基于活动轮廓模型医学图像分割技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,心血管疾病已经成为我国仅次于恶性肿瘤的第二号杀手,临床诊断和医学研究表明,借助成熟计算机技术对医学影像进行分析对患有心血管疾病人群的规范诊疗和控制病情进展具有重要作用。然而由于成像机制等因素影响,多数医学图像带有噪声、弱边界、灰度不均匀性(偏移场现象)以及复杂背景等特点,使得早期图象分割方法如图像特征空间分类、基于区域方法以及图论方法等难以得到较好分割结果。基于水平集的活动轮廓模型具有严谨数学理论框架,能够融合解剖组织先验信息,采用光滑轮廓曲线来描述目标边界等优点,逐渐成为医学图像分割领域学者研究重点。
     活动轮廓模型图象分割模型可分为基于边界模型和基于区域模型。基于传统的边界模型,由于使用梯度信息驱动力使得模型易受到图像噪声或弱边界影响,从而陷入局部最优或造成边界泄,并且对初始曲线设置条件要求较高。基于区域的模型,如小邻域统计信息的模型,虽较好刻画图像小邻域的灰度信息,能够降低偏移场影响,但是邻域窗口大小和邻域各向同性对模型影响较大,使得模型易陷入局部极值。为此,本文对活动轮廓模型应用医学特定目标分割进行深入研究,引入图像统计信息来改进传统边界模型,构造出基于灰度统计信息驱动力,较好反映目标灰度信息,并使得初始化自由度较高。本文主要研究内容和创新点包括以下几个方面:
     (1).提出了一种基于区域自适应水平集图像分割模型。该算法引入基于区域信息的符号压力函数来控制曲线扩张(或收缩)至目标边界,改进了传统边界模型中人为设置初始曲线,降低了模型参数对图象分割影响。
     (2).提出了一种基于局部信息的测地线活动轮廓模型。该模型的外力由图像的邻域均值信息构造,从而有效地克服了灰度不均匀对分割结果的影响,有效地分割灰度不均匀的医学图像。
     (3).提出了一种小邻域统计信息测地线活动轮廓模型。该模型带有原始测地线活动轮廓模型方向性分割特点,模型外力由小邻域统计信息符号压力函数构造,拟合图像局部区域灰度分布,可以快速有效地分割左心室图像和脑部肿瘤图像。
     (4).提出了一种基于图像局部与全局特征的活动轮廓模型图像分割算法。该算法融合了图像局部信息和全局信息。局部信息结合了图像局部均值和方差信息,以克服图像灰度不均匀的影响。全局信息则可以较好地提高模型处理图像弱边界的能力,并防止模型陷入局部最优。实验结果表明,改进算法分割出较为精确的心脏左心室核磁共振图像。
Currently, cardiovascular disease has become the second death cause except malignant tumors in China, the clinical diagnosis and medical studies show that it is important for cardiovascular disease people to diagnose and control disease progression with the mature computer technology. Medical segmentation for the area of targets of interest is the important step for image analysis and understanding. Due to the imaging mechanism and other factors, the majority of medical images contain noise, weak border, intensity inhomogeneity (bias field phenomena) as well as complex background. For early image segmentation methods, such as classification methods based on image feature space, the regional approaches and the methods based on graph theory, they are difficult to get better segmentation results. Compared to the early image segmentation methods, active contour models based on level set, which has the framework of the rigorous mathematical theory, merges prior information of the anatomical organization, could use smooth contours to describe the target boundary, they gradually become the focus of medical image segmentation scholars.
     The active contour models based on image segmentation could be divided into the models based on edge and the models based on region.Segmentation models based on edge, which use gradient information as driving force, have limited capacity of dealing with image the weak boundary or noise, thus fall into local optimums or cause the border to vent. and require higher initial curve set conditions.The models based on region such as local statistical models. The models use small neighborhood statistical information as driving force to overcome the bias field, but they are sensitive to the size of a small neighborhood window parameter, isotropy of the neighborhood, and quality of image background. These factors are easy to make the models fall into local optimums.
     We deeply study active contour models in order to segment the area of targets of interest. Introducing statistical information of image to improve the models based on edge, we study small neighborhood statistical information to construct a new driving force which could overcome the bias field, reflect the target gray information, and improve the freedom of the initial contour. Main study content and innovations for this paper include the following aspects:
     (1). Image segmentation model based on region adaptive level set evolution was presented. Signed pressure force function based on regional information was introduced so that the contour shrieked when outside the object or expanded when inside the object, improved the shortage of artificial setting initial contour, overcame the influence of parameters of the weighted area.
