二氧化硅基复合相变储能材料的制备及热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界能源危机问题的日益突出,对于新型能源和节能技术的开发和利用,逐渐得到各个国家的重视,相变储能技术包括其中。相变储能技术是利用相变材料在相变过程中吸热和放热来实现储能和释能,解决时间和空间与能源利用相矛盾的问题,提高能源利用的实效性,提高能源利用率,达到节能降耗的目的,在建筑、太阳能、废热利用等领域有广泛的应用前景。针对有机相变储能材料相变过程中的体积变化和液体泄漏等问题,本论文提出了采用有机相变材料与无机二氧化硅材料复合制备高性能定形相变储能材料的解决方法。
     本论文以月桂酸为相变材料,二氧化硅为基体,采用溶胶-凝胶法将相变材料嵌入到SiO2网络空间内,制备出月桂酸/二氧化硅复合相变储能材料。采用IR、SEM及DSC等对复合相变储热材料进行了结构、形貌以及热性能表征。结果表明:含相变材料69.1%(质量分数)的复合材料相变温度为43.1℃,相变潜热高达104.64J/g,相变材料均匀的嵌入到SiO2网络空间内,发生相变时不泄露。同时二氧化硅作为基体材料形成空间传热网格,较大的提高了相变材料的导热性能。
     以月桂酸为相变主体材料,硅酸钠为硅源材料,通过低热固相化学合成方法制备出二氧化硅包覆月桂酸复合相变储能材料。实验采用IR、ESEM、DSC以及XRD等对复合相变储热材料进行了结构、形貌以及热性能表征。结果表明:当月桂酸与硅酸钠质量比为5:2时可实现复合材料的有效包覆,复合材料的相变焓值高达98.94 J/g,相变温度为58.6℃。二氧化硅基体材料包裹于纯月桂酸相变材料表面,能够较好的提高相变材料的导热性能。
     以切片石蜡为相变主体材料,通过乳液法制备石蜡微球,以正硅酸乙酯为硅源,在酸性环境下水解缩聚,实现对石蜡微球的包覆,制备出二氧化硅包覆石蜡相变微囊。实验采用IR、ESEM、DSC以及XRD等对复合相变储热材料进行了结构、形貌以及热性能表征。结果表明:正硅酸乙酯能够较好的在石蜡微球表面水解缩聚,达到二氧化硅的定形包覆目的,制备的复合相变微囊粒径在50μm左右,复合微囊材料的熔化热可到达110.4J/g,熔点温度为50.1℃,凝固热为103.8 J/g,凝固温度为53.2℃,制备的二氧化硅基复合相变储能材料具有较高的相变潜热和良好的导热性能,相变温度较低,可应用于常温储热和热能再生系统。
With the energy crisis increasing, development and application of new energy sources and energy saving technologies have received more attention, which include phase change energy storage technology. Phase change energy storage technology is that phase change materials absorb and release heat during phase transformation process,attain the purpose of energy-storage and energy-release, and solve the contradiction of energy application and time-space, achieve the purposes of fully utilizing and improvement of energy utilization ratio, to wide application prospects in building construction, solar energy, waste heat recovery and so on. According to the problems of volume change and liquid leakage of organic phase change materials during phase transformation process, put forward the solution that organic phase materials compound with silicon dioxide materials to prepare composite phase change materials.
     Lauric acid was imbedded into the net of silicon dioxide (SiO2) to preparing lauric /silicon dioxide phase change energy storage composite material by sol-gel method in the research, lauric acid as phase change materials and silicon dioxide as matrix materials. The structure, morphology, and thermal performance of the composite were characterized by IR, SEM and DSC. The results show that the composite phase change materials containing 69.1%(mass fraction) lauric acid has a melting temperature of 43.1℃and latent heat of 104.64J/g. Lauric acid is uniformly imbedded into the net of silicon dioxide without melted leakage from the composite frame. The thermal conductivity of the phase change material can be improved effectively by using silicon dioxide as a supporting material.
