基于制冷剂减量及替代的制冷热泵系统关键技术理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际社会对臭氧层破坏和全球变暖等环境问题日益关注,制冷剂减量及替代成为制冷热泵行业的研究热点。本文针对制冷剂替代提出两种方案,即减量延续技术和永久性替代,并针对两种方案的关键技术进行了理论和试验研究。
     本文通过大量的数据调研,提出了在大中型冷水热泵机组中采用降膜式蒸发方式比目前广泛应用的满液式蒸发减少了30%的制冷剂充灌量,具有重大的应用前景。基于此,对满液式蒸发和降膜式蒸发建立换热模型并进行模拟计算,结果表明:随着热流密度和蒸发压力的增大,满液式蒸发和降膜式蒸发的换热系数是逐渐增大的。而对于降膜式蒸发,液膜雷诺数也是重要的影响因素,随着液膜雷诺数的增大,存在干涸现象出现的临界值,在临界值出现之前换热系数逐渐增大,超过临界值则保持不变。本文建立水平单管满液式蒸发和降膜蒸发试验台,通过对两种换热方式进行换热试验研究,结果验证了理论分析的合理性,同时发现在相同工况下,降膜式换热系数要高出满液式的6.3%。本文根据试验数据提出了新的换热关联式,与大量试验数据保持在13%以内的误差,具有较高的准确性。
     为了直接观测到两种换热模式的换热机理,本文设计了可视化试验台。通过对满液式沸腾现象的观测和分析发现,汽泡在加热壁面上的汽化核心分为稳定型和不稳定型;汽泡从在壁面上出现到脱离壁面的汽泡生长时间大约在4ms-5ms之间;汽泡脱离直径大约在1.4-1.8mm之间;同时发现,降膜式沸腾产生的汽泡尺寸、汽泡脱离液态制冷剂的时间要小于满液式;降膜式沸腾对流现象和沸腾扰动现象更明显,但当热流密度较大时,容易出现干涸现象。
     在永久性替代方案中,本文提出采用CO_2双级循环,并就关键部件CO_2双级滚动活塞压缩机进行了设计和加工。对双级循环的分析表明,在相同工况下,双级循环效率比单级循环的效率高出12%~25%。本文对双级压缩机进行了动力学和有限元分析,结果表明:在压缩机开始排气时,各部件的受力情况最恶劣,低压级压缩机的变形量大于高压级压缩机,尤其是低压级偏心段是变形最大的地方,为优化设计提供参考依据。而对双级压缩机的温度场模拟表明,由于双级压缩中间冷却使得排气温度不高,压缩机机体温度均不超过60℃。
     为了对加工的CO_2双级滚动活塞压缩机进行测试,本文设计了压缩机测试试验台,并分别对低压级压缩机、高压级压缩机和双级压缩机进行测试,结果表明:压缩机运行平稳,其中低压级单独运行效率为35%,高压级为45%~75%。为进一步提高效率,提出了改进方案。
As the international community pays more and more attention to the ozone layer depletion and global warming, refrigerant decrease and substitute is becoming a focus in research of the refrigeration and heat pump industry. This thesis mainly brings out two methods of substituting refrigerant: the decreasing & technology and permanent substitutes. We have also made some theoretical and experimental study on the key technology of these two methods.
     According to a large number of statistics, we have found that adopting the falling film evaporation in large and medium-sized heat pump systems reduces refrigerant charge by 30% compared with the widely used flooded evaporation. So the falling film evaporation has good prospects of application. Based on this, we established a heat transfer model and did simulation calculation on the flooded evaporation and falling film evaporation. And the results show that the heat transfer coefficient of the flooded evaporation and falling film evaporation increases with the rising heat flux and evaporation pressure. However, for the dry falling film evaporation, film Renault number is an important factor. As the film Renault number increases, there will be a critical value for the dry-out phenomena, and the heat transfer coefficient increases before reaching the critical value and then it will stay unchanged thereafter. We built up a test-bed for the horizontal single tube flooded and falling film evaporation. Through heat transfer experimental research on the two types of heat transfer, the results show that the theoretical analysis is rational and we also find that the heat transfer coefficient of falling film evaporation is 6.3% higher than the flooded type under the same conditions. In addition, this thesis gives a new correlation of heat transfer that is within a 13% deviation from the numerous data and is relatively accurate.
     In order to directly observe the heat transfer mechanism of the two heat transfer models, we made the visual test-bed. Through observing and analyzing the flooded boiling phenomena, we find that bubbles of the nucleus of boiling on the heating surface can be stable and unstable; the lasting time from the bubble occurring to the bubble departing the wall is about 4ms-5ms; the bubble diameter while departing is between 1.4-1.8mm; flooded boiling generates larger bubbles than the falling film boiling and the bubbles need more time to depart the surface; the convection and boiling interruption phenomena in falling film boiling is more evident, but the dry-out tends to occur when the heat flux is large.
