Ag-28.1Cu-xSb共晶合金的过冷凝固
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深过冷是大体积液态金属实现快速凝固的唯一途径,广泛用于金属非平衡凝固理论研究和块体非平衡材料的制备。在考察共晶合金凝固组织和熔体过冷度之间关系的过程中研究者发现,原本在小过冷度下以耦合生长方式凝固的共晶合金在大过冷度下以离异生长方式进行凝固,并存在规则层片共晶向反常共晶组织的转变。对于这样一些凝固现象产生的原因,至今仍存在较大的争议。
     Ag-28.1wt.% Cu共晶是极少数由端部固溶体构成的共晶合金体系,共晶两相成分差别大,凝固过程中溶质分凝显著,本实验选择该合金为研究对象,可望在揭示新凝固现象的同时,完善对已有问题的认识。鉴于此,本文用熔融玻璃净化法和循环过热法将Ag-28.1wt.% Cu(x=0)共晶合金过冷至不同过冷度,研究了其凝固行为及组织形成机制。并通过向Ag-28.1wt.% Cu共晶合金中分别添加0.5和1wt.% Sb(x=0.5,1),研究了共晶凝固界面在第三组元扩散和热扩散联合作用下在过冷熔体中的界面形态演化规律及Sb对Ag-28.1wt.% Cu共晶合金过冷凝固的组织和生长速度等的影响。获得了以下主要研究成果:
     在过冷共晶LZ(Li-Zhou)理论模型的基础上,讨论了溶质截留对过冷共晶生长的影响。与LZ模型相比,溶质截留使共晶生长速度增大,层片间距和共晶枝晶尖端半径减小,而且随着过冷度的增大,生长速度增加越显著。通过实验测试Ag-Cu共晶生长速度,验证了考虑溶质截留后理论模型的正确性,说明当平衡溶质分配系数小时,过冷共晶生长理论模型中应该考虑溶质截留效应。
     在实验所得到的过冷度范围内(≤100 K),Ag-28.1wt.%Cu共晶合金始终以层片耦合生长方式凝固。其中当过冷度小于临界值76 K时,层片共晶从试样表面形核点处向外以胞状形态生长,凝固后的试样中存在三种微观组织区域:形核点附近的反常共晶区,围绕反常共晶组织的胞状层片共晶区,试样末端的等轴层片共晶区。Ag-28.1wt.%Cu共晶合金中长的共晶线(两个共晶相成分之差)和合金熔体大的热扩散系数是导致共晶胞状生长发生的原因。分析表明,形核点附近非平衡凝固条件下形成的层片共晶组织处于较高的溶质过饱和状态,再辉过程中部分被重熔,随后熟化为反常共晶组织。柱状晶区中最细层片间距沿生长方向随离开形核点距离的增加而增加,表明快速凝固过程中生长速度逐渐减小,晶体进行非稳态生长,共晶合金试样中具有区域特征的微观组织特点也支持了非稳态生长这一观点。
     当过冷度等于或者大于76 K时,Ag-28.1wt.%Cu层片共晶转为以树枝状方式生长。试样凝固后的组织也不再具有分区特征。在试样内部快速凝固过程中形成的共晶枝晶因过热熔断,并于随后的慢速凝固阶段熟化,从而形成了反常共晶组织。但试样表面较好的散热条件则使该处的共晶枝晶组织能够幸存下来。在临界过冷度76 K处,伴随非稳态胞状生长向稳态共晶枝晶生长的转变,生长速度突然增大。
     第三组元Sb的添加导致了固-液界面前沿形成“成分过冷”区,但并不改变原Ag-28.1Cu共晶合金低过冷度下(<76 K)非稳态生长及高过冷度下(76 K~100 K)稳态生长的特性。然而随着Sb加入量的增大,低过冷度下界面形态发生了从胞状到胞枝状,再到不发达树枝状的转变。添加第三组元Sb后,Ag-28.1wt.% Cu共晶胞(枝)晶的尖端半径减小,生长速度增大,而且随着Sb添加量的增大,这样一些效应更为显著。加入第三组元Sb后,由于再辉度和生长速度的增大,反常共晶组织的体积分数增加,反常共晶组织中粒状晶的晶粒尺寸增大。
Deep undercooling is the only way of achieving rapid solidification of bulk liquid metals, and has been widely used in investigating the non-equilibrium solidification theory and preparing of bulk non-equilibrium materials. While studying the relationship between the solidification structure of eutectic alloys and the melt undercooling, it has been discovered that eutectic phases grow in a coupled mode at small undercoolings but in a decoupled mode at large undercoolings. The solidification far from equilibrium results in a transition from regular lamellar eutectics to anomalous eutectics. So far there are furious controversies among researchers on the causes of such solidification behaviors.
     Ag-28.1wt.% Cu eutectic alloy is one of few eutectic alloy systems composed of terminal solid solutions. The large difference in composition between the two eutectic phases leads to a considerable lateral diffusion of solute ahead of the solidification interface. Novel solidification behaviors are expected to be revealed as well as the mentioned problems can be understood deeply, if the Ag-28.1wt.% Cu eutectic is considered as a research object. Therefore, in this dissertation,the Ag-28.1wt.% Cu (x=0) eutectic alloy was undercooled by the glass fluxing technique in combination with cyclical superheating and the solidification behaviors and formation mechanism of structures were investigated. Furthermore, 0.5 and 1 wt.% Sb (x=0.5, 1) is added to the Ag-28.1wt.% Cu eutectic alloy respectively. The evolution of eutectic interface morphology with the Sb addition, and the other solidification behaviors were studied. The main research achievements are as follows:
     The effect of solute trapping on the eutectic growth of undercooled alloy melts has been investigated on the base of the LZ (Li-Zhou) eutectic growth model. It is revealed that solute trapping makes growth rate increase, and lamellar spacing and dendrite tip radius decrease. And the increase of growth rate becomes more remarkable with the increasing undercooling. By measuring the eutectic growth rate at different undercoolings, it is verified that the LZ theoretical models including solute trapping can predict the eutectic grow very well, and the solute trapping should be taken into account while analyzing eutectic growth if the equilibrium solute partition coefficients are small.