     Lauric /silicon dioxide phase change energy storage composite materials were prepared by low heating solid state reaction, lauric acid as phase change body materials and sodium silicate as raw materials. The structure, morphology, and thermal performance of the composite were characterized by IR, ESEM, DSC, XRD, etc. As the results, lauric acid materials are imbedded effectively when the mass ratio of sodium silicate and lauric acid materials is 2:5. The latent heat and melting temperature of the composite is 98.94 J/g and 58.6℃respectively. The thermal conductivity of composite phase change materials is improved by using silicon dioxide as coating materials.
     paraffin/silicon dioxide composite microcapsule materials were prepared by emulsion method using paraffin as phase body materials, TEOS as silicon raw materials, silicon dioxide imbedded paraffin microspheres by hydrolysis and polycondensation of TEOS in acid environment. The structure, morphology, and thermal performance of the composite were characterized by IR, ESEM, DSC, XRD, et al. As the results, the TEOS can hydrolyze and polycondensate on the surface of paraffin microspheres. The average diameter of composite microcapsules is 50μm approximately, and latent heat of composite microcapsules is 110.4 J/g, and malting temperature is 50.1℃.
     The composite phase change materials have high latent value and well thermal conductivity, and low phase transformation temperature, which can be used to room temperature energy storage and energy regeneration system.
引文
[1]张东,李凯莉.复合相变材料的研究进展[J].功能材料,2007, 38(12):1936–1940.
    [2]万春香.中低温定形相变储能材料的研究[D].北京:北京工业大学,2006.
    [3] Markus Koschenz, Beat Lehmann. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings[J]. Energy and Buildings, 2004, 36(6):567–578.
    [4]王岐东,董黎明.相变建筑节能材料的应用研究与进展[J].北京工商大学学报,2005,23(1):5–8.
    [5]王维龙,康慧英,杨晓西等.聚乙二醇/二氧化硅复合相变储热材料的性能研究[J].功能材料,2007,38(10):1652–1657.
    [6] James H.Johnstona, James E.Grindrod,Margaret Dodds, Katrin Schimitschek. Composite nano-structured calcium silicate phase change materials for thermal buffering in food packing[J].Current Applied Physics, 2008, 8:508–511.
    [7]张奕,张小松.有机相变材料储能的研究和进展[J].太阳能学报,2006,27(7):725–730.
    [8] Ahmet Sar. Eutectic mixtures of some fatty acids for latent heat storage:Thermal properties and thermal reliability with respect to thermal cycling[J]. Energy Conversation and Management, 2006, 47:1207–1221.
    [9] Mithat Akgu , Orhan Aydin , Kamil Kaygusuz. Experimental study on melting/solidification characteristics of a paraffin as PCM[J]. Energy Conversion and Management,2007,48:669–678.
    [10]闫全英,王威.相变墙体中的定形相变材料的实验研究[J].节能技术,2004,22(6):3–4.
    [11] Ahmet Sar. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 2004, 45: 2033–2042.
    [12]李爱菊,王毅,张仁元.工业窑炉用陶瓷基定形储能材料的研究[J].硅酸盐通报,2007,26(3):547–551.
    [13]张静,丁益民,陈念贻.以棕榈酸为基的复合相变材料的制备和表征[J].盐湖研究,2006,14(1):9–13.
    [14] Xavier Py, Regis Olives, Sylvain Mauran. Paraffin/porous-graphite-matrixcomposite as a high and constant power thermal storage material[J]. International Journal of Heat and Mass Transfer, 2001, 44: 2727–2737.
    [15]展义臻,朱平等.纳米复合相变材料的制备方法[J].染整技术,2007,4:1–7.
    [16]张翀,陈中华,张正国.有机/无机纳米复合相变储能材料的制备[J].高分子材料科学与工程,2001,17(5):137–139.
    [17]李建立,薛平,丁文赢,韩晋民,孙国林.定形相变材料研究现状[J].化工进展, 2007, 26(10):1425–1428.
    [18]周益明,忻新泉.低热固相合成化学[J].无机化学学报, 1999, 3:273–289.
    [19] F.Abdelmalek, J.M.Chovelon, M.Lacroix,N. Jaffrezic-Renault, V.Matejec. Optical fiber sensors sensitized by phenyl-modified porous silica prepared by sol–gel[J]. Sensors and Actuators, 1999, 56: 234–242.