     In the permanent substitute scheme, this thesis adopted the two–stage CO_2 cycle and came up with the designing and manufacturing of the key parts of the two-stage CO_2 rolling piston compressor. Analysis of the two-stage cycle shows that the efficiency of the two-stage cycle is 12-25% higher than the single stage cycle. This thesis made dynamic analysis and finite-element analysis on the two-stage compressor and the results show that when the compressor starts to exhaust, every part suffers the largest intensity of bearing and the distortion of low-pressure compressor is worse than the high-pressure, especially the eccentric part of the low pressure, which offers references for the optimization design. The simulation on the temperature of two-stage compressor indicates that the exhaust temperature is not high because of the intermediate cooling of the two-stage compression and the temperature of the compressor body is lower than 60℃.
     In order to test the CO_2 two-stage rolling piston compressor, we designed the test-bed for the compressor and did tests for the low pressure stage, high pressure stage and two-stage compressor. The test results show that the compressor operates smoothly and the efficiency of the low pressure stage and high pressure stage is 35% and 45~75% respectively. Further more, we brought out the implement plan to increase the efficiency.
引文
[1] Bos E, My T, Vu E, Bulatao R. World population projection: 1994–95 edition. Baltimore and London: published for the World Bank by the John Hopkins University Press; 1994.
    [2] http://theglobe.ep.net.cn/greentea.html,环保资料库.
    [3] http://www.china.org.cn/chinese/2001/Nov/78320.htm未来气温可能高于预期.
    [4]中国气候变化信息网,中国应对气候变化国家方案,国家发展和改革委员会国家气候变化对策协调小组,2007,6,4.
    [5]Evans, O., 1805. The Abortion of a Young Steam Engineer’s Guide. Hiladelphia , PA, USA.
    [6]Perkins, J., 1834. Apparatus for producing ice and cooling fluids.Patent 6662, UK.
    [7] Car Lighting and Power Company, advertisement, 1922. Ice and Refrigeration, 12, 28.
    [8] Carrier, W.HWaterfill, R.W.,1924,Comparison of thermodynamic characteristics of various refrigerating fluids.Refrigerating Engineering.
    [9] Ingels, M., 1952. Willis Haviland Carrier - Father of Air Conditioning. Carrier Corporation, Syracuse, NY, USA.
    [10] Midgley Jr., T., 1937. From the periodic table to production. Industrial and Engineering Chemistry 29 (2), 239-244.
    [11] Midgley Jr., T., Henne, A.L., 1930. Organic fluorides as refrigerants. Industrial and Engineering Chemistry 22, 542-545.
    [12] Downing, R.C., 1966. History of the organic fluorine industry.In Kirk-Othmer Encyclopedia of Chemical Technology, seconded., vol. 9. John Wiley and Sons, Incorporated, New York, NY, USA, pp. 704-707.
    [13] Downing, R.C., 1984. Development of chlorofluoro-carbon refrigerants. ASHRAE Transactions. American Society of Heating, Refrigerating, and Air-Conditioning Engineers(ASHRAE), Atlanta, GA, USA, 90 (2B), 481-491.
    [14] Montreal Protocol on Substances That Deplete the Ozone Layer,1987. United Nations (UN), New York, NY, USA (1987 with subsequent amendments).
    [15] UNEP, 2007a. Decisions Adopted by the Nineteenth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer. United Nations Environment Programme (UNEP) Ozone Secretariat, Nairobi, Kenya (22.09.07).
    [16] AFEAS (Alternative Flurocarbons Environmental Acceptability Study), 2007. Production, and sales of fluorocarbons through 2007 (www.afeas.org).
    [17] Kyoto Protocol to the United Nations Framework Convention on Climate Change, 1997. United Nations (UN), New York, NY, USA.
    [18] Brohan, P., Kennedy, J.J., Harris, I., Tett, S.F.B., Jones, P.D., 2006. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. Journal of Geophysical Research 111, D12106.
    [19] Rayner, N.A., Brohan, P., Parker, D.E., Folland, C.K., Kennedy, J.J., Vanicek, M., Ansell, T.J., Tett, S.F.B., 2006. Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. Journal of Climate 19, 446-469.
    [20] Environment Committee, 14, June 2006. Regulation (EC) No 842/2006 of the European Parliament and of the Council of 17 May 2006 on certain fluorinated greenhouse gases. Official Journal of the European Union L 161, 1-8.
    [21] Horrocks, P., 2006. EU F-gases Regulation and MAC Directive, ECCP-1 Review. European Commission Environment Directorate, Brussels, Belgium (01.03.06).
    [22] DuPont Fluorochemicals, 2006. DuPont Fluorochemicals Develops Next Generation Refrigerants - New Sustainable Alternatives Would Offer Practical Solutions. Press Release. Wilmington, DE, USA (09.02.06).
    [23] DuPont Fluorochemicals and Honeywell, 2007. DuPont, Honeywell Announce Refrigerants Global Joint Development Agreement. Press Release. Wilmington, DE, and Morris Township, NJ, USA (29.03.07).