     The Ag-28.1wt.% Cu eutectic alloy melt solidifys in coupled eutectic lamellae during rapid solidification up to the largest experimental undercooling 100 K. However, when undercooling is less than a critical value of 76 K, cellular growth of lamellar eutectics from the nucleation site takes place because of the large difference in composition between two eutectic phases and the very large thermal diffusion coefficient of the liquid. Three regions of microstructures are observed in the sample. They are the anomalous eutectic region near the nucleation site that generally located at the sample surface, cellular eutectic region in the middle, and equiaxed lamellar eutectic region at the end. The primary lamellar eutectics near the nucleation site solidify under conditions far from equilibrium, and therefore are supersaturated with more solute, and then partially remelted and ripened into anomalous eutectics. With the distance along the growth direction increasing, the finest lamellar spacing across the cellular eutectics rises, indicating a gradually decreasing growth velocity of the primary eutectics. This means that the eutectic growth during rapid solidification is unsteady. Such an argument is also supported by the appearance of the three regions of microstructures.
     When undercooling is equal to or higher than 76 K, lamellar eutectics grow in a dendritic form during rapid solidification. There are no longer regional characteristics in the solidification microstructures. The significant remelting and ripening of the primary eutectic dendrites result in appearance of anomalous eutectics inside the sample. But the eutectic dendrites on the sample surfaces survive because of the better heat dissipation conditions. The transition from the unsteady cellular growth to steady eutectic dendrite growth leads to a sudden increase in recalescence rate at the critical undercooling 76 K.
     The addition of a third element Sb into the Ag-28.1wt.% Cu eutectic alloy creates an additional constitutional undercooling ahead of the solid/liquid interface, but does not change the unsteady eutectic growth at low undercoolings (<76 K), and the steady eutectic dendrite growth at high undercoolings (76 K ~ 100 K). The solidification morphology changes from a cellular into a cellular dendritic and then an undeveloped dendritic form with the increasing addition of Sb at low undercoolings. After the addition of Sb, the cell or dendrite tip of the Ag-28.1wt.% Cu eutectic is sharpened. As a result, the eutectic growth is accelerated and recalescence rate is increased. Meanwhile, the volume fraction of anomalous eutectics in the microstructure and the size of the particles in the anomalous eutectics increase because of the increasing recalescence degree and recalescence rate.
引文
[1]周尧和,胡壮麒,介万奇,凝固技术,北京:机械工业出版社, 1998.
    [2] Jones H., A perspective on the development of rapid solidification and nonequilibrium processing and its future, Materials Science and Engineering A, 2001, 304-306: 11-19.
    [3] Greer A. L., Assadi H., Rapid solidification of intermetallic compounds, Materials Science and Engineering A, 1997, 226-228: 133-141.
    [4] Li M., Yang G., Zhou Y., Effect of the metastable b.c.c phase from undercooled Fe-30 at.% Co alloy on mechanical and magnetic properties, Materials Science and Engineering A, 2000, 279 (1-2): 16-24.
    [5] Gill S. C., Zimmermann M., Kurz W., Laser resolidification of the Al-Al2Cu eutectic: the coupled zone, Acta metallurgica et materialia, 1992, 40 (11): 2895-2906.
    [6]卢博斯基博士(美国),非晶态金属合金,北京:冶金工业出版社, 1989.
    [7] Perepezko J. H., Solidification of highly supercooled liquid metals and alloys, Journal of Non-Crystalline Solids, 1993, 156-58 (pt 2): 463-472.
    [8] Perepezko J. H., Wilde G., Amorphization and alloy metastability in undercooled systems, Journal of Non-Crystalline Solids, 2000, 274 (1): 271-281.
    [9] Turnbull D., Phase changes, Solid State Physics, 1956, 3: 225-306.
    [10] Perepezko J. H., Nucleation-controlled reactions and metastable structures, Progress in Materials Science, 2004, 49 (3-4): 263-284.
    [11] Turnbull D., Rate of Nucleation in condensed systems, Journal of Chemical Physics, 1949, 17: 71-73.
    [12] Vonnegut B., Variation with temperature of the nucleation rate of supercooled liquid tin and water drops, Journal of Colloid Science, 1948, 3 (6): 563-569.
    [13] Turnbull D., Kinetics of solidification of supercooled liquid mercury droplets, Journal of Chemical Physics 1952, 20 (3): 411-424.
    [14] Turnbull D., Cech R. E., Microscopic observation of the solidification of small metal droplets, Journal of Applied Physics, 1950, 21 (8): 804-810.
    [15] Perepezko J. H., Rasmussen D. H., Discussion of "Nucleation, undercooling and homogeneous structures in rapidly solidified powders", Metallurgical and Materials Transactions A, 1978, 9 (10): 1490-1492.
    [16] Greer A. L., Nucleation and solidification studies using drop-tubes, Materials Science and Engineering A, 1994, A178 (1-2): 113-120.
    [17] Lipton J., Glicksman M. E., Kurz W., Dendritic growth into undercooled alloy melts, Materials Science and Engineering, 1984, 65 (1): 57-63.
    [18] Jansen R., Sahm P. R., Solidification under microgravity, Materials Science and Engineering, 1984, 65 (1): 199-212.
    [19] Walter H. U.,空间流体科学与空间材料科学,北京:中国科学技术出版社, 1991.
    [20] Willnecker R., Herlach D. M., Feuerbacher B., Containerless undercooling of bulk Fe-Ni melts, Applied Physics Letters, 1986, 49 (20): 1339-1341.
    [21] Abbaschian G. J., Flemings M. C., Supercooling and structure of levitation melted Fe-Ni alloys, Metallurgical Transactions A, 1983, 14 (6): 1147-1157.
    [22] Boettinger W. J., Microstructural variations in rapidly solidified alloys, Materials science and engineering, 1988, 98: 123-130.
    [23] Zheng H., Ma W., Zheng C., Guo X., Li J., Rapid solidification of undercooled monotectic alloy melts, Materials Science and Engineering A, 2003, 355 (1-2): 7-13.
