金配合物催化炔基官能化促发的不对称串联环化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环骨架广泛存在于一些具有生物活性的天然产物、医药及其它一些功能分子中。因此,杂环化合物的合成在有机合成中占有非常重要的地位。而串联反应从简单分子出发,经过“一锅”多步化学反应合成结构复杂的分子,操作简便、合成效率高,因此受到越来越多的关注。近些年,金配合物作为一类新型有效的催化剂,可以催化多种化学反应。尤其是作为π-路易斯酸广泛应用于活化碳-碳三键继而使其发生一系列亲核加成反应,在催化化学及有机合成化学领域中日渐重要而获得高度关注。
     本文研究了金配合物催化烯炔醇环化异构形成的氧杂环状双烯中间体,既可作为双烯体与贫电子亲双烯体进行常规Diels-Alder反应,也可作为亲双烯体与a,p-不饱和羰基化合物进行氧杂Diels-Alder反应。其中常规Diels-Alder反应的可以优良的收率“一锅”合成一类氧杂[2,2,2]多环化合物,此类化合物不易通过传统的化学方法制备;而氧杂Diels-Alder反应的可产生二氢吡喃并γ-内酯类双环化合物,另外,使用手性铜配合物与金配合物协同催化串联环化异构-氧杂Diels-Alder反应,可高对映选择性地合成二氢吡喃并γ-内酯类双环化合物。
     通过手性金配合物催化2-炔基苯硼酸的环化异构-胺化串联反应,立体选择性地合成了一种具有C-N手性轴的新型阻旋异构体。用(R)-BINAP(AuCl)2和AgNTf2催化2-炔基苯硼酸和偶氮二羧酸酯的不对称环化异构-胺化串联反应,以最高88%的收率和91%ee的对映选择性合成了一系列含有B-O杂芳环的阻旋异构体。此串联反应底物适用范围广,产物的轴手性在室温下相对稳定。通过X-射线单晶衍射分析确定了此类化合物的结构,并借助振动圆二色谱(VCD)技术确定了其绝对构型。
Heterocyclic structural skeletons are prevalent in biologically active natural products, Pharmaceuticals, organic materials and numerous functional molecules. Therefore, the development of new synthetic methods to directly access heterocycles is of greatly synthetic importance. Cascade or domino reactions, because they are able to build up structurally complex molecules from relatively simpler substrates, have received increasing attention. In recent years, the gold catalysis has allowed a variety of cascade reactions, some of which were capable of efficiently accessing structurally complex heterocycles. Most importantly, the gold complexes, as strong π-Lewis acids, are able to catalyze the addition of nucleophiles to carbon-carbon triple bond very efficiently and have drawn more attention.
     The1,3-butadiene derivatives, generated from the cycloisomerization of enyne alcohols catalyzed by an appropriate gold complex, was able to participate in either the Diels-Alder reaction as dienes or the inverse-electron-demand hetero-Diels-Alder reaction as dieneophiles. The oxa-bridged [2,2,2] multiply cyclic compounds, which would be difficult to be accessed by a traditional transformation, have been obtained by the cascade cycloisomerization-Diels-Alder reaction in one-pot. In addition, the dihydropyrano-y-lactone derivatives could be accessed by the cycloisomerization-hetero-Diels-Alder reaction. Besides, the asymmetric synthesis of dihydropyrano-y-lactone derivatives was achieved with high enantioselectivity by using copper complex in combination with the gold complex.
     We have established a chiral gold (I) complex-catalyzed enantioselective cycloisomerization-amination csacde of2-(alkynyl)phenyl boronic acids with diazenes, leading to a family of unprecedented chiral molecules, heteroaryl atropisomers involving B-O bond. The atropisomers were obtained in up to89%yield and up to91%ee by using (R)-BINAP(AuNTf2)2as catalyst generated in situ from (R)-BINAP(AuCl)2and AgNTf2. The protocol tolerated a wide scope of substrates bearing various functional groups and the chirality of such atropisomers is relatively stable at room temperature.The structure was determined by X-ray diffraction and the configuration of the novel chiral C-N axis was tentatively assigned by vibrational circular dichroism (VCD) calculation.
引文
[1]Corma, A.; Leyva-Perez, A.; Sabater, M. J. Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem. Rev.2011,111,1657-1712.
    [2]Zeng, X. M. Recent advances in catalytic sequential reactions involving hydroelement addition to carbon-carbon multiple bonds. Chem. Rev.2013,113, 6864-6900.
    [3]a) Reichert, J. S.; Bailey, J. H.; Niewland, J. A. The catalytic synthesis of the acetals and their halogenations. J. Am. Chem. Soc.1923,45,1552-1557; b) Hinton, H. D.; Niewland, J. A. A new method of preparing acetals. II. acetals of monohydric alcohols. J. Am. Chem. Soc.1930,52,2892-2896; c) Bassetti, M.; Floris, B. Metalation of alkynes. Part 2. Behaviour of alkynes with mercury(II) acetate in methanol:a systematic reinvestigation. J. Chem. Soc., Perkin Trans.2 1988,227-233; d) Barluenga, J.; Aznar, F.; Bayod, M. Catalytic and oxidative methoxymercuration of terminal alkynes:syntheses of 2-methoxy-l-alkenes and 2-methoxy-acrolein acetals. Synthesis 1988,144-146.
