CO_2单管池沸腾换热实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际上对自然工质CO_2跨临界循环研究的深入,提高CO_2跨临界制冷循环系统各部件的效率,加快其向实用化迈进是当前研究的关键问题。本文通过理论分析,实验研究相结合,重点对CO_2满液式蒸发器开展了研究。
     通过对CO_2管内和管外沸腾关联式的计算和对比,得出了CO_2池沸腾换热效果要好于管内沸腾换热,并为实验数据与关联式的对比提供了依据。
     论文对亚临界区CO_2与常规工质的物性进行了比较,研究了CO_2管内沸腾换热干涸问题和沸腾成核机理,提出了CO_2满液式蒸发器设计的设想。这些都有助于了解CO_2沸腾换热特性,可为设计高效、大型CO_2满液式蒸发器提供必要的理论基础。
     本文自行设计和制造了CO_2单管满液式蒸发器,并在原有CO_2热泵系统上进行改造,减少了实验成本。通过对CO_2单管满液式蒸发器进行实验研究,得出了满液式沸腾换热系数与热流密度、压力之间的变化关系,并与经验关联式进行了对比分析,发现实验结果与Cooper法吻合,平均偏差为9.85%。实验还对CO_2池沸腾进行了可视化研究,观察了CO_2沸腾气泡的变化情况。最后,总结出了二氧化碳单管池沸腾换热的实验关联式,和蒸发器换热系数表,为今后CO_2池沸腾蒸发器的研究和设计提供了实验基础和数据参考。
As more and more international researches have concerned on natural working fluid CO_2 transcritical cycle, improvement of each refrigeration cycle’s part performance and the promotion of its practicality all become the key problems of current concerning research. Through theoretical analysis in the thesis, combined with experimental research, CO_2 pool-boiling evaporator was studied.
     Through calculation and comparison boiling correlations outside-tube with those of in-tube, it is found that CO_2 pool-boiling heat transfer coefficient is much higher than in-tube heat transfer coefficient. The analysis results also supply the basic data for the comparison with experimental data.
     The thermo-physical properties of carbon dioxide in the subcritical region are analyzed and compared with those of the conventional refrigerants in this thesis. Dry-up phenomena of CO_2 in-tube boiling heat transfer is analyzed, the characteristics CO_2 nucleation growth mechanism are investigated. The concept of CO_2 pool-boiling evaporator is presented. All the above studies can help to understand the theoretical for designing CO_2 pool-boiling evaporator in high efficiency and practicality.
     A CO_2 single tube pool-boiling evaporator was designed and made by ourselves. The primary CO_2 heat pump system was improved. Through experiment research on CO_2 single tube pool-boiling heat transfer, the relationship of heat transfer coefficient variety with heat flux and pressure was found, and compared with the experimental correlations. The experiment data are closed to theretical results of Cooper correlation, average error is 9.85%. The behaviors of bubbles in the experiment of CO_2 pool-boiling were observed. Finally, an experimental correlation of CO_2 single tube pool-boiling and a diagram of evaporator heat transfer coefficient is summarized in this thesis. All the results will give helps for study and design of CO_2 pool-boiling evaporator from experiments and data.
引文
[1] J. Pettersen A.Hafner, G..Skargen.Development of compact heat transfers for CO_2 air-conditioning system[J].International Journal of Refrigeration,1982,21(3):180-193
    [2] Lorenzen G. Revival of Carbon dioxide as a refrigerant [J]. International Journal of Refrigeration, 1994, 17(5): 292-301.
    [3] 查世彤,二氧化碳跨临界循环膨胀机的研究与开发[D], 天津大学博士论文,2002
    [4] 李敏霞,二氧化碳跨临界循环转子式膨胀机的分析与实验研究[D],天津大学博士论文,2003
    [5] Bredesen AMK, Hafner A, Pettersen J, Neks? P, Aflekt K. Heat transfer and pressure drop for in-tube evaporation of CO_2. International Conference on Heat transfer Issues in Natural Refrigerants, College Park, 1997, 1-15
    [6] Yun R, Choi CS, Kim YC. Convective boiling heat transfer of carbon dioxide in horizontal small diameter tubes. Preliminary proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002, 298-308.
