围给出相应的结论。
     通过将计算模型与实验数据进行对比分析,对本文所提出来的流型判断准则进行验证分析,并分析流型的分布范围。同时,对于计算模型得到的截面含液率以及压力梯度进行了验证分析。由对比结果可以看出,流型判断较准,计算模型的压力梯度计算精度较高,偏差较小,说明本文模型的适用性较好。
     本文在模型研究的基础上,对普光气田集输管网的运行数据进行了分析预测,根据普光气田清管的前半个周期内的管线运行参数进行了验证分析,从而对于计算模型的现场应用效果给出相应的评价,说明了本文所建立的计算模型在实际应用中具有较好的可靠性,可以较好的应用于实际工程的压降预测。
Low-liquid-loading gas-oil-water flow, which exists widely in wet gas pipelines, is one of the typical occurrences of three-phase flow in the oil and gas industry. Wet gas transportation pipelines often contain water and hydrocarbon condensates, which lead to the occurrence of low-liquid-loading three-phase flow. However, small amounts of condensates can lead to a significant increase in pressure drop along a pipeline. In-situ liquid holdups are important factors for determining pigging frequency and designing receiving facilities. Accurate pressure gradient prediction is of great importance to select the right pipe size and material. Therefore, understanding of the flow characteristics of low-liquid-loading gas-oil- water flow is very important in the transportation of wet gas.
     For the low-liquid-loading gas-oil-water three phase flow in near horizontal pipes, this paper established a governing equations, based on the gas-oil-water momentum equation, for the calculation parametes of the governing equations, this paper gives the corresponding close relationships, so as to establish a complete model for the low-liquid-loading gas-oil-water three phase flow in near-horizontal pipes. As to the experimental observations for the low- liquid-loading gas-oil-water three phase flowpattern in near-horizontal pipes, analyze the flow characteristics of each flowpattern, which is proposed to divided flowpattern for the low- liquid-loading gas-oil-water three phase flow, by the gas-liquid flow type main, divided the oil-water flowpattern, and the corresponding criterion is given.
     With the experimental data, according to the established model for the low-liquid- loading gas-oil-water three phase flow in near-horizontal pipes to optimize the relationship of closure options, mainly for the gas-wall friction factor, gas–oil interfacial friction factor and gas-liquid interface shape screening or optimization. By comparative analysis, this paper established a new gas-oil interfacial friction factor combination relationship, while, for the application of gas-liquid interface shape gives the appropriate conclusions.
     By the comparative analysis of calculation model and experimental data, verify the proposed flowpattern criterion and analyze the distribution area of flowpattern. Model obtained liquid holdup and pressure gradient is validated. From the comparasive results, the model determines the flowpatterns more accurately, and the pressure gradient in etimating error is smaller, indicating the applicability of this model is well.
     In this paper, based on the model studies, but also analysis the operating parameters for the PuGuang gas field gathering and transportation pipelines, and according to the operating parameters of the first half of pigging cycle, which is validated, then the effect of field application for the calculate model are given the appropriate assessment, to illustrate the established model in practical applications has good reliability, can better predict the pressure drop for the practical engine.
引文
[1]李玉星,冯叔初.湿天然气管输瞬态模拟及调峰技术研究[J] .天然气工业,2000.7,20(4):86~90
    [2]李玉星,冯叔初.湿天然气输送管道流体组成分布规律研究.油气储运[J],1998,17(2):1~5
    [3] Hart J, Hamersma P J And Fortuin J M H. Correlations Predicting Frictional Pressure Drop and Liquid Holdup During Horizontal gas liquid Pipe Flow With a Small Liquid Holdup [J]. Int, Journal of Multiphase Flow, Vol. 15, No. 6, 1989
    [4]张友波,李长俊,杨静.湿天然气管路持液率计算方法研究[J].新疆石油科技,2005,15(1):8~11
    [5]肖荣鸽,郭雄昂等.低液量水平管气液分层流摩阻压降的计算[J].油气储运,2006,25 (10) :38~41
    [6]肖荣鸽,王立洋,邓志安等.凝析天然气管道分层流动相间水力摩阻系数计算式评价[J].西安石油大学学报(自然科学版),2006.5,12(3):55~57
