多尺度光声显微成像用于在体微循环的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微循环是微血管范畴内的血液循环,其主要功能是进行血液和组织之间的物质交换。很多重大疾病都涉及到微循环的异常改变,因此对微循环的在体成像研究具有重大的临床诊断意义。微血管网络的空间结构错综复杂,而且管径在几微米到200微米范围内变化,因此单一尺度的成像技术不能很好地对复杂的微循环网络进行成像。光声显微成像(photoacoustic microscopy, PAM)技术将光吸收编码成超声波,能够对生物组织的同一对比度源进行多尺度的成像研究,而且,由于超声波在组织中的散射远小于光的散射,该技术的成像深度更深。因此,PAM能够在深层组织对微循环网络进行多尺度的在体三维成像,在微循环的研究中具有明显的优势。本文旨在发展和利用多尺度PAM系统对微循环进行成像研究,具体内容如下:
     (1)为了在深层组织对微循环进行成像,利用声学分辨功能光声显微成像(functional photoacoustic microscopy, fPAM)系统对微循环进行了在体成像研究。通过对系统的性能参数进行评估,得到系统的侧向分辨率为45μm,组织中的成像深度为3mm。通过对大鼠背部皮下、脑皮层以及人手掌皮下的微循环进行在体成像,证明系统具有在深层组织对微循环进行结构成像的能力。
     (2)由于声学分辨的fPAM系统的分辨率不足以对毛细血管水平的微循环进行成像研究,同时为了提高高分辨率PAM系统在组织中的成像深度,采用一种新的光声探测结构设计,研制了一套基于反射物镜的高分辨光学分辨PAM系统。反射物镜一方面实现近光学衍射极限的光学聚焦,另一方面使得超声探头能够放置于其中间的空心光锥里以实现直接的超声探测,避免了超声传输过程中多界面反射造成的额外的超声能量损失,从而提高超声的收集效率。超声探头采用具有高灵敏度的聚乙二烯二氟化物(polyvinylidene difluoride, PVDF)薄膜作为压电换能材料,高效地探测到激发的超声波,使得系统具有足够的灵敏度探测单根毛细血管以及离散的红细胞的光声信号。对系统的性能进行评估,显示系统的侧向分辨率为1.2μm,同时具有相对深的穿透深度,在生物组织里最大成像深度可达到0.9mm,能够在体分辨单根毛细血管和离散的红细胞。通过对小鼠耳廓的微血管进行在体成像,证明该系统具备在相对深的组织范围对毛细血管水平的微循环进行在体成像研究的能力。
     (3)为了实现对大脑皮层微循环的多信息成像,联合fPAM技术和LSI技术对大鼠大脑早期低灌注的脑皮层微循环进行了多参数成像研究。利用大鼠脑瞬时低灌注模型,在大鼠单侧颈总动脉结扎后,即刻检测同侧脑皮层不同深度处微血管的血流速度、血氧饱和度和总血红蛋白浓度的变化。在结扎后6s时刻,各参数均下降到最低,分别为结扎前的37±3%、72±7%和93±2%。随后各参数均有不同程度的恢复,其中血氧饱和度的恢复明显滞后于血流速度和总血红蛋白浓度的恢复。从整个过程来看,结扎后血流速度和血红蛋白浓度具有相似的响应速度和变化趋势。
Microcirculation is referred to as blood circulation within microvasculature, and the mass exchange between blood and tissue is the fundamental function of microcirculation. Since many serious diseases are involved with the abnormal change of microcirculation, it is of great clinical significance to study microcirculation by in vivo imaging techniques with high temporalspatial resolution. Because the spatial structure of the microcirculation network is complicated, and the diameters of the microvasculature vary from several micrometers to200micrometer, imaging techniques with single scale are not able to map microcirculation well. Photoacoustic microscopy (PAM) encodes the optical absorption to ultrasound, and can provide multiscale imaging for biolgy tissue with the same contrast source. Furthermore, due to that the ultrasound scattering is much lower than optical scattering in tissue, PAM can obtain higher image depth than other optical imaging tools. Therefore, PAM has advantages on imaging of the complicated microcirculation network in deep tissue in vivo with multiple scales in three dimensions (3-D). This study aimed to develop and utilize the multiscale PAM system for the research on microcirculation. More detail is desacribed as follows:
     (1) In order to image the microcirculation in deep biology tissue, the previously built acoustic-resolution functional photoacoustic microscopy (fPAM) system in our lab was used. The system lateral resolution was measured to be45μm, and the system imaging depth was measured to be3mm in tissue. Microvasculatures in dorsal skin and cerebral cortex in rat and the palm of volunteers were studied by fPAM, it was demonstrated that this system of fPAM has the ability to image the strcuture of microcirculation in deep biology tissue.