    [20]刘瑞霞,戴起勋,刘惠等.碱催化制备乙酞胺复合相变储能材料[J].太阳能学报,2007,28(8):901–904.
    [21]吕刚,缪春燕,姚有为等.二氧化硅凝胶包覆十二醇微囊的制备[J].化工新材料,2006,11(34):26–28.
    [22] L.-Y.WANG, P.-S.TSAI, Y.-M.YANG. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion[J]. Journal of microencapsulation , 2006, 23(1):3–14.
    [23] M Amar.Khudhair, M Mohammed. Farid. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J]. Energy Conversion and Management, 2004, 45: 263–275.
    [24]柴卉,曾令可,刘平安等.包覆SiO2的硬脂酸相变储能材料低热固相化学合成及热性能[J].硅酸盐学报,2007, 35(11):1430–1433.
    [25] Weilong Wang,Xiaoxi Yang,Yutang Fang. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials[J]. Applied Energy, 2009, 86: 170–174.
    [26] K.A.R.Ismail, J.R.Henriques. Thermally effective windows with moving phase change material curtains [J].Applied Thermal Engineering, 2001, 21:1909–1923.
    [27] Xu X,Zhang Y P, Lin K P, et al. Modeling and simulation on the thermal performance of shape stabilized phase change materials floor used in passive solar buildings[J]. Energy and Buildings, 2005, 37(10)1084–1091.
    [28]陈彩凤,刘瑞霞,戴起勋等. SiO2/乙酰胺复合储热相变材料的制备[J].化工新型材料,2006, 34 (10):36–38.
    [29]张正国,黄弋峰,方晓明等.硬脂酸/二氧化硅复合相变储热材料制备及性能研究[J].化学工程,2005, 33(4):34–36.
    [30] J.H. Johnston, T. Borrmann, A.J. Mcfarlane. NZ Patent Specification No: 537747. 2006.
    [31]冯绪声,刘洪国,郝京诚等.胶体化学[D].化学工业出版社,2005,3.
    [32]刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展[J].高分子材料科学与工程,2004, 20(2):28–31.
    [33]孙道兴.硅溶胶制备纳米二氧化硅的工艺研究[J].青岛科技大学学报(自然科学版),2008,29(4):291–294.
    [34]田胜利,张东,肖徳炎.硬脂酸乙酯/多孔石墨定形相变材料的试验研究[J].节能,2005,11:5–6.
    [35]邓建成钟超凡.固相配位化学反应研究:I.钴(II)—六次甲基四胺配合物的固相合成与应用。1996,13(6):27-30.
    [36]柴卉,曾令可,王慧等.低热固相化学法合成脂肪酸相变材料及其表征(英文)[J].硅酸盐通报,2008,27(1):16–19.
    [37]孙露敏.Sol-Gel法在有机-无机杂化体系中制备二氧化硅微粒[J].分子科学学报,2008, 24 (4):284–287.
    [38]田胜力,张东,肖德炎,向阳.脂肪酸相变储能材料热循环行为的试验研究[J].材料开发与应用,2006,1(21):9–12.
    [39]刘晓蕾,刘孝波.溶胶-凝胶法制备有机/无机杂化材料研究进展[J].高分子材料科学与工程,2004, 20(2):28—31.
    [40] Amar M.Khudhair, Mohammed M.Farid. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J]. Energy Conversion and Management, 2004, 263–275.
    [41] Mohammed M.Farid, Amar M.Khudhair, Siddique Ali K.Razack, Said Al-Hallaj. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management, 2004, 1597–1615.
    [42] Guobing Zhou, Yinping Zhang, Xin Wang, Kunping Lin, Wei Xiao. An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating[J]. Solar Energy, 2007, 1–10.
    [43]答鸿,朱以华.核–壳式单分散二氧化硅磁性微球的制备[J].无机材料学报, 2002,4(17):865–871.
    [44] Yinping Zhang, Guobing Zhou, Kunping Lin, Qunli Zhang, Hongfa Di. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook[J]. Building and Environment, 2007, 42:2197–2209.