    [24] Drehman A. J., Greer A. L., Turnbull D., Preparation of Electron-Transparent (111) Gold Platelets as substrates for epitaxial studies, Journal of Applied Physics, 1982, 41: 816-818.
    [25] Flemings M. C., Shiohara Y., Solidification of undercooled metals, Materials Science and Engineering, 1984, 65 (1): 157-170.
    [26] Wei B., Yang G., Zhou Y., High undercooling and rapid solidification of Ni-32.5% Sn eutectic alloy, Acta Metallurgica et Materialia, 1991, 39 (6): 1249-1258.
    [27] Herlach D. M., Non-equilibrium solidification of undercooled metallic melts, Materials Science and Engineering R: Reports, 1994, 12 (4-5): 177-272.
    [28] Powell G. L. F., Undercooling of Cu-20 wt pct Ag alloy, Transaction of the Metallurgical Society of AIME, 1969, 245 (8): 1785-1788.
    [29] Li J., Lu Y., Yang G., Zhou Y., Directional solidification of undercooled melt, Progress in Natural Science, 1997, 7 (6): 740-741.
    [30] Rutter W. J., Chalmers B., A prismatic substrucutre formed during solidification of metal, Canadian Journal of Physics, 1953, 31: 15-39.
    [31] Tiller W. A., Jackson K. A., Rutter J. W., Chalmers B., The redistribution of solute atoms during the solidification of metals, Acta Metallurgica, 1953, 1 (4): 428-437.
    [32] Mullins W. W., Sekerka R. F., Stability of planar interface during solidification of dilute binary alloy, Journal of Applied Physics, 1964, 35 (2): 444-451.
    [33] Gill S. C., Kurz W., Laser rapid solidification of AlCu alloys: banded and plane front growth, Materials Science and Engineering A, 1993, 173 (1-2): 335-338.
    [34] Trivedi R., Kurz W., Morphological stability of a planar interface under rapid solidification conditions, Acta Metallurgica, 1986, 34 (8): 1663-1670.
    [35] Ludwig A., Limit of absolute stability for crystal growth into undercooled alloy melts, Acta metallurgica et materialia, 1991, 65 (1): 57-63.
    [36]李金富,过冷Ni-Cu合金的组织形成规律及其定向凝固, [学位论文],西安,西北工业大学, 1998.
    [37] Li J., Yang G., Zhou Y., Kinetic effect of crystal growth on the absolute stability of a planar interface in undercooled melts, Materials Research Bulletin, 2000, 35 (11): 1775-1783.
    [38] Ivantsov G. P., Dokl Akad Nauk SSSR, 1947, 58: 567-569.
    [39] Horvay G., Cahn J. W., Dendritic and spheroidal growth, Acta Metallurgica, 1961, 9 (7): 695-705.
    [40] Trivedi R., Growth of dendritic needles from a supercooled melt, Acta Metallurgica,1970, 18 (3): 287-296.
    [41] Temkin D. E., Dokl Akad Nauk SSSR, 1960, 132: 1307.
    [42] Glicksman M. E., Schaefer R. J., Comments on theoretical analysis of isenthalpic solidification, Journal of Crystal Growth, 1968, 2(4): 239-242.
    [43] Trivedi R., The role of interfacial free energy and interface kinetics during the growth of precipitate plates and needles, Metallurgical Transactions, 1970, 1: 921-927.
    [44] Sekerka R. F., Application of the time-dependent theory of interface stability to an isothermal phase transformation, Journal of Physics and Chemistry of Solids, 1967, 28 (6): 983-994.
    [45] Glicksman M. E., Schaefer R. J., Ayers J. D., Dendritic growth - A test of theory, Metall Trans A, 1976, 7 A (11): 1747-1759.
    [46] Oldfield W., Materials Science and Engineering 1973, 11: 211.
    [47] Lipton J., Kurz W., Trivedi R., Rapid dendrite growth in undercooled alloys, Acta Metallurgica, 1987, 35 (4): 957-964.
    [48] Aziz M. J., Model for solute redistribution during rapid solidification, Journal of Applied Physics, 1982, 53 (2): 1158-1168.
    [49] Schleip E., Willnecker R., Herlach D. M., Goerler G. P., Measurements of ultrarapid solidification rates in greatly undercooled bulk melts with a high speed photosensing device, Materials science and engineering, 1988, 98: 39-42.
    [50] Eckler K., Herlach D. M., Measurements of dendrite growth velocities in undercooled pure Ni-melts - some new results, Materials Science and Engineering A, 1994, A178 (1-2): 159-162.
    [51] Trivedi R., Lipton J., Kurz W., Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts, Acta Metallurgica, 1987, 35 (4): 965-970.
    [52] Kurz W., Trivedi R., Solidification microstructures. Recent developments and future directions, Acta Metallurgica, 1990, 38 (1): 1-17.
    [53] Boettinger W. J., Coriell S. R., Trivedi R., In: R. Mehrabian and P. A. Parrish (eds), Rapid Solidification Processing: Principle and Technologies, Baton Rouge, LA: Claitor's, 1987.
    [54] Herlach D., Direct measurements of crystal growth velocities in undercooled melts, Materials Science and Engineering A, 1994, 179-80 (pt 1): 147-152.
    [55] Jackson K. A., Hunt J. D., Lamellar and rod eutectic growth, Transaction of the Metallurgical Society of AIME, 1966, 236: 1129-1142.
    [56] Trivedi R., Magnin P., Kurz W., Theory of eutectic growth under rapid solidification conditions, Acta Metallurgica, 1987, 35 (4): 971-980.
    [57] Kurz W., Trivedi R., Eutectic growth under rapid solidification conditions, Metallurgical transactions A, Physical metallurgy and materials science, 1991, 22 A (12): 3051-3057.
    [58] Turnbull D., Metstable structures in metallurgy, Metallurgical transactions. A, Physical metallurgy and materials science, 1981, 12 A (5): 695-708.
    [59] Li M., Kuribayashi K., Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34 (12): 2999-3008.
    [60]李金富,周尧和,界面动力学对共晶生长过程的影响,中国科学E辑, 2005, 35 (5): 449-458.