     (2) As the resolution of the acoustic-resolution fPAM described above is not sufficient to image capillaries of microcircution, meanwhile, in order to improve the imaging depth of high resolution PAM systems, a new photoacoustic probe was designed and a high resolution optical-resolution PAM (OR-PAM) system based on a reflective objective was developed. The reflective objective was used to obtain near optical diffraction-limited focus. Meanwhile, the ultrasound transducer was located into the hollow optical cone of the objective to realize direct ultrasonic detection, and the ultrasonic detection efficiency is improved without the loss of ultrasound transmission energy due to reflection on multiple interfaces. A polyvinylidene difluoride (PVDF) ultrasonic transducer with high sensitivity was utilized to collect the excited ultrasound, which guaranteed that the system could image a single capillaries and red blood cells with sufficient sensitivity. The lateral resolution of this new system at focus was measured to be1.2μm, and the system could image the targets with relatively high penetration depth of0.9mm in biological tissue. These make the system can resolve a single capillaries and discrete red blood cells in vivo. The system was demonstrated to have the capacity to study microcirculation in capillary level by imaging the microvasculature in mouse ear.
     (3) In order to realize the multiple-information image of the cortex, the multiple-parameter imaging of the rat cortex microcirculation in early cerebral hypoperfusion was performed by combining the fPAM with laser speckle imaging (LSI). The transient changes in cerebral blood flow (CBF), oxygen saturation (SO2) and total hemoglobin concentration (HbT) in single micro blood vessels of ipsilateral cortex were observed during transient cerebral hypoperfusion by ligating the unilateral common carotid artery (CCA) in rats. CBF, SO2, and HbT respectively decreased to37±3%,72±7%, and93±2%of baseline in6seconds immediately after occlusion, and then recovered with different degree. In summary, these parameters showed the decrease with different degree and the following recovery over time after ligation, the recovery of SO2lagged behind those of CBF and HbT, which had the similar response.
引文
[1]张镜如,乔建天,马青年等.生理学,第四版.北京:人民卫生出版社,2000.125-128
    [2]http://en.wikipedia.org/wiki/Microcirculation
    [3]den Uil Corstian A., Klijn E., Lagrand W.K., et al. The Microcirculation in Health and Critical Disease. Prog Cardiovasc Dis,2008,51:161-170
    [4]刘育英.微循环图谱,第一版.北京:人民军医出版社,2005
    [5]Ruitenberg A., den Heijer T., Bakker S. L. M., et al. Cerebral hypoperfusion and clinical onset of dementia:The Rotterdam study. Annals of Neurology,2005,57: 789-794
    [6]Hu S., Wang L. V. Photoacoustic imaging and characterization of the microvascu-lature. J Biomed Opt,2010,15:011101
    [7]Rucker M., Roesken F., Vollmar B., et al. A Novel Approach for Comparative Study of Periosteum, Muscle, Subcutis, and Skin Microcirculation by Intravital Fluorescence Microscopy. Microvasc Res,1998,56:30-42
    [8]Podoprigora G. I., Blagosklonov O., Angoue O., et al. Assessment of microcircu-latory effects of glycine by intravital microscopy in rats. Conf Proc IEEE Eng Med Biol Soc,2012,2012:2651-2654
    [9]Bajory Z., Szabo A., Deak G., et al. Orthogonal polarization spectral imaging:a novel tool for examination of microcirculatory changes in the testis. J Androl,2012, 33:499-504
    [10]Silverstein D. C., Pruett-Saratan A., Drobatz K. J. Measurements of microvascular perfusion in healthy anesthetized dogs using orthogonal polarization spectral imaging. J Vet Emerg Crit Care (San Antonio),2009,19:579-587
    [11]Mehrabian H., Lindvere L., Stefanovic B., et al. A constrained independent component analysis technique for artery-vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature. Med Image Anal, 2012,16:239-251
    [12]Li D., Zheng W., Zhang W., et al. Time-resolved detection enables standard two-photon fluorescence microscopy for in vivo label-free imaging of microvasculature in tissue. Opt Lett,2011,36:2638-2640