    [7] Kwang-11 Choi, A.S. Pamitran, Flow Boiling Heat Transfer of CO_2 in Horizontal Smooth Mi nic ha nnels,A CRA2 004:293303
    [8] C hen,J. C.,"A Correlation for Boiling Heat Transfer to Saturated Fluid in Convective Flow," ASME preprint63 -HT-34 presente dat6h National Heat Transfer Conference,Boston, August 1963(a):11-14
    [9] Shin-Young Kang, Sang-Joe Lee, etc. Characteristics of Evaporative Heat Transfer in a Horizontal Smooth Tube with CO_2, ACRA2 004:37438
    [10] Pettersen J, Rieberer R, Munkejord ST. Heat transfer and pressure drop characteristics of evaporating carbon dioxide in micro-channel tubes. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 107-114.
    [11] Pettersen J. Flow vaporization of CO_2 in micro-channel tubes, Part 1:experimetal method and two-phase flow pattern. Preliminary Proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002, 76-83.
    [12] Pettersen J. Flow vaporization of CO_2 in micro-channel tubes, Part 2:heat transfer, pressure drop and correlation. Preliminary Proceedings of the 5th IIR-GustavLorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002,84-91
    [13] Choi JB, Yoon SH, Kim YJ, Kim MS, Investigation of the Characteristics of Evaporation Heat Transfer for Carbon Dioxide in a Vertical Tube. Preliminary Proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002,61-67.
    [14] Cho ES, Yoon SH, Kim MS. A study on the characteristics of evaporative heat transfer for carbon dioxide in a horizontal tube. Proceeding of the KSME 2000 Spring Annual Meeting B, April 20-22, Ulsan, Korea, 2000:104-107.
    [15] Rin Yun , Yongchan Kim , Min Soo Kim , Youngdon Choi Boiling heat transfer and dryout phenomenon of CO_2 in a horizontal smooth tube. International Journal of Heat and Mass Transfer 46 (2003) 2353–2361.
    [16] Zhao Y, Molki M, Ohadi MM, Dessiatoun SV. Flow boiling of CO_2 in microchannels, ASHRAE Transactions, 2000,106:437-445.
    [17] Dieter Gorenflo*, Stephan Kotthoff. Review on pool boiling heat transfer of carbon dioxide. International Journal of Refrigeration 28 (2005) 1169–1185
    [18] S. Loebl, W.E. Kraus, Pool boiling heat transfer of carbon dioxide on a horizontal tube, Proceedings of the Sixth IIRGustav Lorentzen Conference, Glasgow, 2004 [paper 1/A/1.20].
    [19] S. Loebl, W.E. Kraus, Zum Wa¨rmeu¨bergang bei der Verdampfung von Kohlendioxid am horizontalen Rohr DKV-Tagungsbericht 22 (2004) [Bd.II.1] 219–232.
    [20] (a) K. Bier, M. Lambert, Heat transfer in nucleate boiling of different low boiling substances, Int J Refrigeration 13 (1990) 293–300; (b) M.A. Lambert. Wa¨rmeu¨bergang beim Blasensieden reiner Stoffe im Bereich tiefer Siedetemperaturen, PhD thesis Univ. Karlsruhe (TH), 1991.
    [21] D. Gorenflo, Beha¨ltersieden, Abschn. Ha,, 4th ed VDI Wa¨rmeatlas, VDI-Verlag, Du¨sseldorf, 1984.
    [22] Pettersen J, Hafner A, Skaugen G. Development of compact heat exchangers for CO_2 air-conditioning systems. Int J. Refrig, 1998, 21(3): 180-193.
    [23] Zhao Y, Ohadi MM, Radermacher R. Microchannel heat exchangers with carbon dioxide, ARTI21-CR Research Project 605-10020, http://www.arti-21cr.org, 2001.
    [24] Kim Man-Hoe, Pettersen J, Bullard CW. Fundamental process and system design issues in CO_2 vapor compression systems. Progress in Energy and Combustion Science, 2004, 30:119-174.
    [25] Kim MH, Bullard CW. Development of a micro-channel evaporator model for a CO_2 air-conditioning system. Energy, 2001,26(10): 931-948.
    [26] Ortiz TM, Groll EA. Steady-state thermal finite-element analysis of a microchannel CO_2 evaporator. Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, 2000, 285-293.
    [27] Kulkarni T, Bullard CW. Optimizing effectiveness of R744 microchannel evaporators. Preliminary Proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002, 253-259.
    [28] Chen JC. A correlation for boiling heat transfer to saturated fluids in vertical flow. International Chemical Engineering Proceedings: Design and Device, 1966,5(3):322-339.
    [29] Shah MM. A new correlation for heat transfer during boiling flow through pipes. ASHRAE Transactions, 1976,82(2):66-74.
    [30] Shah MM. Chart correlation for saturated boiling heat transfer: equations and future study. ASHRAE Transactions, 1982,88(2):185-196.