    [61] Li J. F., Zhou Y. H., Eutectic growth in bulk undercooled melts, Acta Materialia, 2005, 53 (8): 2351-2359.
    [62] Goetzinger R., Barth M., Herlach D. M., Growth of lamellar eutectic dendrites in undercooled melts, Journal of Applied Physics, 1998, 84 (3): 1643-1649.
    [63] Zhu M. F., Hong C. P., Modeling of microstructure evolution in regular eutectic growth, Physical Review B - Condensed Matter and Materials Physics, 2002, 66 (15): 1554281-1554288.
    [64] Folch R., Plapp M., Towards a quantitative phase-field model of two-phase solidification, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2003, 68 (11): 106021-106024.
    [65] Plapp M., Karma A., Eutectic colony formation: A phase-field study, Physical Review E- Statistical, Nonlinear, and Soft Matter Physics, 2002, 66 (6): 061608/1-061608/17.
    [66] Drolet F., Elder K. R., Grant M., Kosterlitz J. M., Phase-field modeling of eutectic growth, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 61 (6 B): 6705-6720.
    [67] Han X. J., Wei B., Microstructural characteristics of Ni-Sb eutectic alloys under substantial undercooling and containerless solidification conditions, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33 (4): 1221-1228.
    [68] Kattamis T. Z., Flemings M. C., Structure of undercooled Ni-Sn eutectic, Metallurgical Transactions, 1970, 1 (5): 1449-1451.
    [69] Jones B. L., Growth mechanisms in undercooled eutectics, Metallurgical Transactions, 1971, 2 (10): 2950-2951.
    [70] Goetzinger R., Barth M., Herlach D. M., Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys, Acta Materialia, 1998, 46 (5): 1647-1655.
    [71] Li J. F., Jie W. Q., Zhao S., Zhou Y. H., Structural evidences for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38 (8): 1806-1816.
    [72] Li J. F., Li X. L., Liu L., Lu S. Y., Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy, Journal of Materials Research, 2008, 23 (8): 2139-2148.
    [73] Weart H. W., Mack D. J., Eutectic solidification structures, Transaction of theMetallurgical Society of AIME, 1958, 212: 664-670.
    [74] Kraft R. W., Albright D. L., Microstructure of unidirectional solidified Al-CuAl2 eutectic, , Transaction of the Metallurgical Society of AIME, 1961, 221: 95-102.
    [75] Rinaldi M. D., Sharp R. M., Flemings M. C., Growth ternary composites from the melt - 1, Metallurgical Transactions, 1972, 3 (12): 3133-3138.
    [76] Gruzleski J. E., Winegard W. C., The plane to cell transition in the Sn-Cd eutectic, Journal of the institute of metals, 1968, 96: 304-307.
    [77] Garmong G., Directional solidification of Al-Cu-Mg monovariant alloys, Metallurgical Transactions, 1971, 2 (8): 2025-2030.
    [78] Bullock J. B., Simpson C. J., Eady J. A., Winegard W. C., Cell formation as the result of adding Cd or Sb to the Pb- Sn eutectic, Journal of the institute of metals, 1971, 99: 212-214.
    [79] Rinaldi M. D., Sharp R. M., Flemings M. C., Growth ternary composites from the melt - 2, Metallurgical Transactions, 1972, 3 (12): 3139-3148.
    [80] Chadwick G. A., Modification of lamellar eutectic structures, Journal of the Institute of Metals, 1963, 91: 298-303.
    [81] Yamauchi I., Ueyama S., Ohnaka I., Effects of Mn and Co addition on morphology of unidirectionally solidified FeSi2 eutectic alloys, Materials Science and Engineering A, 1996, 208 (1): 101-107.
    [82] Nestler B., Wheeler A. A., A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures, Physica D: Nonlinear Phenomena, 2000, 138 (1-2): 114-133.
    [83] Lewis D., Pusztai T., Granasy L., Warren J., Boettinger W., Phase-field models for eutectic solidification, JOM, 2004, 56 (4): 34-39.
    [84]胡汉起,金属凝固原理,第二版,北京:机械工业出版社, 2000.
    [85] Wei B., Herlach D. M., Dendrite growth during rapid solidification of Co-Sb alloys, Materials Science and Engineering A, 1997, 226-228: 799-803.
    [86] Wei B., Herlach D. M., Feuerbacher B., Sommer F., Dendritic and eutectic solidification of undercooled Co-Sb alloys, Acta metallurgica et materialia, 1993, 41 (6): 1801-1809.
    [87] Wei B., Herlach D. M., Sommer F., Rapid eutectic growth of undercooled metallic alloys, Journal of Materials Science Letters, 1993, 12 (22): 1774-1777.
    [88] Liu X. R., Cao C. D., Wei B., Microstructure evolution and solidification kinetics of undercooled Co-Ge eutectic alloys, Scripta Materialia, 2002, 46 (1): 13-18.
    [89] Han X., Yao W., Wei B., Microstructural evolution of rapidly solidified Co-Mo and Ni-Mo eutectic alloys, Journal of Materials Science and Technology, 2003, 19 (6): 553-556.
    [90] Wei B., Herlach D. M., Sommer F., Kurz W., Rapid dendritic and eutectic solidification of undercooled Co-Mo alloys, Materials Science and Engineering A, 1994, 181-82 (pt 2): 1150-1155.
    [91] Wei B., Herlach D. M., Sommer F., Kurz W., Rapid solidification of undercooled eutectic and monotectic alloys, Materials Science and Engineering A, 1993, A173 (1-2): 355-359.
    [92] Yao W. J., Han X. J., Wei B., Microstructural evolution during containerless rapid solidification of Ni-Mo eutectic alloys, Journal of Alloys and Compounds, 2003, 348 (1-2): 88-99.
    [93] Yao W. J., Wang N., Wei B., Containerless rapid solidification of highly undercooled Co-Si eutectic alloys, Materials Science and Engineering A, 2003, 344 (1-2): 10-19.
    [94] Li M., Nagashio K., Ishikawa T., Yoda S., Kuribayashi K., Microtexture and macrotexture formation in the containerless solidification of undercooled Ni-18.7 at.% Sn eutectic melts, Acta Materialia, 2005, 53 (3): 731-741.
