氧化镍纳米材料的合成和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化镍在电学、磁学和催化学方面有独特的性质,广泛应用于催化领域、燃料电池领域、磁性材料领域和气体传感器领域,是一种很有应用前景的功能性无机材料。氧化镍纳米材料的合成及其形貌结构与性能之间的关系是氧化镍纳米材料研究的两个主要方面,制备性能良好的氧化镍纳米材料并弄清其形貌结构与性能之间的关系对氧化镍纳米材料的进一步发展有极其重要的理论和实际意义。本文围绕纳米氧化镍的制备和性能研究,开发出两种乙二醇体系和乙醇-油胺体系制备氧化镍纳米材料的新方法,成功制备了纳米氧化镍微球和纳米氧化镍片体材料,并重点考察了表面形貌对材料性能的影响。
     本文发展了一种在乙二醇溶剂体系中合成制备纳米氧化镍花状微球的新方法。制备出的纳米氧化镍花状微球具有尺寸大小均匀,分散度良好,比表面积大和多孔径分布的特点。通过改变原料的浓度和pH值可实现对纳米氧化镍花状微球的形貌和表面结构进行调控,得到了三种形貌尺寸均一、表面结构不同、比表面积分别为59.9 m2 g-1、50.2 m2 g-1和15.1 m2 g-1的纳米花状微球。并在此基础上采用CO催化氧化反应为模型反应着重考察了花状表面形貌对催化性能的影响。与传统纳米氧化镍颗粒相比,该法制备的纳米氧化镍花状微球具有更好的催化活性,说明其花状的表面形貌和其多孔分布的特点有利于提高其催化性能;不同的纳米氧化镍花状微球,其催化性能随着比表面积的增大有提高的趋势。
     在上述工作基础上,开发了一种基于乙醇-油胺体系合成氧化镍纳米空心微球和片体的新方法。水的加入能引导前驱体氢氧化镍的晶相和形貌转变,从而实现对氧化镍纳米花状材料和片状材料的可控制备。在不加水的情况下得到为α-Ni(OH)2纳米空心微球,在体系中引入少量的水,可得到β-Ni(OH)2纳米片。这种形貌结构土的转变主要由α-Ni(OH)2和β-Ni(OH)2晶体结构上的差异引起。相比乙二醇体系制备的氧化镍纳米实心花状微球,该法制备的为空心微球,具有更大的比表面积(100.2m2/g)。纳米氧化镍空心微球的催化CO氧化性能优于纳米氧化镍片体,说明其花状空心结构具有较好的催化活性。氧化镍是一种重要的电极材料,本文对其电化学性能进行了初步的考察,发现纳米氧化镍空心微球比氧化镍纳米片具有更好的的电化学性能。
Nano oxidation nickel is a kind of very promising functional inorganic materials, widely used in catalysis、fuel battery domin、magnetic materials and gas sensors because of its unique properties in electrical、magnetic and catalytic chemistry aspects. To preparation nickel oxide nanomaterials having the good performance and to make clear the relationship between the morphology structure and properties having the important theory and practical significance to the further development of the nickel oxide nanomaterials. In this paper we developed two new methods of preparation nickel oxide nanomaterials, obtained nano oxidation nickel microspheres and nanosheets in glycol system and ethanol-oil amine system, and emphasized investigate the surface morphology on the materials properties.
     This experimental work developed a new method to synthesis flower-like nanometer oxidation nickel microspheres,which have the features of uniform size、good dispersion、high specific surface area and much pore size distribution, in glycol solvent system. Emphasized the regulation of the surface morphology, and the influence on the performance of the surface morphology. Three kinds of oxidation nickel flower-like nanospheres with uniform size and different surface morphology can be obtained by chaging the concentration of raw material and the pH of solution. Their special surface area were 59.9m2/g、50.2m2/g and 15.1m2/g, respectively. The result of CO oxidation reaction show that the catalytic activity of flower-like nano oxidation nickel microspheres is better than that of traditional oxidation nickel nanoparticles for its novel morphology structure、high specific surface and much pore size distribution. For different flower-like microspheres, the catalytic activity have the trend to improve with the increase of the specific surface area.