     (2). A new model of GAC (ggeodesic aactive ccontour) based on local region was presented. Information of the local mean was used to make pressure force to segment images with intensity inhomogeneity. Experimental results with different medical images show that the new model can get the better results in efficient way.
     (3). A new model of GAC based on local statistical was presented, which has original GAC model with directional segment feature in order to reduce image background of the impact of segmentation results. The local statistics signed pressure force function is used to external force in order to describe the local image intensity distribution. Experimental results with left ventricular and brain tumor images show that the new model can get the better results in efficient way.
     (4). We proposes image segmentation active contour model based on local and global features. The local fitting term based on means and variances of local intensities to cope with intensity inhomogeneity. The global intensity fitting term, which conquers the unexpected local minimum stemming from image local intensity, deals with weak. The experiment results demonstrate that this algorithm is effective for segmenting the left ventricle MR images.
引文
[1]Huseyin T, Kimia B. Volumetric segmentation of medical images by three dimensional bubbles [J]. Computer vision and Image Understanding,1997,65(2):246-258.
    [2]Chakraborty A, Staib H, Duncan S. Deformable boundary finding in medical images by integrating gradient and region information [J]. IEEE Transactions on Medical Image, 1996,15(6):859-870.
    [3]Johnston B, Atkins M, Mackiewich B. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI [J]. IEEE Transactions on Medical Image.1996, 15(2):154-169.
    [4]Wells W, Grimson W, Kikins R. Adaptive segmentation of MRI data [J]. IEEE Transactions on Medical Image.1996,15(4):429-442.
    [5]Zhou Q, Zhu Y, Bergot C, et al.A method of radio-frequency inhomogeneity correction for brain tissue segmentation in MRI [J]. Computerized Medical Imaging and Graphics, 2001,25(5):379-389.
    [6]Suchendra M B, Zhang Y, Walter D P.An edge-Detection Techniques using genetic algorithm-based optimization [J]. Pattern Recognition,1994,27(9):1159-1180.
    [7]Sehoo P K, Soltani S, Wang A, et al.A Survey of Thresholding Techniques [J]. Computer Vision, Graphics and Image Processing,1988,41(2):233-260.
    [8]Benoit C, Nicolas P, Piotr A, et al.A non-local fuzzy segmentation method:Application to brain MRI [J]. Pattern Recognition,2011,44(9):1916-1927.
    [9]Zhao F, Jiao L, Liu H, et al. A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation [J]. Signal Processing,2011,91(4):988-999.
    [10]Wang X, Wang Q Y, Yang H Y, et al.Color image segmentation using automatic pixel classification with support vector machine [J]. Neurocomputing,2011,74(18):3898-3911.
    [11]Li C, Zhou J, Kou P, et al. A novel chaotic particle swarm optimization based fuzzy clustering algorithm [J].Neurocomputing,2012,83(15):98-109.
    [12]Cai W, Chen S, Zhang D. Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition,2007, 40(3):825-838.
    [13]Cottet G, Ei H, Ayyadi M. A Vulture Type Model of Image Processing [J], IEEE Transactions on Image Processing,1998,7(3):292-303.
    [14]Ginneken B, Alejandro F F, Joes J. Active shape model.segmentation with optimal features[J].IEEE Transactions on Medical Imaging,2002,21(8):924-933.
    [15]Olabarriaga S, Smeulders A.Interaction in the Segmentation of medical image:A survey [J].Medical Image Analysis,2001,5(2):127-142.
    [16]Ourselin S. Overview on computer-assisted medical image segmentation.World Congress on Medical Physics and Biomedical Engineering, Sydney, Australia,2003, Invited speaker.
    [17]Kass M, Witkin A, Terzopulos D. Snake Active contour models [J]. International Journal of Computer Vision,1987,1(4):321-331.
    [18]Sermesant M, Forest C, Pennec X, et al.Deformable biomechanical models:Application to 4D cardiac image analysis [J]. Medical Image Analysis,2003,7(4):475-488.
    [19]Behrens T, Rohr K, Stiehl H S. Robust segmentation of tubular structures in 3-D medical images by parametric object detection and tracking [J]. IRRR Transactions on Systems, Man and Cybernetics,2003,33B (4):554-561.
    [20]Thierry P, Guido G, Osman R.Image analysis and computer vision in medicine [J]. Computerized Medical Imaging and Graphics,1994,18(2):85-96.
    [21]Wang Y, Audli T, Kung. Quantification and segmentation of brain tissues from MR images [J]. IEEE Transactions on Image Processing,1998,7(8):1165-1181.