    [4]Utimoto, K. Palladium catalyzed synthesis of heterocycles. Pure Appl. Chem. 1983,55,1845-1852.
    [5]Alonso, F; Beletskaya, I. P.; Yus, M. Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem. Rev.2004,104,3079-3159.
    [6]Chisholm, M. H.; Clark, H. C. Cationic acetylenic platinum(II) compounds and their derivatives. II. acetylene and vinyl ether complexes. Inorg. Chem.1971,10, 2557-2563.
    [7]Avshu, A.; O'Sullivan, R. D.; Parkins, A. W.; Alcock, N. W.; Countryman, R. M. Reaction of silver ion with [ML2X2]L=amine or phosphine; M=Pd or Pt; X=I, Cl, or SCN) leading to orthometallation and catalytic activity. X-ray structure of ab-(2-aminomethyl)phenyl-c-carbonyl-d-iodoplatinum(II). J. Chem. Soc., Dalton Trans.1983,1619-1624.
    [8]Kataoka, Y.; Matsumoto, O.; Tani, K. Stereoselective addition of alcohol to acetylene carboxylate catalyzed by silver(I) salt. Chem. Lett.1996,727-728.
    [9]Kataoka, Y.; Matsumoto, O.; Tani, K. Addition of methanol to nonactivated internal alkynes catalyzed by dichloro(diphosphine)platinum(II) complex/silver salt systems. Organometallics 1996,15,5246-5249.
    [10]Wakabayashi, Y.; Fukuda, Y.; Shigarami, H.; Utimoto, K.; Nozaki, H. Preparation of furans from alkynols utilizing palladium catalyzed intramolecular addition of alcohol to acetylene as a key reaction. Tetrahedron 1985,41,3655-3661.
    [11]Luo, F. T.; Schreuder, I.; Wang, R. T. Intramolecular oxypalladation and cross-coupling of acetylenic alkoxides. J. Org. Chem.1992,57,2213-2217;
    [12]a) Sieller, B.; Bruneau, C.; Dixneuf, P. H. Novel ruthenium-catalysed synthesis of furan derivatives via intramolecular cyclization of hydroxy enynes. J. Chem. Soc., Chem. Commun.1994,493-494; b) Sieller, B.; Bruneau, C.; Dixneuf, P. H. Synthesis of furans by cyclization of 2-en-4-yn-1-ols in the presence of ruthenium and palladium catalysts. Tetrahedron 1995,51,13089-13102; c) Gabriele, B.; Salerno, G. A new and efficient synthesis of rosefuran. A general synthesis of furans by palladium-catalysed cycloisomerization of (Z)-2-en-4-yn-l-ols. Chem. Commun.1997,1083-1084; d) Gabriele, B.; Salerno, G.; Lauria, E. A general and facile synthesis of substituted furans by palladium-catalyzed cycloisomerization of (Z)-2-en-4-yn-l-ols. J. Org. Chem. 1999,64,7687-7692; e) Gabriele, B.; Salerno, G.; De Pascali, F.; Sciano, G. T.; Costa, M; Chiusoli, G. P. Novel synthesis of furan-2-acetic esters by palladium-catalysed oxidative cyclization-alkoxycarbonylation of (Z)-2-en-4-yn-1-ols. Tetrahedron Lett.1997,38,6877-6880.
    [13]a) Qing, F. L.; Gao, W. Z.; Ying, J. Synthesis of 3-trifluoroethylfurans by palladium-catalyzed cyclization-isomerization of (Z)-2-alkynyl-3-trifluoromethyl allylic alcohols. J. Org. Chem.2000,65,2003-2006; b) Qing, F. L.; Gao, W. Z. The first synthesis of 4-trifluoromethyl-2H-pyrans by palladium-catalyzed cyclization of (E)-3-alkynyl-3-trifluoromethyl allylic alcohols. Tetrahedron Lett. 2000,41,7727-7730.
    [14]Larock, R. C.; Han, X.; Doty, M. J. Synthesis of a-pyrones via palladium-catalyzed annulation of internal alkynes. Tetrahedron Lett.1998,39, 5713-5716.
    [15]Okumoto, H.; Nishihara, S.; Nakagawa, H.; Suzuki, A. Pd(II)-mediated carbonylation of propargylic acetates leading to y-acetoxy-β-methoxy-a, β-unsaturated esters. Synlett 2000,217-218.