    [13]Serduc R., Verant P., Vial J. C., et al. In vivo two-photon microscopy study of short-term effects of microbeam irradiation on normal mouse brain microvascu-lature. Int J Radiat Oncol Biol Phys,2006,64:1519-1527
    [14]Wierwille J., Andrews P. M., Onozato M. L., et al. In vivo, label-free, three-dimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography. Lab Invest,2011,91:1596-1604
    [15]Bell A. G. On the Production and Reproduction of Sound by Light. American Journal of Science,1880, Third Series, XX(118):305-324
    [16]Ku G., Wang X., Xie X., et al. Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl Opt,2005,44:770-775
    [17]Wang Y., Xing D., Zeng Y., et al. Photoacoustic imaging with deconvolution algorithm. Phys Med Biol,2004,49:3117-3124
    [18]Wang X., Pang Y., Ku G., et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol,2003,21:803-806
    [19]Zhang H. F., Maslov K., Stoica G., et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol,2006,24: 848-851
    [20]Maslov K., Zhang H. F., Hu S., et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett,2008,33:929-931
    [21]Wang L. V. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics,2009,3:503-509
    [22]Zhang H. F., Maslov K., Li M. L., et al. In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy. Opt Express,2006,14:9317-9323
    [23]Geisler B. S., Brandhoff F., Fiehler J., et al. Blood oxygen level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke,2006, 37:1778-1784
    [24]Govind N., Timothy Q. D. Echo-Planar BOLD fMRI of Mice on a Narrow-Bore 9.4 T Magnet. Magn Reson Med,2004,52:430-434
    [25]Tak S., Yoon S. J., Jang J., et al. Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. Neurolmage,2011,55: 176-184
    [26]Vernieri F., Tibuzzi F., Pasqualetti P., et al. Transcranial Doppler and near-infrared spectroscopy can evaluate the hemodynamic effect of carotid artery occlusion. Stroke,2004,35:64-70
    [27]Ibaraki M., Miura S., Shimosegawa E., et al. Quantification of Cerebral Blood Flow and Oxygen Metabolism with 3-Dimensional PET and 150:Validation by Comparison with 2-Dimensional PET, J Nucl Med.,2008,49:50-59
    [28]Benard F., Romsa J., Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med, 2003,33:148-162
    [29]Velan, S. S., Spencer, R. G. S., Zweier, J. L, et al. Electron paramagnetic resonance oxygen mapping (EPROM):Direct visualization of oxygen concentration in tissue. Magn Reson Med,2000,43:804-809
    [30]Epel B., Haney C. R., Hleihel D., et al. Electron paramagnetic resonance oxygen imaging of a rabbit tumor using localized spin probe delivery. Med Phys,2010,37: 2553-2559
    [31]Hu S., Maslov K., Wang L. V. Three-dimensional optical-resolution photoacoustic microscopy. J Vis Exp,2011,51:2729
    [32]Wang L. V., Hu S. Photoacoustic tomography:in vivo imaging from organelles to organs. Science,2012,335:1458-1462
    [33]Ku G., Maslov K., Li L., et al. Photoacoustic microscopy with 2-microm transverse resolution. J Biomed Opt,2010,15:021302
    [34]Yao D. K., Maslov K., Shung K. K., et al. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt Lett,2010,35: 4139-4141
    [35]Zhang C., Maslov K., Wang L. V. Subwavelength-resolution label-free photo-acoustic microscopy of optical absorption in vivo. Opt Lett,2010,35:3195-3197
    [36]Zhang C., Maslov K., Yao J., et al. In vivo photoacoustic microscopy with 7.6-microm axial resolution using a commercial 125-MHz ultrasonic transducer. J Biomed Opt,2012,17:116016
    [37]Wang L., Maslov K., Xing W., et al. Video-rate functional photoacoustic microscopy at depths. J Biomed Opt,2012,17:106007
    [38]Yao J., Maslov K. I., Puckett E. R., et al. Double-illumination photoacoustic microscopy. Opt Lett,2012,37:659-661
    [39]Xing W., Wang L., Maslov K., et al. Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt Lett,2013,38: 52-54
    [40]Jiao S., Xie Z., Zhang H. F., et al. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt Lett,2009,34: 2961-2963
    [41]Li L., Maslov K., Ku G., et al. Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies. Opt Express, 2009,17:16450-16455
    [42]Liu T., Wei Q., Wang J., et al. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomed Opt Express, 2011,2:1359-1365