    [24] Honeywell, 2006. Honeywell’s Developmental Refrigerant Meets Global Warming Regulation– Technology Targets Future Auto Applications. Press Release. Morristown, NJ, USA (16.02.06).
    [25] INEOS Fluor, 2007. New Refrigerant from INEOS Fluor Developed to Meet Long Term Needs of the Automotive Air-Conditioning Sector. Press Release. Runcorn, Cheshire, UK (18.09.06).
    [26]马一太,杨昭,我国R22等HCFCs制冷剂的现在与未来,中国制冷学会2007年学术年会.
    [27] James M. Calm, the next generation of refrigerants-historical review, considerations, and outlook. International journal of refrigeration, 2008(31):1123-1133.
    [28]王康迪,王怀信.系统仿真确定制冷剂充灌量.制冷学报.2001(4):35-40
    [29] Bjorn Palm. Refrigeration systems with minimum charge of refrigerant. Applied Thermal Engineering , 27 (2007) 1693–1701
    [30]陈沛霖,岳肖芳.空调与制冷技术手册.上海:同济大学出版社, 1989: 795-800.
    [31]余建华,何辉.高压喷雾降膜蒸发器与干式和满液式蒸发器的技术比较.铁道标准设计.2008(增刊)
    [32]于氵内,王效民.冷水机组干式蒸发器均匀分液的改进措施制冷.1997年第1期(总58期)
    [33]刘圣春,马一太,CO_2热泵热水器实验研究,天津大学学报,2008,41(2):238~242
    [34] P.HRNJAK,Natural working fluids: development and future prospective with emphasis on carbon dioxide issues,7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [35]邓建强,姜培学,跨临界CO_2汽车空调微通道气体冷却器的设计开发[J],制冷学报,2005,26(4):51~55
    [35] Samer Sawalha, Theoretical evaluation of trans-critical CO_2 systems in supermarket refrigeration. Part I:Modeling, simulation and optimization of two system solutions,International Journal of Refrigeration, 2008,31(4):516~524
    [36] C.Rohrer, Transcritical CO_2 bottle cooler development, 7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [37]马一太,杨俊兰,CO_2跨临界循环吸气过程换热性能理论分析,热科学与技术,2003,4:
    [38]杨俊兰,CO_2跨临界循环系统及换热理论分析与实验研究: [博士学位论文],天津;天津大学,2005
    [39]丁国良,CO_2制冷技术新发展,制冷空调与电力机械,2002,86(23):1~6
    [40] Purdue University, Evaluation of the performance potential of CO_2 as a refrigerant in air-to-air air conditioners and heat pumps system modeling and analysis, ARTI-21CR, 2003
    [41]查世彤. CO_2跨临界循环膨胀机的研究与开发: [博士学位论文],天津;天津大学,2002.
    [42]李敏霞,二氧化碳跨临界循环转子式膨胀机的分析与实验研究: [博士学位论文],天津;天津大学,2003
    [43] S.Elbel and P.Hrnjak, Experimental validation and design study of a transcritical CO_2 prototype ejector system, 7th IIR Gustav Lorentzen Conference on Natural Working Fluids,2006
    [44]孙方田,含油超临界CO_2冷却换热理论与实验研究: [博士学位论文],天津;天津大学,2007
    [45]王洪利. CO_2跨临界双级循环理论分析与试验研究: [博士学位论文],天津;天津大学,2008.
    [46] Fagerlieral B., CO_2 compressor development, Presentation on the CO_2 workshop,Trondheim,1997.http://www.obrist.at/productsandservices/co2components/index.html2004.3.
    [47] Jurgen Sub, Horst Kruse. Efficiency of the indicated process of CO_2 compressor. International Journal of Refrigeration, 1998, 21(3): 194-201.
    [48] CO_2 RANGE,DORIN.压缩机产品目录.
    [49] Petter Neksa, Filippo Dorin, et al. Development of two-stage semi-hermetic CO_2-compressor. 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000:355-362.
    [50]http://www.appliancemagazine.com/euro/editorial.php?article=397&zone=102&first=1.
    [51] Philippe Dugast, Patrice Bonnefoi. High efficient CO_2 trans-critical reciprocating compressor Part1: valve plate and cylinder head 1 D flow optimization. International Compressor Engineering Conference at Purdue, July 14-17, 2008.
    [52] Patrice BONNEFOI, Philippe DUGAST, Jean de BERNARDI. High efficient CO_2 trans-critical reciprocating compressor Part 2: valve plate and cylinder head 3 D thermal & flow optimization. International Compressor Engineering Conference at Purdue, July 14-17, 2008.
    [53] http://www.obrist.at/productsandservices/index.html.
    [54] Heinz Baumann, Martin Conzett. Small oil free piston type compressor for CO_2. Proceedings of the 2002 International Refrigeration Conference, Purdue,West Lafayette, C25-30.