    [16]a) Gabriele, B.; Salerno, G.; De Pascali, F.; Costa, M.; Chiusoli, G. P. Palladium-catalyzed synthesis of 2E-[(methoxycarbonyl)methylene]tetrahydro- furans:oxidative cyclization-methoxycarbonylation of 4-yn-l-ols versus cycloisomerization-hydromethoxylation. J. Organomet. Chem.2000,593-594, 409-415; b) Bonardi, A.; Costa, M.; Gabriele, B.; Salerno, G.; Chiusoli, G. P. Versatile synthesis of beta-lactams, gamma-lactams or oxalines by palladium-catalysed oxidative carbonylation of 1-substituted prop-2-ynylamines. Tetrahedron Lett.1995,36,7495-7498; c) Bacchi, A.; Costa, M.; Gabriele, B.; Pelizzi, G.; Salerno, G. Efficient and general synthesis of 5-(alkoxycarbonyl)methylene-3-oxazolines by palladium-catalyzed oxidative carbonylation of prop-2-ynylamides. J. Org. Chem.2002,67,4450-4457; d) Kato, K.; Nishimura, A.; Yamamoto, Y.; Akita, H. Improved method for the synthesis of (E)-cyclic-β-alkoxyacrylates under mild conditions. Tetrahedron Lett.2001,42, 4203-4205; e) Kato, K.; Nishimura, A.; Yamamoto, Y; Akita, H. New total synthesis of (+)-cystothiazole A. Tetrahedron Lett.2002,43,643-645; f) Kato, K. Yamamoto, Y.; Akita, H. Palladium(II)-mediated cyclization-carbonylation of 4-yn-l-ones:facile access to 2-cyclopentenone carboxylates. Tetrahedron Lett. 2002,43,4915-4917; g) Marshall, J. A.; Yanik, M. M. Stereoselective synthesis of substituted ketopyranose subunits of polyketide natural products by intramolecular alkoxycarbonylation of 8-alkynyl alcohols. Tetrahedron Lett.2000, 47,4717-4721.
    [17]Cacchi, S.; Fabrizi, G.; Moro, L. Palladium-catalyzed cyclization of o-alkynylphenols with allyl carbonates. A regioselective synthesis of 2-substituted-3-allylbenzo[b]furans. Synlett 1998,741-745.
    [18]Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y Pd(II) acts simultaneously as a Lewis acid and as a transition-metal catalyst:synthesis of cyclic alkenyl ethers from acetylenic aldehydes. J. Am. Chem. Soc.2002,124,764-765.
    [19]a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Preparation of 2,3,4,5-tetrahydropyridines from 5-alkynylamines under the catalytic action of Au(Ⅲ). Heterocycles 1987,25,297-300; b) Fukuda, Y.; Utimoto, K. Effective transformation of unactivated alkynes into ketones or acetals by means of Au(Ⅲ) catalyst. J. Org. Chem.1991,56,3729-3731.
    [20]a) Pale, P.; Chuche, J. Silver assisted heterocyclization of acetylenic compounds. Tetrahedron Lett.1987,28,6447-6448; b) Kataoka, Y.; Matsumoto, O.; Tani, K. Stereoselective addition of alcohol to acetylenecarboxylate catalyzed by silver(I) salt. Chem. Lett.1996,727-728.
    [21]Teles, J. H.; Brode, S.; Chabanas, M. Cationic gold(I) complexes:highly efficient catalysts for the addition of alcohols to alkynes. Angew. Chem. Int. Ed.1998,37, 1415-1418.
    [22]Liu, Y. H.; Song, F. J.; Song, Z. Q.; Liu, M. N.; Yan, B. Gold-catalyzed cyclization of (Z)-2-en-4-yn-l-ols:highly efficient synthesis of folly substituted dihydrofurans and furans. Org. Lett.2005,7,5409-5412.
    [23]Wilckens, K.; Uhlemann, M.; Czekelius, C. Gold-catalyzed endo-cyclizations of 1,4-diynes to seven-membered ring heterocycles. Chem. Eur. J.2009,15, 13323-13326.
    [24]Corma, A.; Ruiz, V. R.; Leyva-Perez, A.; Sabater, M. J. Regio-and stereoselective intermolecular hydroalkoxylation of alkynes catalysed by cationic gold(I) complexes. Adv. Syn. Cat.2010,352,1701-1710.
    [25]a) McDonald, F. E.; Connolly, C. B.; Gleason, M. M.; Towne, T. B.; Treiber, K. D. A new synthesis of 2,3-dihydrofurans:cycloisomerization of alkynyl alcohols to endocyclic enol ethers. J. Org. Chem.1993,58,6952-6953; b) McDonald, F. E.; Schultz, C. C. Mechanism of molybdenum pentacarbonyl-catalyzed cyclizations of alkynols and epoxyalkynes. J. Am. Chem. Soc.1994,116,9363-9364; c) McDonald, F. E.; Gleason, M. M. Asymmetric syntheses of stavudine (d4T) and cordycepin by cycloisomerization of alkynyl alcohols to endocyclic enol ethers. Angew. Chem. Int. Ed.1995,34,350-352. d) McDonald, F. E.; Gleason, M. M. Asymmetric synthesis of nucleosides via molybdenum-catalyzed alkynol cycloisomerization coupled with stereoselective glycosylations of deoxyfuranose glycals and 3-amidofuranose glycols. J. Am. Chem. Soc.1996,118,6648-6659; e) McDonald, F. E.; Schultz, C. C.; Chatterjee, A. K. Novel synthesis of a-stannyl vinyl ethers from catalytic and stoichiometric Fischer carbene anions. Organometallics 1995,14,3628-3629.