    [43]Wang Y., Hu S., Maslov K., et al. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure. Opt Lett, 2011,36:1029-1031
    [44]Subochev P., Katichev A., Morozov A., et al. Simultaneous photoacoustic and optically mediated ultrasound microscopy:phantom study. Opt Lett,2012,37: 4606-4608
    [45]Xie Z., Chen S. L., Ling T., et al. Pure optical photoacoustic microscopy. Opt Express,2011,19:9027-9034
    [46]Jiang M., Zhang X., Puliafito C. A., et al. Adaptive optics photoacoustic microscopy. Opt Express,2010,18:21770-21776
    [47]Yamaoka Y., Nambu M., Takamatsu T. Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering. Opt Express,2011,19:13365-13377
    [48]Favazza C. P., Cornelius L. A., Wang L. V. In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin. J Biomed Opt,2011,16: 026004
    [49]Stein E. W., Maslov K., Wang L. V. Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. J Biomed Opt,2009,14:020502
    [50]Staley J., Grogan P., Samadi A. K., et al. Growth of melanoma brain tumors monitored by photoacoustic microscopy. J Biomed Opt,2010,15:040510
    [51]Li M. L., Wang J. C., Schwartz J. A., et al. In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt,2009,14: 010507
    [52]Zhang H. F., Maslov K., Stoica G., et al. Imaging acute thermal burns by photoacoustic microscopy. J Biomed Opt,2006,11:054033
    [53]Chatni M. R., Yao J., Danielli A., et al. Functional photoacoustic microscopy of pH. J Biomed Opt,2011,16:100503
    [54]Hu S., Yan P., Maslov K., et al. Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. Opt Lett,2009,34:3899-3901
    [55]Hu S., Maslov K., Tsytsarev V., et al. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt,2009,14:040503
    [56]Tsytsarev V., Hu S., Yao J., et al. Photoacoustic microscopy of microvascular responses to cortical electrical stimulation. J Biomed Opt,2011,16:076002
    [57]Yao J., Xia J., Maslov K. I., et al. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage,2013,64:257-266
    [58]Oladipupo S. S., Hu S., Santeford A. C., et al. Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. Blood,2011,117:4142-4153
    [59]Hu S., Rao B., Maslov K., et al. Label-free photoacoustic ophthalmic angiography. Opt Lett,2010,35:1-3
    [60]Jiao S., Jiang M., Hu J., et al. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt Express,2010,18:3967-3972
    [61]Zhang C., Zhang Y. S., Yao D. K., et al. Label-free photoacoustic microscopy of cytochromes. J Biomed Opt,2013,18:20504
    [62]Zhou Y., Zhang C., Yao D. K., et al. Photoacoustic microscopy of bilirubin in tissue phantoms. J Biomed Opt,2012,17:126019
    [63]Krumholz A., Vanvickle-Chavez S. J., Yao J., et al. Photoacoustic microscopy of tyrosinase reporter gene in vivo. J Biomed Opt,2011,16:080503
    [64]Kruger R. A., Liu P., Fang Y. R., et al. Photoacoustic ultrasound (PAUS)--reconstruction tomography. Med Phys,1995,22:1605-1609
    [65]Schoonover R. W., Anastasio M. A. Image reconstruction in photoacoustic tomography involving layered acoustic media. J Opt Soc Am A-Opt Image Sci Vis, 2011,28:1114-1120
    [66]Zhang C., Li C., Wang L. V. Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry:experimental validation. IEEE Photonics J,2010,2:57-66
    [67]Wang L. V., Yang X. Boundary conditions in photoacoustic tomography and image reconstruction. J Biomed Opt,2007,12:014027
    [68]Wang L. V., Wu H.-i. Biomedical Optics:Principles and Imaging. New Jersey:John Wiley & Sons,2007
    [69]Xu M. H., Wang L. V. Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E,2005,71:016706
    [70]Gateau J., Caballero M. A., Dima A., et al. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array:whole-body tomographic system for small animals. Med Phys,2013,40:013302
    [71]Brecht H. P., Su R., Fronheiser M., et al. Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt,2009,14: 064007
    [72]Yang J. M., Chen R., Favazza C., et al. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy. Opt Express,2012,20:23944-23953
    [73]Yang J. M., Maslov K., Yang H. C., et al. Photoacoustic endoscopy. Opt Lett,2009, 34:1591-1593