    [95] Xing L. Q., Zhao D. Q., Chen X. C., Solidification of undercooled Ni-32.5 wt% Sn eutectic alloy, Journal of Materials Science, 1993, 28 (10): 2733-2737.
    [96] Li M., Nagashio K., Kuribayashi K., Reexamination of the solidification behavior ofundercooled Ni-Sn eutectic melts, Acta Materialia, 2002, 50 (12): 3239-3250.
    [97] Lu Y. P., Yang G. C., Yang C. L., Wang H. P., Zhou Y. H., Microstructural evolution of highly undercooled eutectic Ni78.6Si21.4 alloy, Acta Metallurgica Sinica (English Letters), 2006, 19 (1): 43-50.
    [98] Lu Y., Yang G., Xi Z., Wang H., Zhou Y., Directional solidification of highly undercooled eutectic Ni 78.6Si21.4 alloy, Materials Letters, 2005, 59 (12): 1558-1562.
    [99] Dutra A. T., Milenkovic S., Kiminami C. S., Santino A. M., Goncalves M. C., Caram R., Microstructure and metastable phase formation in a rapidly solidified Ni-Si eutectic alloy using a melt-spinning technique, Journal of Alloys and Compounds, 2004, 381 (1-2): 72-76.
    [100]De Castro W. B., De Lucena Maia M., Kiminami C. S., Bolfarini C., Microstructure of undercooled Pb-Sn alloys, Materials Science and Engineering A, 2001, 304-306 (1-2): 255-261.
    [101]Srivastava M., Sharma R. C., Thermodynamic analysis and phase equilibria calculations of pb-zn, sn-zn, and pb-sn-zn systems, Journal of Phase Equilibria, 1993, 14 (6): 700-709.
    [102]Walder S., Ryder P. L., Nonequilibrium solidification in undercooled melts of the alloy Ag-39.9 at. % Cu, Journal of Applied Physics, 1993, 73 (4): 1965-1970.
    [103]Subramanian P. R., Perepezko J. H., The ag-cu (silver-copper) system, Journal of Phase Equilibria, 1993, 14 (1): 62-75.
    [1] Subramanian P. R., Perepezko J. H., The ag-cu (silver-copper) system, Journal of Phase Equilibria, 1993, 14(1):62-75.
    [2] Okamoto H., Ag-Sb (silver-antimony), Journal of Phase Equilibria and Diffusion, 2007, 28(4):403.
    [3] Liu X. J., Wang C. P., Ohnuma I., Kainuma R., Ishida K., Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems, Journal of Phase Equilibria, 2000, 21(5):432-442.
    [4] Hansen M., Constitution of Binary Alloys, second ed., New York, McGraw-Hill Book Co., 1958.
    [5]杨留栓,杨根仓,周尧和,深过冷条件下均质形核的非平衡热力学探讨,材料科学与工程, 1994, 12(3):28-32.
    [6] Zheng H., Ma W., Zheng C., Guo X., Li J., Rapid solidification of undercooled monotectic alloy melts, Materials Science and Engineering A, 2003, 355(1-2):7-13.
    [7] Wei B. B., Lu Y. L., Yang G. C., Zhou Y. H., High undercooling and rapid solidification of Ni-32.5%Sn eutectic alloy, Acta Metall, 1991, 39(6):1249-1258.
    [8]郭学锋,杨根仓,玻璃净化剂组分对Cu50Ni50合金熔体过冷度稳定性的影响,中国有色金属学报, 2000, 10(1):77-80.
    [9] Walder S., Ryder P. L., Nonequilibrium solidification in undercooled melts of the alloy Ag-39.9 at. % Cu, Journal of Applied Physics, 1993, 73(4):1965-1970.
    [1] Jackson K. A., Hunt J. D., Lamellar and rod eutectic growth, Transaction of the Metallurgical Society of AIME, 1966, 236:1129-1142.
    [2] Trivedi R., Magnin P., Kurz W., Theory of eutectic growth under rapid solidification conditions, Acta Metallurgica, 1987, 35(4):971-980.
    [3]李金富,周尧和,界面动力学对共晶生长过程的影响,中国科学E辑, 2005, 35(5):449-458.
    [4] Kurz W., Trivedi R., Eutectic growth under rapid solidification conditions, Metallurgical transactions A, Physical metallurgy and materials science, 1991, 22A (12):3051-3057.
    [5] Li J. F., Zhou Y. H., Eutectic growth in bulk undercooled melts, Acta Materialia, 2005, 53(8):2351-2359.
    [6] Boettinger W. J., Coriell S. R., Sekerka R. F., Mechanisms of microsegregation-free solidification, Materials Science and Engineering, 1984, 65(1):27-36.
    [7] Baker J. C., Cahn J. W., in: Solidification, ASM, Metals Park, OH: 1971.
    [8] Wood R. F., Model for nonequilibrium segregation during pulsed laser annealing, Applied Physics Letters, 1980, 37(3):302-304.
    [9] Cahn J. W., Corciel S. R., Boettinger W. J., in: Laser and Electron Beam Processing of Materials (Ed.: C. W. White and P. S. Peerey), Academic, NY:1980.
    [10] Aziz M. J., Model for solute redistribution during rapid solidification, Journal of Applied Physics, 1982, 53(2):1158-1168.
    [11] Smith P. M., Aziz M. J., Solute trapping in aluminum alloys, Acta Metallurgica et Materialia, 1994, 42(10):3515-3525.
    [12] Sobolev S. L., Rapid solidification under local nonequilibrium conditions, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55(6 SUPPL. A):6845-6854.
    [13] Wang H., Liu F., Chen Z., Yang G., Zhou Y., Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: Model and application, Acta Materialia, 2007, 55(2):497-506.
    [14] Wang H., Liu F., Yang W., Chen Z., Yang G., Zhou Y., Solute trapping model incorporating diffusive interface, Acta Materialia, 2008, 56(4):746-753.
    [15] Goetzinger R., Barth M., Herlach D. M., Growth of lamellar eutectic dendrites in undercooled melts, Journal of Applied Physics, 1998, 84(3):1643-1649.