    [26]a) McDonald, F. E.; Bowman, J. L. Tungsten carbonyl-induced cyclizations of alkynyl alcohols to dihydropyranylidene carbenes and a-stannyl dihydropyrans. Tetrahedron Lett.1996,37,4675-4678; b) McDonald, F. E.; Zhu, H. Y. H. Novel strategy for oligosaccharide synthesis featuring reiterative alkynol cycloisomerization. J. Am. Chem. Soc.1998,120,4246-4247; c) McDonald, F. E.; Reddy, K. S.; Diaz, Y. Stereoselective glycosylations of a family of 6-deoxy-1,2-glycals generated by catalytic alkynol cycloisomerization. J. Am. Chem. Soc.2000,122,4304-4309.
    [27]Houpis, I. N.; Choi, W. B.; Reider, P. J.; Molina, A.; Churchill, H.; Lynch, J.; Volante, R. P. Synthesis of functionalized furo[2,3-b]pyridines via the Pd-catalyzed coupling of acetylenes to iodopyridones. Preparation of a key intermediate to a new HIV protease inhibitor L-754,394. Tetrahedron Lett.1994, 55,9355-9358.
    [28]Breuer, K.; Teles, J. H.; Demuth, D.; Hibst, H.; Schafer, A.; Brode, S.; Domgorgen, H. Zinc silicates:very efficient heterogeneouscatalysts for the addition of primary alcohols to alkynes and allenes. Angew. Chem. Int. Ed.1999, 38,1401-1405.
    [29]Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J. P. Highly efficient access to strained bicyclic ketals via gold-catalyzed cycloisomerization of bis-homopropargylic diols. J. Am. Chem. Soc.2005,127,9976-9977.
    [30]Belting, V.; Krause, N. Gold-catalyzed tandem cycloisomerization-hydroalkoxy-lation of homopropargylic alcohols. Org. Lett.2006,8,4489-4492.
    [31]a) Dai, L. Z.; Qi, M. J.; Shi, Y. L.; Liu, X. G.; Shi, M. Gold(I)-catalyzed cascade cyclization reaction:□ Highly regio-and diastereoselective intermolecular addition of water and alcohols to epoxy alkynes. Org. Lett.2007,9,3191-3194; b) Dai, L. Z.; Shi, M. A Gold(I)-catalyzed intramolecular reaction of propargylic/homopropargylic alcohols with oxirane. Chem. Eur. J.2008,14, 7011-7018.
    [32]Liu, L. P.; Hammond G. B. Highly Efficient and tunable synthesis of dioxabicyclo[4.2.1] ketals and tetrahydropyrans via gold-catalyzed cycloisomerization of 2-alkynyl-1,5-diols. Org. Lett.2009,11,5091-5092.
    [33]a) Barluenga, J.; Dieguez, A.; Fernandez, A.; Rodriguez, F.; Fananas, F. J. Gold-or Platinum-catalyzed tandem cycloisomerization/Prins-type cyclization reactions. Angew. Chem. Int. Ed.2006,45,2091-2093; b) Barluenga, J.; Fernandez, A.; Dieguez, A.; Rodriguez, F.; Fananas, F. J. Gold-or Platinum-catalyzed cascade processes of alkynol derivatives involving hydroalkoxylation reactions followed by Prins-type cyclizations. Chem. Eur. J.2009,15,11660-11667.
    [34]Tian, G. Q.; Shi, M. Gold(I)-catalyzed three-component additions of 2-(arylmethylene)cyclopropylcarbinols, terminal arynes, and alcohols:an efficient access to 3-oxabicyclo[3.1.0]hexanes. Org. Lett.2007,9,4917-4920.
    [35]a) Barluenga, J.; Fernandez, A.; Satrustegui, A.; Dieguez, A.; Rodriguez, F.; Fananas, F. J. Tandem intramolecular hydroalkoxylation-hydroarylation reactions: synthesis of enantiopure benzofused cyclic ethers from the chiral pool. Chem. Eur. J.2008,14,4153-4156; b) Fananas, F. J.; Fernandez, A.; C□evic, D.; Rodriguez, F. J. Org. Chem.2009,74,932-934.
    [36]Barluenga, J.; Fernandez, A.; Rodriguez, F.; Fananas, F. J. A Gold-catalyzed cascade reaction involving an unusual intramolecular redox process. Chem. Eur. J. 2009,15,8121-8123.
    [37]Li, Y.; Zhou, F.; Forsyth, C. J. Gold(I)-catalyzed bis-spiroketalization:Synthesis of the trioxadispiroketal-containing A-D rings of azaspiracid. Angew. Chem. Int. Ed.2007,46,279-282.
    [38]Barluenga, J.; Calleja, J.; Mendoza, A.; Rodriguez, F.; Francisco, J. F. Synthesis of polycyclic compounds by a cascade cycloisomerisation/Diels-Alder reaction. Chem. Eur. J.2010,16,7110-7112.