    [55] Tadashi Yanagisawa, Mitsuhiro Fukuta et al. Basic operating characteristics of reciprocating compressor for CO_2 cycle. 4th IIR-Gustav Lorentzen Conference onNatural Working Fluids, Purdue, 2000: 331-338.
    [56] Tetsuhide Yokoyama, Kei Sasaki, Shin Sekiya, Hideaki Maeyama. Developing a two stage rotary compressor for CO_2 heat pump systems with refrigerant injection. International Compressor Engineering Conference at Purdue, July 14-17, 2008.
    [57] Naotaka Hattori, Hideto Nakao, Tomoo Takayama, etal. Wear-less technology for rotary compressorusing CO_2 refrigerant. International Compressor Engineering Conference at Purdue, July 14-17, 2008.
    [58] Gaku Shimada,CO_2 Compressor and its Application, SANYO, July 14, 2004.
    [59]杨德玺,俞炳丰.二氧化碳跨临界压缩机研究进展.制冷与空调,2006.6(3): 8-14.
    [60] B. Hubacher, E. A. Groll. Performance measurements of a hermetic carbon dioxide compressor. International Conference of Refrigeration, Washington, USA: ICR0029.
    [61] http://www.jsme.or.jp/English/awardsn26.html.
    [62] Hiroshi Hasegawa, Mitsuhiro Ikoma, et al. Experimental and theoretical study of hermetic CO_2 scroll compressor. The proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue, 2000: 347-353.
    [63] Kenji YANO, Hideto NAKAO, Mihoko SHIMOJI. Development of large capacity CO_2 scroll compressor. International Compressor Engineering Conference at Purdue, July 14-17, 2008.
    [64] K. Endoh, T. Kouno, et al. Instant hot-water supply heat-pump water heater using CO_2 refrigerant for home use. The 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Trondheim, Norway, 2006: 27-30.
    [65] T. Hirao, H. Mizukami, etal. Development of air conditioning system using CO_2 for automobile. 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue, 2000: 193-200.
    [66] Noriaki ISHII. Effects of Surface Roughness upon Gas Leakage Flow through Small Clearances in CO_2 Scroll Compressors. International Compressor Engineering Conference at Purdue, July 14-17, 2008.
    [67] Eric Winandy. Scroll Compressors For CO_2 Refrigeration. Copeland. Cooling with Carbon Dioxide 28th March 2007, London.
    [68] http://www.mycomj.co.jp
    [69] Nikola Stosic, Ahmed Kovacevic, Ian K. Smith. An Investigation of Liquid Injection in Refrigeration Screw Compressors. The 5th International Conference on Compressor and Refrigeration, Xi’an Jiaotong University, 2005: 91-101.
    [70] N.stosic, I.K.Smith, A.Kovacevic, Twin screw combined compressors and expanders for CO_2 refrigeration systems. The proceeding of the sixteenth international compressor engineering conference at Purdue, 2002.
    [71] Mitsuhiro Fukuta, R. Radermacher. Performance of a vane compressor for CO_2 cycle. Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue University, USA, 2000: 339-346
    [72] D.L. Katz, J.E. Myers, E.H. Young, G. Balekjian, Boiling outside finned tubes, Petroleum Refiner 34 (2) (1955) 113-116.
    [73] H.M. Kurihari, J.E. Myers, Effects of superheat and roughness on the boiling coefficients, AIChE Journal 6 (1) (1960) 83-91.
    [74] P. Griffith, J.D. Wallis, The role of surface conditions in nucleate boiling, Chemical Engineering Progress Symposium Series 56 (49) (1960) 49-63.
    [75] J.E. Benjamin, J.W. Westwater, Bubble growth in nucleate boiling of a binary mixture. International Developments in Heat Transfer. ASME New York, 1961, pp. 212-218.
    [76] W. Nakayama, T. Daikoku, H. Kuwahara, T. Nakajima, Dynamic model of enhanced boiling heat transfer on porous surfaces Part I: experimental investigation, Journal of Heat Transfer 102 (1980) 445-450.
    [77] W. Nakayama, T. Daikoku, T. Nakajima, Effects of pore diameters and system pressure on saturated pool boiling heat transfer from porous surfaces, Journal of Heat Transfer 104 (1980) 286-291.
    [78] J. Arshad, J.R. Thome, Enhanced boiling surfaces: heat transfer mechanism and mixture boiling, Proceedings of the ASME-JSME Thermal Engineering Joint Conference Vol. 1 (1983) ASME, New York, 191-197.
    [79] S.B. Memory, Nucleate pool boiling of R-114 and R-114-oil mixtures from smooth and enhanced surfaces-1: single tubes, International Journal of Heat Mass Transfer 38 (8) (1995) 1347-1361.
    [80] P.J. Marto, B. Hernandez, Nucleate pool boiling characteristics of a Gewa-T surface in freon-113, heat transfer-Seattle, AIChE Symposium Series 79 (225) (1983) 1-10.