     Another method to synthesis empty oxidation nickel nanospheres and nanosheets in oil amine system was developed on the basis of above work. We found water plays a very mportant role in this synthetic process. The empty oxidation nickel nanospheres, whose precursor is a-Ni(OH)2, were obtained without adding water, and the oxidation nickel nanosheets, whose precursor isβ-Ni(OH)2, were obtained wlile adding water. Compared withβ-Ni(OH)2 crystal,α-Ni(OH)2 has worse ordered degree、higher lamellar spacing and adsorption more water and organic molecules. Compared with the previous method, the empty nanospheres synthesized in this method has higher specific surface, which could reach 100.2 m2/g. The empty nanospheres have better catalytic properties and electrochemical properties, because them have higher specific surface area than the nanosheets.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001。
    [2]王世敏,许祖勋,傅晶,纳米材料制备技术[M],化学工业出版社,2001.
    [3]A. Henglein. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev,1989,89(8),1861-1873.
    [4]R. Kubo. Electronic Properties of Metallic Fine Particles[J]. I., J Phys Soc Jpn,1962, 17,975-986
    [5]H. Sao, T. Minami, S. Takata, T. Yamada. Transparent conducting p-type NiO thin films prepared by magnetron sputtering[J]. Thin Solid Films,1993,236,27-31.
    [6]M. M. Natile, A. Glisenti, Chem. Mater. New NiO/Co3O4 and Fe2O3/Co3O4 Nanocomposite Catalysts:Synthesis and Characterization[J].2003,15,2502.
    [7]C. H. Chen, J. Liu, M. E. Stoll, G. Henriksen, D. R. Vissers, K. Amine. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. J. Power Sources,2004,128,278.
    [8]I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek. Preparation of nickel oxide thin films for gas sensors applications[J].Sensors and Actuators B,1999,57,147.
    [9]H. Kamal, E. K. Elmaghraby, S. A. Ali, K. Abdel-Hady. The electrochromic behavior of nickel oxide films sprayed at different preparative conditions[J].J. Crystal Growth 2004, 262,424.
    [10]T. Seto, H. Akinaga, F. Talano, K. koga, T. Orii, M. Hirasawa. Magnetic Properties of Monodispersed Ni/NiO Core-Shell Nanoparticles[J].J. Phys. Chem. B,2005,109,13403.
    [11]P. Lunkenheimer.Correlated barrier hopping in NiO films[J]. A. Loidl, Phys. Rev. B,1991, 44,5927.
    [12]R. C. Makkus, K. Hemmes, J. H. W. D. Wit. A Comparative Study of NiO(Li),LiFeo2, and LiCoO2 Porous Cathodes for Molten Carbonate Fuel Cells[J]. J. Electrochem. Soc.1994, 141,3429.
    [13]X. Wang, J. M. Song, L. S. Gao, J. Y. Jin, H. G. Zheng, Z. D. Zhang. Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres[J]. Nanotechnology,2005,16,37.
    [14]Y. M. Lu, W. S. Hwang, J. S. Yang, H. C. Chuang. Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering[J]. Thin Solid Films,2002,420-421,54.
    [15]K. Nakaoka, J. Ueyama, K. Ogura. Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films[J]. J. Electroanal. Chem.2004,571,93.
    [16]Y. Lin, T. Xie, B. C. Cheng, B. Y. Geng, L. D. Zhang. Ordered Nickel Oxide Nanowire Arrays and Their Optical Absorption Proerties[J]. Chem. Phys. Lett.2003,380,521-525.
    [17]Y. R. Park, K. J. Kim. Sol-gel preparation and optical characterization of NiO and Nil-xZnxO thin films[J]. J. Crystal Growth,2003,258,380.
    [18]Zhao, B.; Ke, X. K.; Bao, J. H.; Wang, C. L.; Dong, L.; Chen, Y. W.; Chen, H. L. Synthesis of Flower-like NiO and Effects of Morphology on Its Catalytic Properties[J]. J. Phys. Chem. C 2009,113,14440.
    [19]C. F. Zhang, J. Zhan, J. H. Wu, C. J. Li, Trans. Nonferrous Met. Soc. China,2004,14,713.
    [20]C. K. Xu, G. D. Xu, G. H. Wang, J. Mater. Sci.2002,38,779.
    [21]黄凯,郭学益,张多默,固相诱导沉淀法制备单分散NiO微粒[J],材料科学2010,02,004。
    [22]赵金博,吴莉莉,吴佑实,邹科,傅佩珍,六边形多孔NiO纳米片的合成与表征[J],人工晶体学报,2010,06,1451.