    [22]Wang Y, Audli T, Xuan. Magnetic resonance image analysis by information theoretic criteria and stochastic site models [J]. IEEE Transactions on Image Processing,2001, 5(2):150-158.
    [23]Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm [J]. IEEE Transactions on Image Processing,2000,20(l):45-57.
    [24]Malladi R, Sethian J A. Shape modeling with front propagating:a level set approach [J]. IEEE Trasaction on Pattern Analysis and Machine Intelligence,1995,17(2):158-175.
    [25]Caselles V, Kimmel R, Sapiro G. Geodesic active contours [J]. International Journal of Computer Vision,1997,22(l):61-79.
    [26]Chan T, Vese L. Active contours without edges [J]. IEEE Transactions on Image Processing.2001,10(2):266-277.
    [27]Li C, Kao C, Gore J, Ding Z. Implicit active contours driven by local binary fitting energy [A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C],2007.1-7.
    [28]Li C, Kao C Y, Gore J, et al. Minimization of Region-scalable Fitting Energy for Image Segmentation[J]. IEEE Trans. On Image Processing,2008,17(10):1940-1949.
    [29]Wang L, He L, Mishra A, Li C. Active contours driven by local Gaussian distribution fitting energy[J].Signal Processing,2009,89(12):2435-2447.
    [30]Cohen L D, Cohen I. Finite element methods for active contour models and balloons for 2-D and 3-D Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(11):1131-1147.
    [31]XuG, Segawa E, Tsuji S. Robust active contours with insensitive parameters [J]. Pattern Recoginetion.1994,27(7):879-884.
    [32]杨猛,汪国平,董士海.基于Level Set方法的曲线演化[J].软件报,2002,13(9):1858-1865.
    [33]朱付平,田捷,林瑶等.基于Level Set方法的医学图像分割[J].软件学报,2002,13(9):1866-1872.
    [34]Adalsteinsson D, Sethian J A. A Fast Level Set Method for Propagation Interfaces [J]. Journal of Computational Physics,1995,118(2):269-277.
    [35]Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods [J]. J. Comput. Phys.1999,148:2-22.
    [36]Osher S, Sethian J.A.Fronts ropagating with curvature dependent speed:algorithms based on the Hamilton-Jacobi formulation [J]. J.Comput. Phys,1988,79(1):12-49.
    [37]Sethian J A. An analysis of flame propagation[D].Dept. of Mathematics, University of California, Berkeley, CA,1982.
    [38]Li F, Michael K. N, Li C. Variational Fuzzy Mumford-Shah Model for Image Segmentation [J]. Journal of Applied Mathematics,2010,70(7):2750-2770.
    [39]Li C M, Xu C Y, Gui C F, et al. Level set evolution without re-initialization:a new variational formulation [A].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C], San Diego,2005:430-436.
    [40]Li C, Xu C, Gui C, et al. Distance Regularized Level Set Evolution and its Application to Image Segmentation [J].IEEE Trans. Image Processing,2010,19 (12):3243-3254.
    [41]Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [J]. Communications on Pure and Applied Mathematics, 1989,42(5):577-685.
    [42]Vese L A, Chan T F.A multiphase level set framework for image segmentation using the Mumford and Shah Model [J].International Journal of Computer Vision,2002,50(3):271-293.
    [43]张建伟,陈允杰,夏德深.基于直方图的快速Mumford-Shah模型MRI分割[J].中国图像图形学报,2005,10(7):838-843.
    [44]郑罡,王惠南,李远禄.基于Chan-Vese模型的树形结构多相水平集图像分割算法[J].电子学报,2006,34(8):1508-1512.
    [45]陈宇飞,吴启迪,赵卫东,等.基于图像熵的快速Chan-Vese模型分割算法[J].同济大学学报,2011,39(5):738-744.
    [46]赵骥,邵富群,张学东,等.矢量图像分割的快速C-V模型[J].计算机辅助设计与图形学学报,2011,23(11):1869-1874.
    [47]Xu C, Yezzi A J, Prince J L. On the relationship between parametric and geometric active contours [C].Proceedings of 34th A silomar Conference on Signals, Systems, and Computers Pacific Grove:INSPEC,2001,1:483-489.
    [48]Wang L, Li C M, Sun Q S,et al. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J]. Computerized Medical Imaging and Graphics,2009,33(7):520-531.
    [49]Zhang K, zhang L,Song H, et al, Active contours with selective local or global segmentation: A new formulation and level set method [J]. Image and Vision computing,2010,28(4): 668-676.
    [50]杨勇,徐春,潘伟民.基于区域GAC模型的二值水平集图像分割算法[J].计算机应用,2009,29(9):2414-2417.