    [39]Han, Z. Y.; Guo, R.; Wang, P. S.; Chen, D. F.; Xiao, H.; Gong, L. Z. Enantioselective concomitant creation of vicinal quaternary stereogenic centersvia cyclization of alkynols triggered addition of azlactones. Tetrahedron Lett.2011,52,5963-5967.
    [40]Song, X. R.; Xia, X. F.; Song, Q. B.; Yang, F.; Li, Y. X.; Liu, X. Y; Liang, Y. M. Gold-catalyzed cascade reaction of hydroxy enynes for the synthesis of oxanorbornenes and naphthalene derivatives. Org. Lett.2012,14,3344-3347.
    [41]Selected examples:a) Fallis, A. G. Harvesting Diels and Alder's garden:synthetic investigations of intramolecular [4+2] cycloadditions. Acc. Chem. Res.1999,32, 464-474; b) Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. An efficient approachtoaspidospermaalkaloids via [4+2] cycloadditions of aminosiloxydienes:□ stereocontrolled total synthesis of (±)-tabersonine. Gram-scale catalytic asymmetric syntheses of (+)-tabersonine and (+)-16-methoxytabersonine. Asymmetric syntheses of (+)-aspidospermidine and (-)-quebrachamine. J. Am. Chem. Soc.2002,124,4628-4641; c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder reaction in total synthesis. Angew. Chem. Int. Ed.2002,41,1668-1698; d) Juhl, M.; Tanner, D. Recent applications of intramolecular Diels-Alder reactions to natural product synthesis. Chem. Soc. Rev.2009,38,2983-2992.
    [42]a) Corey, E. J.; Imai, N.; Zhang, H. Y. Designed catalyst for enantioselective Diels-Alder addition from a C2-symmetric chiral bis(oxazoline)-Fe(III) complex. J. Am. Chem. Soc.1991,113,729-730; b) Corey, E. J.; Ishihara, K. Highly enantioselective catalytic Diels-Alder addition promoted by a chiral bis(oxazoline)-magnesium complex. Tetrahedron Lett.1992,33,6807-6810; c) Evans, D. A.; Miller, S. J.; Lectka, T. Bis(oxazoline)copper(II) complexes as chiral catalysts for the enantioselective Diels-Alder reaction. J. Am. Chem. Soc. 1993,115,6460-6461.
    [43]a) Desimoni, G.; Faita, G.; Jorgensen, K. A. C2-Symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev.2006,106,3561-3651; b) Reymond, S.; Cossy, J. Copper-catalyzed Diels-Alder reactions. Chem. Rev.2008,108, 5359-5406.
    [44]Johannsen, M.; J(?)rgensen, K. A. Asymmetric hetero Diels-Alder reactions and ene reactions catalyzed by chiral copper(II) complexes. J. Org. Chem.1995,60, 5757-5762.
    [45]For example:a) Ghosh, A. K.; Mathivaran, P.; Cappiello, J.; Krishman, K. Asymmetric hetero Diels-Alder reactions of Danishefsky's diene. and glyoxylate esters catalyzed by chiral bisoxazoline derived catalysts. Tetrahedron:Asymmetry 1996,7,2165-2168; b) Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.; J(?)rgensen, K. A. Catalytic asymmetric hetero-Diels-Alder reactions of ketones:□chemzymatic reactions. J. Am. Chem. Soc.1998,120,8599-8605; c) Bolm., C.; Verucci, M.; Simic, O.; Cozzi, P. G.; Raabe, G.; Okamura, H. A new class of C1-symmetric monosulfoximine ligands for enantioselective hetero Diels-Alder reactions. Chem. Commun.2003,2826-2827; d) Lin, L.; Fan, Q.; Qin, B.; Feng, X. Highly enantio-and diastereoselective Brassard type hetero-Diels-Alder approach to 5-methyl-containing a,β-unsaturated δ-lactones. J. Org. Chem.2006,71,4141-4146; e) Landa, A.; Richter, B.; Johansen, R. L.; Minkkila, A.; J(?)rgensen, K. A. Bisoxazoline-Lewis acid-catalyzed direct-electron demand oxo-hetero-Diels-Alder reactions of N-oxy-pyridine aldehyde and ketone derivatives.J. Org. Chem.2007,72,240-245.
    [46]a) Evans, D. A.; Johnson, J. S. Catalytic enantioselective hetero Diels-Alder reactions of α,β-unsaturated acyl phosphonates with enol ethers. J. Am. Chem. Soc.1998,120,4895-4896; b) Thorhauge, J.; Johannsen, M.; J(?)rgensen, K. A. Highly enantioselective catalytic hetero-Diels-Alder reaction with inverse electron demand. Angew. Chem. Int. Ed.1998,37,2404-2406; c) Barroso,S.; Blay, G.; Munoz, M. C.; Pedro, J. R. Highly enantio-and diastereoselective inverse electron demand hetero-Diels-Alder reaction using 2-alkenoylpyridine N-oxidesas oxo-heterodienes. Adv. Synth. Catal.2009,351,107-111.
    [47]Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New strategies for organic catalysis:□ the first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc.2000,122,4243-4244.