    [16] Li J. F., Jie W. Q., Zhao S., Zhou Y. H., Structural evidences for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38(8):1806-1816.
    [17] Herlach D. M., Non-equilibrium solidification of undercooled metallic melts, Materials Science and Engineering R: Reports, 1994, 12(4-5):177-272.
    [18] Ivantsov G. P., Dokl Akad Nauk SSSR, 1947, 58:567-569.
    [19] Lipton J., Glicksman M. E., Kurz W., Dendritic growth into undercooled alloy melts, Materials Science and Engineering, 1984, 65(1):57-63.
    [20] Trivedi R., Kurz W., Morphological stability of a planar interface under rapid solidification conditions, Acta Metallurgica, 1986, 34(8):1663-1670.
    [21] Boettinger W. J., Coriell S. R., Trivedi R., In: R. Mehrabian and P. A. Parrish (eds), Rapid Solidification Processing: Principle and Technologies, Baton Rouge, LA: Claitor's, 1987.
    [22] Perepezko J. H., Solidification of highly supercooled liquid metals and alloys, Journal of Non-Crystalline Solids, 1993, 156-58(pt 2):463-472.
    [23] Walder S., Ryder P. L., Critical solidification behavior of undercooled Ag-Cu alloys, Journal of Applied Physics, 1993, 74(10):6100-6106.
    [24] Wang Nan, Cao Chongde, Bingbo W., rapid solidification of Ag-Cu eutectic alloy by drop tube processing, Acta Metallurgica Sinica, 1998, 34(8):824-830.
    [25] Wei B., Herlach D. M., Sommer F., Rapid eutectic growth of undercooled metallic alloys, Journal of Materials Science Letters, 1993, 12(22):1774-1777.
    [26] Wei B., Herlach D. M., Sommer F., Kurz W., Rapid solidification of undercooled eutectic and monotectic alloys, Materials Science and Engineering A, 1993, A173(1-2):355-359.
    [27] Han X. J., Wang N., Wei B., Rapid eutectic growth under containerless condition, Applied Physics Letters, 2002, 81(4):778-780.
    [28]胡汉起,金属凝固原理,第二版,北京:机械工业出版社, 2000.
    [1] Rutter W. J., Chalmers B., A prismatic substrucutre formed during solidification of metal, Canadian Journal of Physics, 1953, 31:15-39.
    [2] Mullins W. W., Sekerka R. F., Stability of planar interface during solidification of dilute binary alloy, Journal of Applied Physics, 1964, 35(2):444-451.
    [3] Ludwig A., Kurz W., Cellular growth of a dilute binary alloy at high solidification velocities, Scripta Materialia, 1996, 35(10):1217-1222.
    [4] Aguiar M. R., Caram R., Directional solidification of a Sn-Se eutectic alloy using the Bridgman-Stockbarger method, Journal of Crystal Growth, 1996, 166(1-4):398-401.
    [5] Kurz W., Fisher D. J., Fundamentals of solidification, Aedermannsdorf, Switzerland: Transaction Technology, 1984.
    [6] Gruzleski J. E., Winegard W. C., The plane to cell transition in the Sn-Cd eutectic, Journal of the institute of metals, 1968, 96:304-307.
    [7] Chadwick G. A., Modification of lamellar eutectic structures, Journal of the Institute of Metals, 1963, 91:298-303.
    [8] Bullock J. B., Simpson C. J., Eady J. A., Winegard W. C., Cell formation as the result of adding Cd or Sb to the Pb-Sn eutectic, Journal of the institute of metals, 1971, 99:212-214.
    [9] Li J., Yang G., Zhou Y., Mode of dendrite growth in undercooled alloy melts, Materials Research Bulletin, 1998, 33(1):141-148.
    [10] Goetzinger R., Barth M., Herlach D. M., Growth of lamellar eutectic dendrites in undercooled melts, Journal of Applied Physics, 1998, 84(3):1643-1649.
    [11] Glicksman M. E., Lupulescu A. O., Dendritic crystal growth in pure materials, Journal of Crystal Growth, 2004, 264(4):541-549.
    [12] Boettinger W. J., Coriell S. R., Trivedi R., In: R. Mehrabian and P. A. Parrish (eds), Rapid Solidification Processing: Principle and Technologies, Baton Rouge, LA:Claitor's, 1987.
    [13] Li J. F., Zhou Y. H., Eutectic growth in bulk undercooled melts, Acta Materialia, 2005, 53(8):2351-2359.
    [14] Walder S., Ryder P. L., Nonequilibrium solidification in undercooled melts of the alloy Ag-39.9 at. % Cu, Journal of Applied Physics, 1993, 73(4):1965-1970.
    [15] Das S. K., Perepezko J. H., Wu R. I., Wilde G., Undercooling and glass formation in Al-based alloys, Materials Science and Engineering A, 2001, 304-306(1-2):159-165.
    [16]陈光,颜银标,崔鹏等,熔体过热对Sb-Bi合金凝固组织的影响,材料科学与工艺, 2001, 9(2):113-115.
    [17] Goetzinger R., Barth M., Herlach D. M., Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys, Acta Materialia, 1998, 46(5):1647-1655.
    [18] Turnbull D., Phase changes, Solid State Physics, 1956, 3:225-306.
    [19] Li J. F., Jie W. Q., Zhao S., Zhou Y. H., Structural evidences for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38(8):1806-1816.
    [20] Gill S. C., Zimmermann M., Kurz W., Laser resolidification of the AlAl2Cu eutectic: The coupled zone, Acta Metallurgica Et Materialia, 1992, 40(11):2895-2906.
    [21] Cao C. D., Lu X. Y., Wei B. B., Solute diffusion controlled dendritic growth under high undercooling conditions, Chinese Physics Letters, 1998, 15(11):840-842.
    [22] Evans N. D., Hofmeister W. H., Bayuzick R. J., Robinson M. B., Solidification of Nb-Ge alloys in long drop tubes, Metallurgical Transactions A, 1986, 17(6):973-981.
    [23] Willnecker R., Herlach D. M., Feuerbacher B., Containerless undercooling of bulk Fe-Ni melts, Applied Physics Letters, 1986, 49(20):1339-1341.