    [81] P.J. Marto, V.J. Lepere, Pool boiling heat transfer from dielectric fluids,Advances in Heat Transfer HTD Vol.18 (1981) 93-102.
    [82] Z.H. Ayub, A.E. Bergles, Pool boiling from GEWA surfaces in water and R-113, Warme- und Stoffubertagung 21 (1987) 209-219.
    [83] A.H. Ayub, A.E. Bergles, Pool boiling enhancement of a modified Gewa-T surface in water, Journal of Heat Transfer 10 (1988) 266-267.
    [84] A.H. Ayub, A.E. Bergles, Nucleate pool boiling curve hysteresis for Gewa-T surfaces in saturated R-113. ASME Proceedings of the National Heat Transfer Conference. Vol. 2. ASME Symposium. HTD Vol. 96, 1988, ASME, New York, pp. 515-521.
    [85] T.L. Webb. Heat Transfer Surface Having a High Boiling Heat Transfer Coefficient. U.S. Patent 3,696,961.
    [86] W. Nakayama, T. Daikoku, H. Kuwahara, T. Nakajima, Dynamic model of enhanced boiling heat transfer on porous surfaces Part II: analytical modelling, Journal of Heat Transfer 102 (1980) 451-456.
    [87] J.R. Thome, Nucleate pool boiling of hydrocarbon mixtures on a Gewa-TX tube, Heat Transfer Engineering 10 (1) (1989) 37-44.
    [88] R.L. Webb, C. Pais, Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries, International Journal Heat Mass Transfer 35 (8) (1992) 1893-1904.
    [89] M.D. Xin, Y.D. Chao, Analysis and experiment of boiling heat transfer on T-shaped finned surfaces. AIChE Paper. 23rd National Heat Transfer Conference, Denver, CO, 1985.
    [90] D.Y. Wang, J.G. Cheng, H.J. Zhang, Pool boiling heat transfer from T-finned tubes at atmospheric and super-atmospheric pressures. Phase Change Heat Transfer. ASME Symposium Vol. HTD Vol. 159, 1991, ASME, New York, pp. 143-147.
    [91] R.L. Webb, S.I. Haider, V. J. Dhir, A. E. Bergles (Eds.), An analytical model for nucleate boiling on enhanced surfaces, Pool and External Flow Boiling, ASME, New York, 1992, pp. 345-360.
    [92] B.B. Mikic, W.M. Rosenhow, A new correlation of pool-boiling data including the effect of heating surface characteristics, Journal of Heat Transfer 91 (1969) 245-250.
    [93] Webb, R.L., Pals, C., 1992. Nucleate boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries. Int. J. Heat Mass Transfer 35 (8), 1893-1904.
    [94] Cooper, M.G., 1984. Saturation nucleate pool boiling-a simple correlation. Int. Chem. Eng. Symp. Ser. 86, 785-792.
    [95] K.Stephan, M.Abdelsalam, heat transfer correlations for natural converction boiling, int. J. Heat Mass Transfer 23(1980):73-87.
    [96] K. Nishikawa, Y. Fujita, H. Ohta, S. Hidaka, Effect of the surface roughness on the nucleate boiling heat transfer over the wide range of pressure, in: Proc. 7th Int. Heat Transfer Conf., vol. 4, 1982, pp. 61-66.
    [97] Yasunobu Fujita, Experimental investigation in pool boiling heat transfer of ternary mixture and heat transfer correlation, Exp. Therm. Fluid Sci. 26 (2001) 237-244.
    [98] Roques, J.F., Thome, J.R., 2007. Falling films on arrays of horizontal tubes with R-134a, part I: Boiling heat transfer results on four types of tubes. Heat Transfer Eng. 28 (5), 398-414.
    [99] O. Lyle, The efficient use of steam, H.M. Stationery Office, London, 1947.
    [100] J. Mitrovic, Influence of tube spacing and flow rate on heat transfer from a horizontal tube to a falling liquid film, Proceedings of the eighth international heat transfer conference, San Francisco, vol. 4 1986, p. 1949-56.
    [101] D. Yung, J.J. Lorenz, E.N. Ganic′, Vapor/liquid interaction and entrainment in falling film evaporators, J Heat Transfer 102 (1980) 20-25.
    [102] E.N Ganic′, M.N. Roppo, An experimental study of falling liquid film breakdown on a horizontal cylinder during heat transfer, J Heat Transfer 102 (1980) 342-346.
    [103] S.S. Kutateladze, I.I. Gogonin, V.I. Sosunov, The influence of condensate flow rate on heat transfer in film condensation of stationary vapour on horizontal tube tube banks, Int J Heat Mass Transfer 28 (1985) 1011-1018.
    [104] R. Armbruster, J. Mitrovic, Patterns of falling film flow over horizontal smooth tubes, Proceedings of the 10th international heat transfer conference, Brighton, vol. 3 1994, p. 275-80.