    [23]Ni, X. M.; Zhang, Y. F.; Tian, D. Y.; Zheng, H. G.; Wang, X. W. Synthesis and characterization of hierarchical NiO nanoflowers with porous structure[J]. J. Cryst. Growth 2007,306,418.
    [24]宋彩霞,于莹,王德宝,Ni (OH)2和NiO空心球壳的纳米构筑[J],青岛科技大学学报,2007,06,0471.
    [25]潘霞,吴也凡,罗凌虹,卷心菜型的NiO为载体的钛酸钡光催化剂的性能研究[J],陶瓷学报,2010,01,0025.
    [26]韦斐,吴也凡,罗凌虹,甲醇-水介质中NiO纳米片自组装体的制备与表征[J],陶瓷学报,2009,02,0213.
    [27]王兴磊,何宽新,张校刚,溶剂热法合成蜂巢状氧化镍及其电化学电容性能[J],无机化学学报,2007,09,1533.
    [28]李平云,操振华,陆海鸣,孟祥康,纳米金属Ni的饱和磁化强度和居里温度的尺寸依赖效应[J],南京大学学报,2009,03,45.
    [29]Haruta M, Yamada N, kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. J, catal, 1989,115(2),301-309.
    [30]魏永刚,王华,张翅远,选择性氧化甲烷制取合成气的镍基氧载体性能研究[J],天然气化工,2010,03,47.
    [31]徐爱菊,林勤,照日格图,张宇,NiO/高炉渣催化剂的丙烷氧化脱氢性能[J],稀有金属材料与工程,2009,04,099.
    [32]石随林,张灵振,黄红军,NiO/BaTiO3陶瓷复合材料制备与介电性能研究[J],稀有金属材料与工程,2007,08,0428.
    [33]罗琨琳,贾贺峰,吴贤熙,添加纳米NiO对NiFe2O4金属陶瓷电导率的影响[J],贵州工业大学学报,2008,03,0042.
    [34]李学良,郭丽彬,纳米NiO作催化剂的扣式锂-氧电池的性能[J],电池,2010,10,0276.
    [35]Liu K C, Anderson M A. Porous nickel oxide/nickel film for electrochemical capacitors[J]. J. Electrochem. Materials,2001,51(4):325-330.
    [36]张红丹,邹小平,程进,碳纳米管制备及其生长机制研究[J],维纳电子技术,2007(7/8),60-62.
    [37]李佳言,张金龙等,氧化镍薄膜气体传感器性能提升[J],功能材料与器件学报.2008,04,0394.
    [38]W. J. An, E. Thimsen, P. Biswas. Aerosol-Chemical Vapor Deposition Method For Synthesis of Nanostructred Metal Oxide Thin Films With Controlled Morphology[J]. J. Phys. Chem. Lett.2010,1,249-253.
    [39]Xiang L, Deng X Y, Jin Y. Experimental study on Synthesis of NiO nano-particals[J]. Scripta materilia,2004,47(4):219-224.
    [40]Xing W, Li F, Yan Z,et al. Synthesis and petrochemical properties of mesoporous nickel oxide[J]. Journal of Power Sources,2004,134(2):324-330.
    [41]杨俊,研绍宏,张艳红,袁孝友,均相沉淀法制备NiO纳米粒子及磁性研究[J],纳米科技,2008,02(04),0027.
    [42]刘爱元,张溪文,韩高荣,溶胶凝胶旋涂法制备NiO薄膜及其电致变色性能[J],材料科学与工程学报,2010,06-0896-05.
    [43]景茂祥等.柠檬酸盐凝胶法制备纳米NiO的研究.无机材料学报,2005,19(2):289-294.
    [44]湛菁,邬建辉,张传福,岳建峰.形貌控制合成纤维状氧化镍粉末新型前躯体[J].矿冶工程,2010,02-0064-06.
    [45]D. B. Kuang, B. X. Lei, Y. P. Pan, X. Y. Yu, C. Y. Su. Fabrication of Novel Hierarchical β-Ni(OH)2 and NiO Microsheres via an Easy Hydrothermal Process[J]. J. Phys. Chem.C2009,113,5508-5513.
    [46]P. Justin, S. K. Meher, G. R. Rao, Tuning of Capacitance Behavior of NiO Using Anionic, Cationia, and Nonionic Surfactants by Hydrothermal Synthesis[J]. J. Phys. Chem.C 2010,114,5203-5210.