    [24] Kurz W., Fisher D. J., Dendritic growth in eutectic alloys: The coupled zone, International Metals Reviews, 1979, R244(5-6):177.
    [25] Jones B. L., Coupled and uncoupled growth in silver-copper alloys, Journal of Crystal Growth, 1971, 10:313-319.
    [26] Li J. F., Li X. L., Liu L., Lu S. Y., Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy, Journal of Materials Research, 2008, 23(8):2139-2148.
    [27] Li J. F., Liu Y. C., Lu Y. L., Yang G. C., Zhou Y. H., Structural evolution of undercooled Ni-Cu alloys, Journal of Crystal Growth, 1998, 192(3-4):462-470.
    [28] Li J. F., Jie W. Q., Yang G. C., Zhou Y. H., Solidification structure formation in undercooled Fe-Ni alloy, Acta Materialia, 2002, 50(7):1797-1807.
    [29] Turnbull D., Kinetics of solidification of supercooled liquid mercury droplets, Journal of Chemical Physics 1952, 20(3):411-424.
    [30] Lu S. Y., Li J. F., Zhou Y. H., Solidification structure of undercooled Ni54.6Pd45.4 alloy, Materials Science and Engineering A, 2007, 460-461:63-68.
    [31] Yang C., Liu F., Yang G., Chen Y., Liu N., Li J., Zhou Y., Non-equilibrium transformation in hypercooled Fe83B17 alloy, Materials Science and Engineering A, 2007, 458(1-2):1-6.
    [1] Han X. J., Wei B., Microstructural characteristics of Ni-Sb eutectic alloys under substantial undercooling and containerless solidification conditions, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33(4):1221-1228.
    [2] Pu J., Feng W. J., Xiao J. Z., Gan Z. H., Yi H. Y., Cui K., Non-equilibrium solidification of bulk undercooled Ni-P eutectic alloys, Journal of Crystal Growth, 2003, 256(1-2):139-145.
    [3] Li M., Nagashio K., Ishikawa T., Yoda S., Kuribayashi K., Microtexture and macrotexture formation in the containerless solidification of undercooled Ni-18.7 at.% Sn eutectic melts, Acta Materialia, 2005, 53(3):731-741.
    [4] Li J. F., Jie W. Q., Zhao S., Zhou Y. H., Structural evidence for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38(8):1806-1816.
    [5] Powell G. L. F., Journal of the institute of metals, 1965, 93:505-512.
    [6] Jones B. L., Coupled and uncoupled growth in silver-copper alloys, Journal of Crystal Growth, 1971, 10:313-319.
    [7] Walder S., Ryder P. L., Nonequilibrium solidification in undercooled melts of the alloy Ag-39.9 at. % Cu, Journal of Applied Physics, 1993, 73(4):1965-1970.
    [8] Wang Nan, Cao Chongde, Bingbo W., rapid solidification of Ag-Cu eutectic alloy by drop tube processing, Acta Metallurgica Sinica, 1998, 34(8):824-830.
    [9] Walder S., Ryder P. L., Critical solidification behavior of undercooled Ag-Cu alloys, Journal of Applied Physics, 1993, 74(10):6100-6106.
    [10] Perepezko J. H., Solidification of highly supercooled liquid metals and alloys, Journal of Non-Crystalline Solids, 1993, 156-58(pt 2):463-472.
    [11] Murray J. L., calculations of stable and metastable equilibrium diagrams of the Ag-Cu and Cd-Zn systems, Metallurgical Transactions A, 1984, 15A:261-268.
    [12] Hu H. Q., Principle of metal solidification, second ed., Beijing: Machinery Industry Press Co.Ltd, 2000.
    [13] Li J. F., Zhou Y. H., Eutectic growth in bulk undercooled melts, Acta Materialia, 2005, 53(8):2351-2359.
    [14] Goetzinger R., Barth M., Herlach D. M., Growth of lamellar eutectic dendrites in undercooled melts, Journal of Applied Physics, 1998, 84(3):1643-1649.
    [15] Rinaldi M. D., Sharp R. M., Flemings M. C., Growth ternary composites from the melt - 2, Metallurgical Transactions, 1972, 3(12):3139-3148.
    [16] Abbaschian R., Lipschutz M. D., Eutectic solidification processing via bulk melt undercooling, Materials Science and Engineering A, 1997, 226-228:13-21.
    [17] Boettinger W. J., Coriell S. R., Trivedi R., In: R. Mehrabian and P. A. Parrish (eds), Rapid Solidification Processing: Principle and Technologies, Baton Rouge, LA: Claitor's, 1987.
    [18] Trivedi R., Magnin P., Kurz W., Theory of eutectic growth under rapid solidification conditions, Acta Metallurgica, 1987, 35(4):971-980.
    [19] Hogan L. M., J Aust Inst Met, 1964, 9:228.
    [20] Kattamis T. Z., Flemings M. C., Structure of undercooled Ni-Sn eutectic, Metallurgical Transactions, 1970, 1(5):1449-1451.
    [21] Jones B. L., Growth mechanisms in undercooled eutectics, Metallurgical Transactions, 1971, 2(10):2950-2951.
    [22] Li M., Kuribayashi K., Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34(12):2999-3008.
    [23] Wei B., Herlach D. M., Sommer F., Rapid eutectic growth of undercooled metallicalloys, Journal of Materials Science Letters, 1993, 12(22):1774-1777.
    [24] Wei B., Herlach D. M., Feuerbacher B., Sommer F., Dendritic and eutectic solidification of undercooled Co-Sb alloys, Acta metallurgica et materialia, 1993, 41(6):1801-1809.
    [25] Wei B., Herlach D. M., Sommer F., Kurz W., Rapid solidification of undercooled eutectic and monotectic alloys, Materials Science and Engineering A, 1993, A173(1-2):355-359.
    [26] Xing L. Q., Zhao D. Q., Chen X. C., Solidification of undercooled Ni-32.5 wt% Sn eutectic alloy, Journal of Materials Science, 1993, 28(10):2733-2737.