    [105] V. Dhir, K. Taghavi-Tafreshi, Hydrodynamic transition during dripping of a liquid from underside of a horizontal tube, ASME Paper 1981; [No 81-WA/HT-12].
    [106] Y. Fujita, M. Tsutsui, Experimental and analytical study of evaporation heat transfer in falling films on horizontal tubes, Proceedings of the 10th international heat transfer conference, Brighton, vol. 6 1994, p. 175-80.
    [107] Y. Fujita, M. Tsutsui, Evaporation heat transfer of falling films onhorizontal tube. Part 2. Experimental study, Heat Transfer-Jpn Res 24 (1995) 17-31.
    [108] X. Hu, A.M. Jacobi, The intertube falling film. Part 1. Flow characteristics, mode transitions, and hysteresis, J Heat Transfer 118 (1996) 616-625.
    [109] Y. Wei, A.M. Jacobi, Vapor-shear, geometric, and bundle-depth effects on the intertube falling-film modes, Proceedings of the first international conference on heat transfer, fluid mechanics, and thermodynamics, vol. 1(1), Kruger National Park, South Africa, 2002, p. 40-6.
    [110] H. Honda, S. Nozu, Y. Takeda, Flow characteristics of condensate on a vertical column of horizontal low finned tubes, Proceedings of the ASME/JSME thermal engineering joint conference, Honolulu, vol. 1, 1987, p. 517-24.
    [111] H. Honda, B. Uchima, S. Nozu, H. Nakata, E. Torigoe, Film condensation of R-113 on in-line bundles of horizontal finned tubes, J Heat Transfer 113 (1991) 479-486.
    [112] J.F. Roques, V. Dupont, J.R. Thome, Falling film transitions on plain and enhanced tubes, J Heat Transfer 124 (2002) 491-499.
    [113] M.-C. Chyu, A.E. Bergles, Horizontal-tube falling-film evaporation with structured surfaces, J Heat Transfer 111 (1989) 518-524.
    [114] R.J. Conti, Experimental investigation of horizontal tube ammonia film evaporators with small temperature differentials, Proceedings of the fifth ocean thermal energy conversion (OTEC), Miami Beach, vol. 3 1978, p. VI-161-80.
    [115] Z.H. Liu, J. Yi, Enhanced evaporation heat transfer of water and R-11 falling film with the roll-worked enhanced tube bundle, Exp Thermal Fluid Science 25 (2001) 447-455.
    [116] J.V. Putilin, V.L. Podberezny, V.G. Rifert, Evaporation heat transfer in liquid films flowing down horizontal smooth and longitudinally profiled tubes, Desalination 105 (1996) 165-170.
    [117] V.G. Rifert, V.I. Podberezny, J.V. Putilin, J.G. Nikitin, P.A. Barabash, Heat Transfer in thin film-type evaporator with profiled tubes, Desalination 74 (1989) 363-372.
    [118] S.M. Sabin, H.F. Poppendiek, Film evaporation of ammonia over horizontal round tubes, Proceedings of the fifth OTEC conference, Miami Beach, vol. 3 1978, p. VI-237-60.
    [119] M.-C. Chyu, Falling film evaporation on horizontal tubes with smooth and structured surfaces, PhD Thesis, Iowa State University; 1984.
    [120] M.-C. Chyu, A.E. Bergles, Enhancement of horizontal tube spray film evaporators by structured surfaces, Adv Enhanced Heat Transfer 43 (1985) 39-47.
    [121] M.-C. Chyu, A.E. Bergles, F. Mayinger, Enhancement of horizontal tube spray film evaporators, Proceedings of the seventh international heat transfer conference, vol. 6 1982, p. 275-80.
    [122] G. Wang, Y. Tan, S. Wang, N. Cui, A study of spray falling film boiling on horizontal mechanically made porous surface tubes, Proceedings of the international symposium of heat and mass transfer enhancement and energy conservation (ISHTEEC), Guangzhou, 1988, p. 425-32.
    [123] Y. Tan, G. Wang, S. Wang, N. Cui, An experimental research on spray falling film boiling on the second generation mechanically made porous surface tubes, Proceedings ninth international heat transfer conference, Jerusalem, vol. 6 1990, p. 269-73.
    [124] S.A. Moeykens, W.W. Huebsch, M.B. Pate, Heat transfer of R-134a in single-tube spray evaporation including lubrificant effects and enhanced surface results, ASHRAE Trans 101 (1) (1995) 111-123.
    [125] R.L. Webb, C. Pais, Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries, Int J Heat Mass Transfer 35 (1992) 1893-1904.
    [126] X. Zeng, M.-C. Chyu, Z.H. Ayub, Ammonia spray evaporation heat transfer performance of single low-fin and corrugated tubes, ASHRAE Trans 104 (1A) (1998) 185-196.