    [48]Selected examples:a) Akiyama, T.; Tamura, Y.; Itoh, J.; Morita, H.; Fuchibe, K. Enantioselective aza-Diels-Alder reaction catalyzed by a chiral Br(?)nsted acid: effect of the additive on the enantioselectivity. Synlett 2006,141-143; b) Nakashima, D.; Yamamoto, H. Design of chiral N-triflyl phosphoramide as a strong chiral Br(?)nsted acidand its application to asymmetric Diels-Alder reaction. J. Am. Chem. Soc.2006,128,9626-9627; c) Liu, H; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. Enantioselective direct aza hetero-Diels-Alder reaction catalyzedby chiral Br(?)nsted acids. Org. Lett.2006,8,6023-6026; d) Thayumanavan, R.; Dhevalapally, B.; Sakthivel, K.; Tanaka, F.; Barbas Ⅲ, C. F. Amine-catalyzed direct Diels-Alder reactions of α,β-unsaturated ketones with nitroolefins. Tetrahedron Lett.2002,43,3817-3820; e) Juhl, K.; J(?)rgensen, K. A. The first organocatalytic enantioselective inverse-electron-demand hetero-Diels-Alder reaction. Angew. Chem. Int. Ed.2003,42,1498-1501; f) Ishihara, K; Nakano, K. J. Am. Chem. Soc.2005,127,10504-10505; g) Huang, Y; Unni, A. K.; Thadani A. N.; Rawal, V. H. Hydrogen bonding:single enantiomers from a chiral-alcohol catalyst. Nature,2003,424,146-146; h) Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. Axially chiral biaryl diols catalyze highly enantioselective hetero-Diels-Alder reactions through hydrogen bonding. J. Am. Chem. Soc.2005,127,1336-1337; i) Bekele, T.; Shah, M. H.; Wolfer, J.; Abraham, C. J.; Weatherwax, A.; Lectka, T. Catalytic, enantioselective [4+2]-cycloadditions of ketene enolates and o-quinones:□ efficient entry to chiral, a-oxygenated carboxylic acid derivatives. J. Am. Chem. Soc.2006,128, 1810-1811.
    [49]Sunden, H.; Ibrahem, H.; Eriksson, L.; Cordova, A. Direct catalytic enantioselective aza-Diels-Alder reactions. Angew. Chem. Int. Ed.2005,44, 4877-4880.
    [50]Selected examples for Br(?)nsted acid catalyzed Diels-Alder reactions:a) Akiyama, T.; Tamura, Y.; Itoh, J.; Morita, H.; Fuchibe, K. Synlett 2006,1,141-143; b) Nakashima, D.; Yamamoto, H. Design of chiral N-triflyl phosphoramide as a strong chiral Br(?)nsted acid and its application to asymmetric Diels-Alder reaction. J. Am. Chem. Soc.2006,128,9626-9627; c) Liu, H.; Cun, L. F.; Mi, A. Q.; Jiang,Y. Z.; Gong, L. Z. Enantioselective direct aza hetero-Diels-Alder reaction catalyzed by chiral br(?)nsted acids. Org. Lett.2006,8,6023-6026.
    [51]a) Han, Z. Y.; Xiao, H.; Chen, X. H.; Gong, L. Z. Consecutive intramolecular hydroamination/asymmetric transfer hydrogenation under relay catalysis of an achiral gold complex/chiral Br(?)nsted acid binary system. J. Am. Chem. Soc.2009, 131,9182-9183; b) Han, Z. Y.; Chen, D. F.; Wang, Y. Y.; Guo, R.; Wang, P. S.;. Wang, C; Gong, L. Z. Hybrid metal/Organo relay catalysis enables enynes to be latent dienes for asymmetric Diels-Alder reaction. J. Am. Chem. Soc.2012,134, 6532-6535.
    [52]Barton, T. J.; Lin, J. B.; Ijadi-Maghsoodi, S.; Power, M. D.; Zhang, X. P.; Ma, Z. X.; Shimizu, H.; Gordon, M. S. Thermally-induced 1,2-shifts to convert olefins to carbenes:Does silicon do it? If so, why not carbon. J. Am. Chem. Soc.1995,117, 11695-11703.
    [53]Yang, T.; Campbell, L.; Dixon, D. J. A Au(I)-catalyzed N-acyl iminium ion cyclization cascade.J. Am. Chem. Soc.2007,129,12070-12071.
    [1]a) Eichelbaum, M., Gross, A. S. Stereochemical aspects of drug action and disposition. Adv. Drug Res.1996,28,1-64; b) Crossley, R. Chirality and the Biological Activity of Drugs, CRC, Boca Raton, FL,1995; c) Shah, R. R.; Midgley, J. M.; Branch, S. K. Adv. Drug React. Toxicol. Rev.1998,17,145-190.
    [2]a) Fabro, S.; Smith, R. L.; Williams, R. T. Toxicity and teratogenicity of optical isomers of thalidomide. Nature 1967,215,296-296; b) Reist, M.; Carrupt, P. A.; Francotte, E.; Testa, B. Chiral inversion and hydrolysis of thalidomide:? mechanisms and catalysis by bases and serum albumin, and chiral stability of teratogenic metabolites. Chem. Res. Toxicol.1998,11,1521-1528.