    [27] Goetzinger R., Barth M., Herlach D. M., Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys, Acta Materialia, 1998, 46(5):1647-1655.
    [28]惠增哲,大体积Ni基共晶系合金的深过冷与凝固规律,[学位论文],西安,西北工业大学,1998.
    [29] Li J. F., Li X. L., Liu L., Lu S. Y., Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy, Journal of Materials Research, 2008, 23(8):2139-2148.
    [30] Li J. F., Liu Y. C., Lu Y. L., Yang G. C., Zhou Y. H., Structural evolution of undercooled Ni-Cu alloys, Journal of Crystal Growth, 1998, 192(3-4):462-470.
    [31] Li J. F., Jie W. Q., Yang G. C., Zhou Y. H., Solidification structure formation in undercooled Fe-Ni alloy, Acta Materialia, 2002, 50(7):1797-1807.
    [32]刘向荣,空间模拟条件下共晶和偏晶合金的快速凝固, [学位论文],西安,西北工业大学,2004.
    [33] Dann P. C., Hogan L. M., Eady J. A., Mechanisms of coarsening of secondary dendrite arm spacings in Al-Cu alloys and an organic analogue, Metals Forum, 1979, 2(4):212-219.
    [1] Gruzleski J. E., Winegard W. C., The plane to cell transition in the Sn-Cd eutectic, Journal of the institute of metals, 1968, 96: 304-307.
    [2] Bullock J. B., Simpson C. J., Eady J. A., Winegard W. C., Cell formation as the result of adding Cd or Sb to the Pb- Sn eutectic, Journal of the institute of metals, 1971, 99: 212-214.
    [3] Rinaldi M. D., Sharp R. M., Flemings M. C., Growth ternary composites from the melt - 1, Metallurgical Transactions, 1972, 3 (12): 3133-3138.
    [4] Rinaldi M. D., Sharp R. M., Flemings M. C., Growth ternary composites from the melt - 2, Metallurgical Transactions, 1972, 3 (12): 3139-3148.
    [5] Chadwick G. A., Modification of lamellar eutectic structures, Journal of the Institute of Metals, 1963, 91: 298-303.
    [6] Yamauchi I., Ueyama S., Ohnaka I., Effects of Mn and Co addition on morphology of unidirectionally solidified FeSi2 eutectic alloys, Materials Science and Engineering A, 1996, 208 (1): 101-107.
    [7] Plapp M., Karma A., Eutectic colony formation: A phase-field study, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, 2002, 66 (6): 061608/1-061608/17.
    [8] Okamoto H., Ag-Sb (silver-antimony), Journal of Phase Equilibria and Diffusion, 2007, 28 (4): 403.
    [9] Liu X. J., Wang C. P., Ohnuma I., Kainuma R., Ishida K., Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems, Journal of Phase Equilibria, 2000, 21 (5): 432-442.
    [10] Boettinger W. J., Coriell S. R., Sekerka R. F., Mechanisms of microsegregation-free solidification, Materials Science and Engineering, 1984, 65 (1): 27-36.
    [11] Baker J. C., Cahn J. W., in: Solidification, ASM, Metals Park, OH: 1971.
    [12] Cahn J. W., Corciel S. R., Boettinger W. J., in: Laser and Electron Beam Processingof Materials (Ed.: C. W. White and P. S. Peerey), Academic, NY: 1980.
    [13] Wood R. F., Model for nonequilibrium segregation during pulsed laser annealing, Applied Physics Letters, 1980, 37 (3): 302-304.
    [14] Aziz M. J., Model for solute redistribution during rapid solidification, Journal of Applied Physics, 1982, 53 (2): 1158-1168.
    [15] Smith P. M., Aziz M. J., Solute trapping in aluminum alloys, Acta Metallurgica Et Materialia, 1994, 42 (10): 3515-3525.
    [16] Trivedi R., Kurz W., Morphological stability of a planar interface under rapid solidification conditions, Acta Metallurgica, 1986, 34 (8): 1663-1670.
    [17] Subramanian P. R., Perepezko J. H., The ag-cu (silver-copper) system, Journal of Phase Equilibria, 1993, 14 (1): 62-75.
    [18] Kobayashi K. F., Shingu P. H., The solidification process of highly undercooled bulk Cu-O melts, Journal of Materials Science, 1988, 23 (6): 2157-2166.
    [19] McLeod A. J., Hogan L. M., Crystal multiplication in undercooled Cu + 2 Pct Sn alloy, Metallurgical Transactions A, 1978, 9 (7): 987-998.
    [20] Wei B., Yang G., Zhou Y., High undercooling and rapid solidification of Ni-32.5% Sn eutectic alloy, Acta Metallurgica et Materialia, 1991, 39 (6): 1249-1258.
    [21] Goetzinger R., Barth M., Herlach D. M., Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys, Acta Materialia, 1998, 46 (5): 1647-1655.
    [22] Goetzinger R., Barth M., Herlach D. M., Growth of lamellar eutectic dendrites in undercooled melts, Journal of Applied Physics, 1998, 84 (3): 1643-1649.
    [23] Li J. F., Zhou Y. H., Eutectic growth in bulk undercooled melts, Acta Materialia, 2005, 53 (8): 2351-2359.
    [24] Li J. F., Jie W. Q., Zhao S., Zhou Y. H., Structural evidences for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt, Metallurgical and Materials Transactions A: Physical Metallurgy and MaterialsScience, 2007, 38 (8): 1806-1816.
    [25]石德珂,材料科学基础,北京:机械工业出版社, 1999.
    [26] Evans P. V., Vitta S., Hamerton R. G., Greer A. L., Turnbull D., Solidification of germanium at high undercoolings. Morphological stability and the development of grain structure, Acta Metallurgica, 1990, 38 (2): 233-242.
    [27] Lipton J., Glicksman M. E., Kurz W., Dendritic growth into undercooled alloy melts, Materials Science and Engineering, 1984, 65 (1): 57-63.
    [28] Ojha S. N., Ramachandrarao P., Microstructural characteristics of highly undercooled Ag-Ge alloys, Journal of Materials Science Letters, 1991, 10 (9): 519-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700