    [7]韩炜.管道气液两相流动技术研究[D].西南石油学院,2004
    [8]李玉星,冯叔初.湿天然气管瞬变流模型及数值模拟技术研究[J].油气储运,1998,17(5):11~17
    [9]曹学文,梁法春等.水平管气液分层流压力梯度和含气率计算方法研究[J].西安交通大学学报,第37卷第5期,2003.5:444~446
    [10]喻西崇,赵金洲等.起伏多相流管路持液率计算方法研究[J].西南石油学院学报,2000(3):94~97
    [11] Adewumi M A. Compositional Multiphase Hydrodynamic Modeling of Gas/gas- condensate Dispersed Flow in Gas Pipelines [J]. SPEPE,Feb 1990
    [12] Bendiksen, K. et al. The Dynamic Two Phase Flow Model OLGA, Theory and Application [J]. SPE Production Engineering, May 1991:171~180
    [13] Taitel, Y & Dukler, A E. A Model for Predicting Flow Regine Transitions in Horizontal and Near Horizontal Gas-Liquid Flow [J]. AICHEJ, 1976, 22, Ho1:47~55
    [14] Parviz Mehdizadeh, Jack Marrelli, Ven C.Ting. Wet Gas Metering. Trends in Applications and Technical Developments [J]. SPE 77351, 2003
    [15] Chen X T, Cai X D, Brill J P. Gas-liquid Stratified-wavy Flow in Horizontal Pipelines [J]. Journal of Energy Resources Technology, 1997, 119 (4)
    [16] Kowaski J E. Wall and Interfacial Shear Stress in Stratified Flow in a Horizontal Pipe. AIChE J, 1987, 33
    [17] Shoham O and Taitel Y. Stratified Turbulent-based Estimate of Interfacial Resistance and Roughness for Internal, Fully-developed, Stratified, Two-phase Horizontal Flow [J]. Multiphase Flow, 1983, 9 (1)
    [18] XiaoJ J and Shoham O, Evaluation of Interfacial Friction Factor Prediction Methods for Gas-liquid Stratified Flow [J]. SPE 22765
    [19] Andritsos N and Hanratty L N T J. Influence of Interfacial Waves in Stratified gas-liquid Flow in Pipes [J]. AIChE J, 1987, 33
    [20] Mukherjee, Bril. Liquid Holdup Correlations for Incline Two-Phase Flow [J]. JPT, 1983(5):1003~1008
    [21] Minami, Brill. Liquid Holdup in Wet-Gas Pipeline [J]. SPE14535
    [22] Xiao J J, Shpham 0. Brill J P. A Comprehensive Mechanistic Model for Two-Phase Flow in Pipelines[J]. SPE20631
    [23]G H. Abdul-Mjeed. Liquid Holdup in Horizontal Two-Phase Gas-Liquid Flow [J]. JPSE, 1996(15):271-280
    [24] Loekhart, R. W. &Martinelli, R. C.. Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes[J]. Chem. Eng. Prog. 1949(45):39
    [25] Hughmark, G. A. Holdup in Gas-Liquid Flow[J]. Chem. Eng. Prog. 1962(58):62
    [26] Eaton B A. The Prediction of Flow Pattern, Liquid Holdup and Pressure Losses Occurring During Continuous Two-Phase in Horizontal Pipelines[J]. JPT, 1967(6):815~923
    [27] Duns, H & Ros, N. Vertical Flow of Gas and Liquid Mixtures in Wells[J]. Proc. , Sixth Word Pet. Cong, Frankfurt, 1963, 451
    [28]McCain, W. D.. The Properties of Petroleum Fluids [J]. Petroleum Publishing Company .1973
    [29] Meng, W.. Low-Liquid Loading Gas-Liquid Two-Phase Flow in Near Horizontal Pipes [D]. The University of Tulsa, Tulsa, Oklahoma, 1999
    [30] Wallis, G. B.. One Dimensional Two-Phase Flow [J]. McGraw-Hill Book Co., New York City (1969)
    [31] Grolman, E.. Gas-Liquid Flow with Low Liquid Loading in Slightly Inclined Pipes [D]. U. Amsterdam, Neitherland (1994)
    [32] Davis, J. T.. Turbulent Phenomena [J]. Academic Press, 1972
    [33] Manabe, R, Wang, Q., Zhang, H. Q., Sarica, C. and Brill, J. P.. A Mechanistic Heat Transfer Model for Horizontal Two-Phase Flow. Proceedings of the 4th North American Conference on Multiphase Technology, Banff, Canada, June 3-4, 2004
    [34] Yongqian Fan. An Investigation of Low Liquid Loading Gas-Liquid Stratified Flow in Near-Horizontal Pipes[D]. The university of TULSA, 2005
    [35] Hongkun Dong. An Experimental Study of Low Liquid Loading Gas-Oil- Water Flow in Horizontal Pipes[D]. The university of TULSA, 2007
    [36] Weihong Meng, Xuanzheng T, Chen et al. Experimental Study of Low-Liquid- Loading Gas-Liquid Flow in Near-Horizontal Pipes [J]. Society of Petroleum Engineers, 2001.11
    [37]穆剑,何敏,任佳等.国内外天然气湿气计量技术和相关技术标准现状及发展浅析[J].中国计量,2009.5:73~74
    [38]宋江卫,陈旭,陆新东.湿天然气计量方法及其分析[J].天然气技术,2008,2(3):46~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700