    [127] H. Kuwahara, A. Yasukawa, W. Nakayama, T. Yanagida, Evaporative heat transfer from horizontal enhanced tubes in thin film flow, Heat Transfer—Jpn Res 19 (1990) 83-97.
    [128] W. Nakayama, T. Daikoku, H. Kuwahara, T. Nakajima, Dynamic model of enhanced boiling heat transfer on porous surfaces. Part II. Analytical modeling, J Heat Transfer 102 (1980) 451-456.
    [129] Gherhardt Ribatski, Anthony M. Jacobi. Falling-film evaporation on horizontal tubes-a critical review[J]. International Journal of Refrigeration , 2005,28 :635-653.
    [130]许莉,王世昌.水平管降膜海水淡化多效蒸发传热的研究: [博士学位论文],天津;天津大学,1999.
    [131]庄礼贤,尹协远,马晖扬.流体力学,合肥:中国科学技术大学出版社,1991, 214.
    [132] Douglas J F, Gasiorek J M, Swaffield J A. Hydrodynamics(流体力学),Tang Ming Quan(汤明全译),Beijing,高等教育出版社,1992.163.
    [133] Rogers J T. The Canadian Journal of Chemical Engineering, 1981,59:213-222.
    [134] Roques, J.F., Thome, J.R., 2007. Falling films on arrays of horizontal tubes with R-134a, part II: flow visualization, onset of dryout, and heat transfer predictions. Heat Transfer Eng. 28 (5), 415-434.
    [135] Cooper, M.G., 1984. Saturation nucleate pool boiling-a simple correlation. Int. Chem. Eng. Symp. Ser. 86, 785-792.
    [136] Kutateladze, S.S., 1948. On the transition to film boiling under natural convection. Kotloturbostroenie 3 (10), 10-15.
    [137]谭志明,邓颂九.多孔表面强化沸腾传热的研究进展.化工进展, 1994, (1):9-14.
    [138] K. Nishikawa, Y. Fujita, H. Ohta, S. Hidaka, Effect of the surface roughness on the nucleate boiling heat transfer over the wide range of pressure, in: Proc. 7th Int. Heat Transfer Conf., vol. 4, 1982, pp. 61-66.
    [139] Sun Zhaohua, etc. Nucleate pool boiling heat transfer coefficients of pure HFC134a, HC290, C600a and their binary and ternary mixtures, International Journal of Heat and Mass Transfer, 2007,(50):94-104.
    [140] Thome JR and El Hajal J, Flow boiling heat transfer to carbon dioxide: General prediction method, Int. Journal of Refrigeration, 2004, 27: 294-301
    [141] Thome JR and El Hajal J, Two-phase flow pattern map for evaporation in horizontal tubes: Latest version, First International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Kruger Park, South Africa, 2002: 182-188.
    [142] A.Cavallini and L.Doretti, Experimental investigation into two-phase flow patterns a herringbone microfin tube, International Congress of Refrigeration, 2007.
    [143] Cavallini, A., Censi, G., Del Col, D., Doretti, L., Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a,R125, R32, R410A, R236ea) in a horizontal smooth tube. Int. Journal of Refrigeration, 2001, 24(1):74-88.
    [144] Triplett K A, Gas-liquid two-phase flow in microchannels.Part 1, Two-phase flow patterns, International Journal of Multiphase Flow, 1999, 25(3):377-394.
    [145] Dieter Gorenflo and Stephan Kotthoff, Review on pool boiling heat transfer of carbon dioxide, International Journal of Refrigeration, 2005,28:1169-1185.
    [146] Chaobing Dang and Koji Iino, Study on two phase flow pattern of supercritical carbon dioxide with entrained PAG type lubricating oil in a gas cooler, Int. Journal of Refrigeration, 2008:1-8.
    [147] Bredesen AM and Hafner A, Heat transfer and pressure drop for in-tube evaporation of CO_2, Proc. of Int. Conference on Heat Transfer Issues in Natural Refrigerants, University of Maryland, 1997:1-15.
    [148] H?gaard Knudsen HJ and Jensen PH, Heat transfer coefficient for boiling carbon dioxide, Proc. of Int. R&D on Heat Pump, Air Conditioning and Refrigeration Systems, Gatlinburg, TN, USA, 1997:113-122.
    [149] Lixin Cheng and Gherhardt Ribatski, New prediction methods for CO_2 evaporation inside tubes: Part I- A two phase flow pattern map and a flow pattern based phenomenological model for two phase flow frictional pressure drops, International Journal of Heat Mass Transfer, 2008,51:111-124.
    [150] Ribatski Gherhardt, An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels, Experimental Thermal and Fluid Science, 2006, 31(1):1-19.
    [151] Petterson, J., Two-Phase Flow Pattern, Heat Transfer, and Pressure Drop in Microchannel Vaporization of CO_2, ASHRAE Transactions, 2003
    [152] Y. Zhao, and M.M. Ohadi, Flow boiling of CO_2 in microchannels, ASHRAE Trans., 2000: 437-445.