    [3]Eveleigh, P.; Hulme, E. C.; Schudt, C.; Birdsall, N. J. The existence of stable enantiomers of telenzepine and their stereoselective interaction with muscarinic receptor subtypes. Mol Pharmacol.1989,35,477-483.
    [4]a) Blaser, H.-U. The chiral switch of (S)-metolachlor:A personal account of an industrial odyssey in asymmetric catalysis. Adv. Synth. Catal.2002,344,17-31; b) Blaser, H.-U.; Pugin, B.; Spindler, F.; Thommen, M. From a chiral switch to a ligand portfolio for asymmetric catalysis. Acc. Chem. Res.2007,40,1240-1250.
    [5]Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. C. Atroposelective thermal reactions of axially twisted amides and imides. J. Am. Chem. Soc.1994,116, 3131-3132.
    [6]a) Curran, D. P.; Hale, G. R.; Geib, S. J.; Balog, A.; Cass, Q. B.; Degani, A. L. G.; Hernandes, M. Z.; Freitas, L. C. G. Rotational features of carbon-nitrogen bonds in axially chiral o-tert-butyl anilides and related molecules. Potential substrates for the'prochiral auxiliary'approach to asymmetric synthesis. Tetrahedron: Asymmetry 1997,8,3955-3975; b) Kitagawa, O.; Izawa, H.; Sato, K.; Dobashi, A.; Taguchi, T.; Shiro, M. Optically active axially chiral anilide and maleimide derivatives as new chiral reagents:? Synthesis and application to asymmetric Diels-Alder reaction. J. Org. Chem.1998,63,2634-2640; c) Hughes, A. D.; Price, D. A.; Simpkins, N. S. Atropisomeric amides:stereoselective enolate chemistry and enantioselective synthesis via a new SiI2-mediated reduction. J. Chem. Soc., Perkin Trans.11999,1295-1304; d) Kondo, K.; Fujita, H.; Suzuki, T.; Murakami, Y. A new chiral axis due to N(open-chain imide)-Ar bond:unexpected racemization effect of an acyl group. Tetrahedron Lett.1999,40,5577-5580; e) Ates, A.; Curran, D. P. Synthesis of enantioenriched axially chiral anilides from atropisomerically enriched tartarate ortho-anilides, J. Am. Chem. Soc.2001,123, 5130-5131; f) Hata, T.; Koide, H.; Taniguchi, N.; Uemura, M. Asymmetric synthesis of axially chiral anilides by enantiotopic lithiation of tricarbonyl(n-methyl-n-acyl-2,6-dimethylanilide)chromium complex. Org. Lett. 2000,2,1907-1910; g) Bennett, D. J.; Pickering, P. L.; Simpkins, N. S. A novel asymmetric route to succinimides and derived compounds:synthesis of the lignan lactone (+)-hinokinin. Chem. Commun.2004,1392-1393.
    [7]Kitagawa, O.; Kohriyama, M.; Taguchi, T. Catalytic asymmetric synthesis of optically active atropisomeric anilides through enantioselective N-allylation with chiral Pd-tol-BINAP catalyst. J. Org. Chem.2002,67,8682-8684.
    [8]Terauchi, J.; Curran, D. P.N-Allylation of anilides with chiral palladium catalysts: the first catalytic asymmetric synthesis of axially chiral anilides Tetrahedron: Asymmetry 2003,14,587-592.
    [9]a) Kitagawa, O.; Takahashi, M.; Yoshikawa, M.; Taguchi, T. Efficient synthesis of optically active atropisomeric anilides through catalytic asymmetric N-arylation reaction. J. Am. Chem. Soc.2005,127,3676-3677; b) Kitagawa, O.; Yoshikawa, M.; Tanabe, H.; Morita, T.; Takahashi, M; Dobashi, Y.; Taguchi, T. Highly enantioselective synthesis of atropisomeric anilide derivatives through catalytic asymmetric N-arylation:conformational analysis and application to asymmetric enolate chemistry.J. Am. Chem. Soc.2006,128,12923-12931.
    [10]Shirakawa, S.; Liu, K.; Maruoka, K. Catalytic asymmetric synthesis of axially chiral o-iodoanilides by phase-transfer catalyzed alkylations. J. Am. Chem. Soc. 2012,134,916-919.
    [11]Liu, H.; Feng, W.; Kee, C. W.; Leow, D.; Loh, W. T.; Tan, C. H. Br(?)nsted base-catalyzed tandem isomerization-Michael reactions of alkynes:synthesis of oxacycles and azacycles. Adv. Synth. Catal. 2010,352,3373-3379.
    [12]Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.; Kitagawa, O. Catalytic enantioselective synthesis of atropisomeric indoles with an N-C chiral axis. Chem. Eur. J.2010,16,6752-6755.