    [47]L. X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, W. W. Wang, Hierarchical β-Ni(OH)2 and NiO Carnations Assembled from Nanosheet Building Blocks[J], Crystal Growth & Design,2007,12,2716-2719.
    [48]L. P. Xu, Y. S. Ding, C. H. Chen, L. L. Zhao, C. Rimkus, R. Joesten, S. L. Suib,3D Flowerlike a-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method[J], Chem. Mater.2008,20,308-316.
    [49]Han D Y, Yang H Y, Shen C B, et al. Synthesis and size control of NiO nanoparticle by water-in-oil microemulion[J]. Powde Technalogy,2004,147(1-3):113-116.
    [50]段浩,刘开宇,张莹等,微乳法制备无定形NiO及其电化学电容行为[J],无机化学学报,2009,02,243-248.
    [51]X. F. Song, L. Gao. Facile Synthesis and Hierarchiral Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties [J]. J. Phys. Chem. C2008,112, 15299-15305.
    [52]X. Wang, L. J. Yu, P. Hu, F. L. Yuan, Synthesis of Single-Crystalline Hollow Octahedral NiO[J], Crystal Growth & Design,2007,7(12):2415-2418.
    [53]汤宏伟,王蒋亮,常照荣等,溶胶-凝胶模板法制备氧化镍纳米线[J],表面技术,2007,04,0015-02.
    [54]刘兰,聂福德,曾贵玉等,超音速气流粉碎F NiO纳米棒的低温固相制备[J],应用化学,2010,04-0454-04.
    [55]张茂林等,固相反应合成NiO-ZnO纳米复合光催化剂[J],现代化工,2010,10-040-03.
    [56]崔学军,李国军,任瑞铭,高分子网络微区沉淀法制备纳米NiO粉体[J],稀有金属材料与工程,2007,08-0076-04.
    [57]王少飞,施利毅等,低共熔化合物辅助化学沉淀法制备NiO纳米晶体[J],化工新型材料,2006,34(5),13.
    [58]王健,邓小芝等,熔盐法合成NiO纳米微晶[J],无机化学学报,2006,10-1874-05.
    [59]董强,姚李,鲍时萍,微波辅助均相沉淀法连续反应制备NiO-SDC粉体[J],合肥学院学报,2009,03-0073-03.
    [60]魏智强,汪宝珍,闫晓燕等,直流电弧等离子体制备NiO包覆Ni纳米颗粒[J],中国有色金属学报,2009,11-2038-06.
    [61]养晓红等,直流电弧等离子体制备NiO纳米颗粒研究[J],人工晶体学报,2010,03-0771-05.
    [62]Xie, T.; Li, S.; Wang, W. B.; Peng, Q.; Li, Y. D. Nucleation and Growth of BaFxCL2-x Nanorods[J]. Chem. Eur. J.2008,14,9730-9735.
    [63]Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and Applications of Supramole cular-Templated Mesoporous Materials[J]. Angew. Chem., Int. Ed.1999,38,56-77.
    [64]Boschloo, G.; Hagfeldt, A. Spectroclectrochemistry of Nanostructured NiO[J]. J. Phys. Chem. B 2001,105,3039-3044.
    [65]Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. NiO nanorings and their unexpected catalytic property for CO oxidation[J]. Nanotechnology 2006,17,979-983.
    [66]Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J].J. Catal.2005,229,206-212.
    [67]Fuertes, A. B. A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template[J].J. Phys. Chem. Solids 2005,66,741-747.
    [68]Zhang, Y.; Liang, H.; Gao, X. Y.; Liu, Y. Three-dimensionally ordered macro-porous CuO-CeO2 used for preferential oxidation of carbon monoxide in hydrogen-rich gases[J]. Catal. Commun.2009,10,1432-1436.
    [69]P. Li, C. Y. Nan, Z. Wei, J. Lu, Q. Peng, Y. D. Li, Mn3O4 Nanocrystals:Facile Synthesis, Controlled Assembly, and Application[J].Chem. Mater.2010,22,4232-4236.
    [70]C. M. Shen, C. Hui, T. Z. Yang, C. W. Xiao, J. F. Tian, L. H. Bao, S. T. Chen, H. Ding, H. J. Gao[J]. Chem. Mater.2008,20,6939-6944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700