    [74]Wang L. H. V. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics,2009,3:503-509
    [75]Zhang H. F., Maslov K., Stoica G., et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol,2006,24: 848-851
    [76]Yamazaki M., Sato S., Ashida H., et al. Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling. J Biomed Opt,2005,10:064011
    [77]Zhang H. F., Maslov K., Sivaramakrishnan M., et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl Phys Lett,2007,90:053901
    [78]Yang X. Q., Cai X., Maslov K., et al. High-resolution photoacoustic microscope for rat brain imaging in vivo. Chin Opt Lett,2010,8:609-611
    [79]Wang H., Xing D., Xiang L. Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer. J Phys D:Appl Phys,2008,41:095111
    [80]Wang H., Yang X., Wang Z., et al. Early monitoring of cerebral hypoperfusion in rats by laser speckle imaging and functional photoacoustic microscopy. J Biomed Opt,2012,17:061207
    [81]Liu Y., Zhang C., Wang L. V. Effects of light scattering on optical-resolution photoacoustic microscopy. J Biomed Opt,2012,17:126014
    [82]Hu S., Maslov K., Wang L. V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett,2011,36:1134-1136
    [83]Xie Z., Jiao S., Zhang H. F., et al. Laser-scanning optical-resolution photoacoustic microscopy. Opt Lett,2009,34:1771-1773
    [84]Zhang C., Maslov K., Hu S., et al. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J Biomed Opt,2012,17:020501
    [85]Hajireza P., Shi W., Zemp R. J. Real-time handheld optical-resolution photoacoustic microscopy. Opt Express,2011,19:20097-20102
    [86]Yuan Y., Yang S. H., Xing D. Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer. Appl Phys Lett,2012,100:023702
    [87]Yao J., Maslov K., Hu S., et al. Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo. J Biomed Opt,2009,14:054049
    [88]Yao J., Maslov K. I., Zhang Y., et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt,2011,16:076003
    [89]Krumholz A., Wang L., Yao J., et al. Functional photoacoustic microscopy of diabetic vasculature. J Biomed Opt,2012,17:060502
    [90]Yao J.,Wang L. V. Transverse flow imaging based on photoacoustic Doppler bandwidth broadening. J Biomed Opt,2010,15:021304
    [91]Coviello C., Kozick R., Hurrell A., et al. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy. IEEE Trans Ultrason Ferroelectr Freq Control,2012,59:2322-2330
    [92]O'Reilly M. A.,Hynynen K. A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy. IEEE Trans Biomed Eng,2010,57: 2286-2294
    [93]冯若,姚锦钟,关立勋等.超声手册.南京:南京大学出版社,1999
    [94]Maslov K., Ku G.,Wang L. V. photoacoustic microscopy with submicron resolution. Proc. of SPIE,2010,7564:75640W
    [95]Shibata M., Yamasaki N., Miyakawa T., et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke,2007,38: 2826-2832
    [96]Kawamura J., Meyer J. S., Terayama Y., et al. Leukoaraiosis correlates with cerebral hypoperfusion in vascular dementia. Stroke,1991,22:609-614
    [97]Suter O. C., Sunthorn T., Kraftsik R., et al. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke,2002,33:1986-1992
    [98]Sarti C., Pantoni L., Bartolini L., et al. Persistent impairment of gait performances and working memory after bilateral common carotid artery occlusion in the adult Wistar rat. Behav Brain Res,2002,136:13-20
    [99]Shibata M., Ohtani R., Ihara M., et al. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke,2004,35:2598-2603
    [100]Kim J. E., Lee B. R., Chun J. E., et al. Cognitive dysfunction in 16 patients with carotid stenosis:Detailed neuropsychological findings. J Clin Neurol,2007,3:9-17
    [101]Caplan L. R., Wong K. S., Gao S., et al. Is hypoperfusion an important cause of strokes? If so, how?. Cerebrovasc Dis,2006,21:145-153
    [102]Lavinsky D., Arterni N. S., Achaval M., et al. Chronic bilateral common carotid artery occlusion:a model for ocular ischemic syndrome in the rat. Graefe's Arch Clin Exp Ophthalmol,2006,244:199-204
    [103]Farkas E., Luiten P. G. M., Bari F. Permanent, bilateral common carotid artery occlusion in the rat:A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev,2007,54:162-180
    [104]Ley G. D., Nshimyumuremyi J. B., Leusen I. Hemispheric blood flow in the rat after unilateral common carotid occlusion:evolution with time. Stroke,1985,16: 69-73