    [13]Tanaka, K.; Takeishi, K.; Noguchi, K. Enantioselective synthesis of axially chiral anilides through rhodium-catalyzed [2+2+2] cycloaddition of 1,6-diynes with trimethylsilylynamides. J. Am. Chem. Soc.2006,128,4586-4587.
    [14]Tanaka, K.;Takahashi, Y.; Suda, T.; Hirano, M. Synthesis of enantioenriched N-aryl-2-pyridones with chiral C-N axes by rhodium-catalyzed [2+2+2] cycloaddition of alkynes with isocyanates. Synlett 2008,1724-1728.
    [15]Onodera, G; Suto, M; Takeuchi, R. Iridium-catalyzed [2+2+2] cycloaddition of a, ω-diynes withisocyanates. J. Org. Chem.2012,77,908-920.
    [16]a) Brandes, S.; Bella, M.; Kjaersgaard, A.; J(?)rgensen, K. A. Chirally aminated 2-naphthols-organocatalytic synthesis of non-biaryl atropisomers by asymmetric Friedel-Crafts amination. Angew. Chem. Int. Ed.2006,45,1147-1151; b) Brandes, S.; Niess, B.; Bella, M.; Prieto, A.; Overgaard, J.; J(?)rgensen, K. A. Non-biaryl atropisomers in organocatalysis. Chem. Eur. J.2006,12,6039-6052.
    [17]Duan, W. L.; Imazaki, Y.; Shintani, R.; Hayashi, T. Asymmetric construction of chiral C-N axes through rhodium-catalyzed 1,4-addition. Tetrahedron 2007,63, 8529-8539.
    [18]Lin, S.; Leow, D.; Huang, K. W.; Tan, C. H. Enantioselective protonation of itaconimides with thiols and the rotationalkinetics of the axially chiral C-N bond. Chem. Asian J.2009,4,1741-1744.
    [19]Ito, Y.; Sawamura, M.; Hayashi, T. Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J. Am. Chem. Soc.1986,108,6405-6406.
    [20]Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Ligand effects in gold-and platinum-catalyzed cyclization of enynes:chiral gold complexes for enantioselective alkoxycyclization. Organometallics 2005,24,1293-1300.
    [21]For selected reviews of asymmetric homogeneous gold catalysis, see:a) Windenhoefer, R. A. Recent developments in enantioselective gold(I) catalysis. Chem. Eur. J.2008,14,5382-5391. b) Sengupta, S.; Shi., X. D. Recent advances in asymmetric gold catalysis. ChemCatChem.2010,2,609-619. c) Pradal, A.; Toullec, P. Y.; Michelet, V. Recent developments in asymmetric catalysis in the presence of chiral gold complexes. Synthesis 2011,10,1501-1514.
    [22]a) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 2007,317, 496-499; b) Hashmi, A. S. K. Catalysis:raising the gold standard. Nature 2007, 449,292-293.
    [23]Tu, X. F.; Gong, L. Z. Highly enantioselective transfer hydrogenation of quinolines catalyzed by gold phosphates:achiral ligand tuning and chiral-anion control of stereoselectivity. Angew. Chem. Int. Ed.2012,51,11346-11349.
    [24]Liu, B.; Li, K. N.; Luo, S. W.; Huang, J. Z.; Pang, H.; Gong, L. Z. Chiral gold complex-catalyzed hetero-Diels-Alder reaction of diazenes:highly enantioselective and general for dienes. J. Am. Chem. Soc.2013,135,3323-3326.
    [25]K6rner, C.; Starkov, P.; Sheppard, T. D. An alternative approach to aldol reactions: gold-catalyzed formation of boron enolates from alkynes. J. Am. Chem. Soc.2010, 132,5968-5967.
    [26]Malatesta, L.; Naldini, L.; Simonetta, G.; Cariati, F. Triphenylphosphine-gold(O) /gold(I) compounds. Coord. Chem. Rev.1966,1,255-262.
    [27]a) Teichert, J. F.; Feringa, B. L. Phosphoramidites:privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed.2010,49,2486-2528; b) Bailey, L. N.; Craft, D. T.; Gung, B. W.; Barnes, C. L.; Kirschbaum, K. Preparation and characterization of two new N-heterocyclic carbene gold(I) complexes and comparison of their catalytic activity to Au(IPr)Cl. Organometallics 2010,29, 3450-3456.
    [28]a) Menard, F.; Weise, C. F.; Lautens, M. Rh(I)-catalyzed carbonylative ring opening of diazabicycles with acyl anion equivalents. Org. Lett.2007,9, 5365-5367; b) Herbert, J. M. Preparation of di-tert-butyl[U-15N]-azodicarboxylate and [U-15N]-(s)-piperazic acid. J. Labelled Cpd. Radiopharm.1998,41,859-862.
    [29]a) Freedman, T. B.; Cao, X. L.; Dukor, R. K.; Nafie, L. A. Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism. Chirality,2003,15,743-758; b) He, Y. N.; Bo, W.; Dukor, R. K.; Nafie, L. A. Determination of absolute configuration of chiral molecules using vibrational optical activity:a review. Applied Spectroscopy 2011,65,699-723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700