    [51]Linton S, Tannenbaum A. Localizing Region-Based Active Contours [J]. IEEE Trans on Image Processing,2008,17 (11):2029-2039.
    [52]Zhang K, Song H, Zhang L. Active contours driven by local fitting energy [J]. Patten Recognition 2010,43(4):1199-1206.
    [53]Liu S, Peng Y. A local region-based Chan-Vese model for image segmentation [J]. Pattern Recognition,2012,45(7):2769-2779.
    [54]刘建磊,冯大政.一种全局最优的非匀质图像分割算法[J].西安电子科技大学学[J],2011,38(2):66-71.
    [55]陈玫玫,郭树旭,钱晓华.基于改进的局部二值拟合主动轮廓模型的指静脉图像分割[J],吉林大学学报,2011,41(4):1171-1176.
    [56]钱晓华,郭树旭.李雪妍.基于Wasserstein距离的局部能量分割模型[J].电子学报,2010,38(6):1468-1472.
    [57]杨名宇,丁欢,赵博,等.结合邻域信息的Chan-Vese模型图像分割[J].计算机辅助设计与图形学学报,2011,23(3):413-418.
    [58]包立君,刘宛予,浦昭邦.融合图像局部能量和梯度的水平集分割方法[J].哈尔滨工业大学学报,2011,43(3):44--48.
    [59]徐胜军,韩九强,赵亮,等.用于图像分割的局部区域能量最小化算法[J].西安交通大学学报,2011,45(8):7-12.
    [60]Vovk U, Pernus F. A review of methods for correction of intensity inhomogeneity in MRI [J].IEEE Transactions on Medical Imaging,2007,26(3):405-421.
    [61]陈允杰,王顺凤,王利,等.基于各向异性Gibbs随机场与高斯混合模型的脑MR图像分割算法[J].计算机辅助设计与图形学学报,2007,19(12):1558-1563.
    [62]詹天明,张军,韦志辉,等.基于参数化互信息的脑MR图像分割与偏移场矫正模型及快速算法[J].电子学报,2011,39(12):2807-2812.
    [63]孔丁科,汪国昭.基于区域相似性的活动轮廓SAR图像分割[J].计算机辅助设计与图形学学报,2010,22(9):1554-1560.
    [64]何宁,张朋.基于边缘和区域信息相结合的变分水平集图像分割方法[J].电子学报,2009,37(10):2215-2219.
    [65]朱峰,罗立民,宋余庆,等.基于自适应空间邻域信息高斯混合模型的图像分割[J].计算机研究与发展,2011,48(11):2000-2007.
    [66]Zhang K, Zhang L, Zhang S. A variational multiphase level set approach to simultaneous segmentation and bias correction [A]. The Int Conf on Image Processing, (ICIP) [C].Hong Kong, China:IEEE,2010.1-4.
    [67]Ge Q, Xiao L, Zhang J, et al.An improved region-based model with local statistical features for Image segmentation [J]. Pattern Recognition,2012,45(4):1578-1590.
    [68]Li C, Gatenby C, Wang L, et al. A robust parametric method for bias field estimation and segmentation of MR images [A].IEEE Conference on Computer Vision and Pattern Recognition, (CVPR) [C]. Miami, USA:Springer,2009,218-223.
    [69]Sebastian M G, Fernandez M, Torrealdea F J, et al. A parametric gradient descent MRI intensity inhomogeneity correction algorithm [J]. Pattern Recognition Letters,2007,28(13): 1657-1666.
    [70]Li C, Huang R, Ding Z, et al. A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities with Application to MRI [J].IEEE Trans. Image Processing, 2011,20 (7):2007-2016.
    [71]Chen Y, Zhang J, Macione J, et al. An improved level set method for brain MR images segmentation and bias correction [J].Computerized Medical Imaging and Graphics,2009, 33(7):510-519.
    [72]Chen Y, Zhang J, Mishra A, et al.Image segmentation and bias correction via an improved level set method [J]. Neurocomputing,2011,74(17):3520-3530.
    [73]Chen Y, Zhang J, Yang J.An anisotropic images segmentation and bias correction method [J].Magnetic Resonance Imaging,2012,30(1):85-95.
    [74]陈允杰.脑部核磁共振图像与虚拟人脑图像分割技术研究[D],南京:南京理工大学计算机科学与技术学院,2008.
    [75]王利.脑核磁共振图像分割技术研究[D],南京:南京理工大学计算机科学与技术学院,2010.
    [76]白小晶.基于偏微分方程的图像分割与配准研究[D],南京:南京理工大学计算机科学与技术学院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700