    [31] Bennet D. L. , Chen J . C. Forced Convection Boiling in Vertical Tubes for Saturated Pure Components and Binary Mixtures. Journal of AICHE , 1980 ,26 :454~461
    [32] Gungor KE, Winterton RHS. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 1987, 29(3):351-358.
    [33] Liu Z, Winterton RHS. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer, 1991, 34(11):2759-2766.
    [34] Bredesen AMK, Hafner A, Pettersen J, Neksa P, Aflekt K. Heat transfer and pressure drop for in-tube evaporation of CO_2. International Conference on Heat transfer Issues in Natural Refrigerants, College Park, 1997, 1-15.
    [35] Hwang Y, Kim B, Radermacher R. Boiling heat transfer correlation for carbon dioxide. Proceedings of International Conference on Heat Transfer Issues In Natural Refrigerant, College Park, 1997: 44-57.
    [36] Yun R, Choi CS, Kim YC. Convective boiling heat transfer of carbon dioxide in horizontal small diameter tubes. Preliminary proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002, 298-308.
    [37] Yoon SH, Cho ES, Hwang YW, et al. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. Int. J. of Refrigeration, 2004, 27(2):111-119.
    [38] Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transfer 1980;23: 73–87.
    [39] Nishikawa K, Fujita Y, Ohta H, Hidaka S. Effect of the surface roughness on thenucleate boiling heat transfer over a wide range of pressure. Proceedings of the 7th International Heat Transfer Conference Mu¨nchen (Germany), vol. 4.; 1982. p. 1–66.
    [40] Gorenflo D. VDI-Wa¨rmeatlas, Beha¨ltersieden (Pool Boiling), 4. Aufl., Abschn. Ha; 1984 or 9. Aufl., Abschn. Hab. Berlin: Springer-Verlag; 2002.
    [41] Cooper MG. Heat flow rates in saturated nucleate pool boiling—a wide-ranging examination using reduced properties. In: Advances in Heat Transfer, Vol 16. Academic Press. p. 157–239.
    [42] Leiner W. Heat transfer by nucleate pool boiling—general correlation based on thermodynamic similarity. Int J Heat Mass Transfer 1994;37(5):763–9.
    [43] Jung D, Kim Y, Ko Y, Song K. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. Int J Refrig 2003; 26:240–8.
    [44] 杨俊兰,CO_2 跨临界循环系统及换热理论分析与实验研究[D],天津;天津大学,2005
    [45] 周强泰编著,两相流动和热交换,水利电力出版社,1987
    [46] Hiharae, Tanakas. Boiling heat transfer of carbon dioxide in horizon tal tubes [C]. Prelim inary Proceedings of the 4th IIR-Gustav Lorentzen Confonce Natural Working Fluids, Purdue, 2000: 279-284.
    [47] Satish G. Kandlikar. Flow boiling in microchannels: non-dimensional groups and heat transfer mechanisms.Thermal Analysis & Microfluidics. www.rit.edu/taleme
    [48] 林瑞泰,沸腾换热,北京;科学出版社,1988
    [49] S.J.D.v.Stralen.et al. Bubble Growth Rates in Nucleate Boiling of Aqueous Binary System of Scbatmospheric Pressure. Int. J. Heat Mass Transfer, 19, 1976. p.931
    [50] K. Nisikawa and K. Urakawa. An Experiment of Nucleat Boiling under Reduced Pressure. Memories of Faculty of Eng.Kyusou Univ, 19, 1960, p.63
    [51] 王侃宏,CO_2 跨临界循环的理论分析与实验研究[D],天津;天津大学,2000
    [52] 桑国光,张圣堃编著,结构可靠性原理及其应用,上?煌ù笱С霭嫔纾?1986
    [53] 魏东,二氧化碳跨临界循环换热与膨胀机理的研究[D],天津;天津大学,2002
    [54] Dieter Gorenflo, Stephan Kotthoff. Review on pool boiling heat transfer of carbon dioxide. Int J Refrig, 28 ,2005. 1169–1185
    [55] 刘文毅,李妩,陶文铨.替代工质 HCFC123 管外沸腾换热实验研究,华北电力大学学报,2005,32(4):40-43
    [56] 杨世铭,陶文铨,传热学第三版,北京;高等教育出版社,1998
    [57] D.Gorentlo,P.Sokol and S.Caplanis. Pool boiling heat transfer from single plain tubes to various hydrocarbons. Int J Refrig,l990。13:286—292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700