    [153] Lee Jaeseon, Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling application. Part 1:Pressure drop characteristics, International Journal of Heat and Mass Transfer. 2005, 48(5):928-940.
    [154] Kawahara A, Inverstigation of two-phase flow pattern, void fraction and pressure drop in a microchannel, International Journal of Multiphase Flow, 2002, 28(9):1411-1435.
    [155] Serizawa Akimi, Two-phase flow in microchannels, Experimental Thermal and Fluid Science, 2002, 26(6):703-714.
    [156] Wors?e-Schmidt, P., 1960. Some characteristics of flow pattern and heat transfer of Freon-12 evaporating in horizontal tubes. J. Refrigeration, 40-44.
    [157] Manwell, S.P., Bergles, A.E., 1990. Gas–liquid flow patterns in refrigerant–oil mixtures. ASHRAE Trans. 96 (2), 456-464.
    [158] Wongwises, E., Wongchang, T., Kaewon, J., 2002. A visual study of two-phase flow patterns of HFC-134a and lubricant oil mixtures. Heat Transfer Eng. 23 (4), 13-22.
    [159] Poiate Jr., E., Gasche, J.L., 2006. Foam flow of oil-refrigerant R12 mixture in a small diameter tube. J. Braz. Soc. Mech. Sci. Eng. 28 (4), 390-398.
    [160] Zurcher, O., Thome, J.R., Favrat, D., 1998. In-tube flow boiling of R407C and R407C/oil mixtures part 1: microfin tube. HVAC&R Res. 4 (4), 347-372.
    [161] Susan Daniel and Manoj k. Chaudhury, Fast Drop Movements Resulting from the Phase Change on a Gradient Surface, Science, 2001, Vol.291, pp: 633-636
    [162] Karine Loubiere, Gilles Hebrard, Bubble formation from a flexible hole submerged in an inviscid liquid, Chemical Engineering Science, 2003,58:135~148
    [163] Klausner J F, Mei R, Bernhard D M, Vapor bubble departure in forced convection boiling, International Journal of Heat and Mass Transfer, 1993, 136(3):651~662
    [164] N.A.Kazakis and A.A.Mouza, Experimental study of bubble formation at metal porous spargers: Effect of liquid properties and sparger characteristics on the initial bubble size distribution, Chemical Engineering Journal, 2008,137: 265~281
    [165] Heung June Chung, etc, Simultaneous visualization of dry spots and bubbles for pool boiling of R-113 on a horizontal heater, international journal of heat and mass transfer. 2003(46):2239-2251.
    [166] X. Fu etc, Bubble growth, departure and the following flow pattern evolution during flow boiling in a mini-tube, international journal of heat and mass transfer. 2010(53):4819-4831.
    [167] Valerie J.Anderson, Insights into phase transition kinetics from colloid science, Nature, 416:811-815
    [168]刁彦华等,R-113池沸腾汽泡行为的可视化及传热机理,化工学报,2005,2(56):227-233.
    [169]刘直芳,数字图像处理与分析,清华大学出版社,北京,2006.
    [170]马一太,杨俊兰,刘圣春,管海清. CO_2跨临界循环与传统制冷循环的热力学分析.太阳能学报,2005, 26(6): 836-841.
    [171] Samer Sawalha. Theoretical evaluation of transcritical CO_2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions. International Journal of Refrigeration, 2008, 31 (3):516-524.
    [172] Robinson D M,Groll E A.Efficiencies of transcritical CO_2 cycles with andwithout an expansion turbine.International Journal of Refrigeration,1998,21(7): 577~589.
    [173]王景刚,马一太,魏东等,CO_2跨临界双级压缩带膨胀机制冷循环研究,制冷学报,2001,22(2):6~11.
    [174]马国远,李红旗,旋转压缩机,北京:机械工业出版社,2003.1.1
    [175]宁静红,二氧化碳跨临界循环滚动转子式压缩机的研究:[硕士学位论文],天津;天津大学,2003.
    [176]国家冶金工业局,GB/T3077-1999,合金结构钢,北京,1999.
    [177]刘永铨,钢的热处理,冶金工业出版社,1987.
    [178]胡海天等,微波等离子体渗氮装置,金属热处理,1995.
    [179]周孝重等,离子体热处理工业技术,机械工业出版社,1990.
    [180]钱苗根等,现代表面技术,机械工业出版社,1999.
    [181]姜云涛,CO_2跨临界水-水热泵及两缸滚动活塞膨胀机的研究:[博士论文],天津:天津大学,2009.
    [182] HKS,inc. Abaqus/CAE User’s Manual: Interactive Version, Hibbitt, Karlsson & Sorensen, USA
    [183]刘霞,葛新锋,FLUENT软件及其在我国的应用,能源研究与利用,2003,2:36-38.
    [184]韩占忠,王敬,兰小平,FLUENT流体工程仿真计算实例与应用,北京理工大学出版社,2004:8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700