    [105]Otori T., Katsumata T., Muramatsu H., et al. Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol P,2003,30:266-272
    [106]Busch H. J., Buschmann I. R., Mies G., et al. Arteriogenesis in hypoperfused rat brain. J Cerebr Blood F Met,2003,23:621-628
    [107]Livnat A., Barbiro-Michaely E., Mayevsaky A. Mitochondrial Function and Cerebral Blood Flow Responses under Unilateral Carotid Occlusion in Rats. Proc. SPIE 2009,7180:718003
    [108]Fantini S., Hueber D., Franceschini M. A., et al. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol,1999,44:1543-1563
    [109]Wiernsperger N., Sylvia A. L., Jobsis F. F. Incomplete transient ischemia:a non-destructive evaluation of in vivo cerebral metabolism and hemodynamics in rat brain. Stroke,1981,12:864-868
    [110]Bluestone A. Y., Stewart M., Lei B., et al. Three-dimensional optical tomographic brain imaging in small animals, part 2:Unilateral carotid occlusion. J Biomed Opt, 2004,9:1063-1073
    [111]Jones P. B., Shin H. K., Boas D. A., et al. Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia. J Biomed Opt,2008,13:044007
    [112]Li P. C., Ni S. L., Zhang L., et al. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt Lett,2006,31:1824-1826
    [113]Cheng H. Y., Luo Q. M., Zeng S. Q., et al. Modified laser speckle imaging method with improved spatial resolution. J Biomed Opt,2003,8:559-564
    [114]Dunn A. K., Bolay T., Moskowitz M. A., et al. Dynamic imaging of cerebral blood flow using laser speckle. J Cerebr Blood F Met,2001,21:195-201
    [115]Ayata C., Dunn A. K., Gursoy-Ozdemir Y., et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cerebr Blood F Met,2004,24:744-755
    [116]Luo W. H., Wang Z., Li P. C., et al. A modified mini-stroke model with region-directed reperfusion in rat cortex. J Cerebr Blood F Met,2008,28:973-983
    [117]Dunn A. K., Devor A., Dale A. M., et al. Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage,2005,27:279-290
    [118]Liao L. D., Li M. L., Lai H. Y., et al. Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy. Neuroimage,2010,52:562-570
    [119]Stein E. W., Maslov K., Wang L. H. V. Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. J Biomed Opt,2009,14:020502
    [120]邱建军.激光散斑衬比成像流速测量准确性改善方法研究:[博士学位论文].武汉:华中科技大学,2010
    [121]刘谦.激光散斑衬比成像技术及其应用的研究:[博士学位论文].武汉:华中科技大学,2005
    [122]Qiu J. J., Li P. C., Luo W. H., et al. Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast. J Biomed Opt,2010,15: 016003
    [123]Liu S. S., Li P. C., Luo Q. M. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit. Opt Express,2008,16: 14321-14329
    [124]Farkas E., Bari F., Obrenovitch T. P. Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex. Neuroimage,2010,51:734-742
    [125]Hu S., Maslov K., Wang L. H. V. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. Opt Express, 2009,17:7688-7693
    [126]Aalkjaer C., Nilsson H. Vasomotion:cellular background for the oscillator and for the synchronization of smooth muscle cells. Brit J Pharmacol,2005,144:605-616
    [127]Liebeskind D. S., Sansing L. H. Willisian collateralization. Neurology,2004,63: 344
    [128]Liebeskind D. S. Collateral circulation. Stroke,2003,34:2279-2284
    [129]Farkas E., Luiten P. G. M. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol,2001,64:575-611
    [130]Favazza C. P., Jassim O., Cornelius L. A., et al. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. J Biomed Opt,2011,16:016015
    [131]Raabe A., De Ville D. V., Leutenegger M., et al. Laser Doppler imaging for intraoperative human brain mapping. Neuroimage,2009,44:1284-1289
    [132]Litofsky N. S., Chin, L.S., Tang, G., et al. The use of lobectomy in the management of severe closed-head trauma. Neurosurgery,1994,34:628-633
    [133]Yao H., Sadoshima S., Kuwabara Y., et al. Cerebral blood flow and oxygen metabolism in patients with vascular dementia of the Binswanger type. Stroke,1990, 21:1694-1699
    [134]Tak S., Yoon S. J., Jang J., et al. Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. Neuroimage,2011,55: 176-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700