    [45] T.Lee, D.W.Hawes, D.Banu, D.Feldman. Control aspects of latent heat storage and recovery in concrete[J]. Solar Energy Materials & Solar, 2000, 217–237.
    [46] A.Barba, M.Spiga. Discharge mode for encapsulated PCMs in storage tanks[J]. Solar Energy, 2003, 74: 141–148.
    [47] Shadab Shaikh, Khalid Lafdi. Effect of multiple phase change materials(PCMs) slab configurations on thermal energy storage[J]. Energy Conversion and Management, 2006, 47: 2103–2117.
    [48]顾文娟,廖俊,吴卫兵等.中空二氧化硅微球的制备方法研究进展[J].有机硅材料,2009, 23(4):257–264.
    [49]毛华军,晏华,谢家庆.微胶囊相变材料研究进展[J].功能材料,2006, 37(7):1022–1026.
    [50] Cemil Alkan. Enthalpy of melting and solidification of suffocated paraffins as phase change materials for thermal energy storage[J]. Thermochimica Acta, 2006, 451: 126–130.
    [51] Ahmet Sar. Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability[J]. Applied Thermal Engineering, 2005, 25: 2100–2107.
    [52] Zhongliang Liu, Xuan Sun, Chongfang Ma. Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins[J]. Energy Conversion and Management, 2005, 46: 959–969.
    [53] Miroslaw Zukowski. Experimental study of short term thermal energy storage unit based on enclosed phase change material in polyethylene film bag[J]. Energy Conversion and Management, 2007, 48: 166–173.
    [54] Mithat Akgun, Orhan Aydin, Kamil Kaygusuz. Experimental study on melting/solidification characteristics of a paraffin as PCM[J]. Energy Conversion and Management, 2007, 48: 669–678.
    [55] Qi Cao, Pengsheng Liu. Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage[J]. European Polymer Journal, 2006, 42: 2931–2939.
    [56]孙露敏. sol-gel法在有机-无机杂化体系中制备二氧化硅微粒[J].分子科学学报,2008, 24 (4):254–257.
    [57]李辉,方贵银.具有多孔基体复合相变储能材料研究[J].材料科学与工程学报,2003,6(21):842–844.
    [58] Piyasan Praserthdam, Masashi Inoue, Okorn Mekasuvandumrong, Waraporn Thanakulrangsan, Suphot Phatanasri. Effect of organic solvents on the thermal stability of porous silica-modified alumina powders prepared via one potsolvothermal synthesis[J]. Inorganic Chemistry Communications, 2000, 3: 671–676.
    [59] G.J.Suppes, M.J.Go, Shailesh Lopes. Latent heat characteristics of fatty acid derivatives pursuant phase change material applications[J]. Chemical Engineering Science, 2003, 58: 1751–1763.
    [60]王英,马亚鲁.湿化学法制备超细二氧化硅材料的研究进展[J].中国陶瓷,2003, 39 (5):12–14.
    [61]刘羽,张建民,牛志睿. Sol-Gel法二氧化硅溶胶的制备及性能影响研究[J].过滤与分离,2008, 18 (3):21–24.
    [62]陈枭,张仁元,毛凌波.石蜡类相变材料的研究及应用进展[J].材料研究与应用,2008,2(2):89–93.
    [63] Kadir Tuncbilek,Ahmet Sari,Sefa Tarhan,Gazanfer Ergunes,Kamil Kaygusuz. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications[J]. Energy, 2005, 30: 677–692.
    [64] Xiaowu Wang, Enrong Lu, Wenxian Lin,Caizhang Wang. Micromechanism of heat storage in a binary system of two kinds of polyalcohols as a solid±solid phase change material[J]. Energy Conversion&Management,2000, 41: 135–144.
    [65] J.Banaszek, R.Domanski, M.Rebow, F.El-Sagier. Numerical analysis of the paraffin wax-air spiral thermal energy storage unit[J]. Applied Thermal Engineering, 2000, 20: 323–354.
    [66] Gulseren Baran,Ahmet Sari. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system[J]. Energy Conversion and Management, 2003, 44: 3227–3246.
    [67] Ahmet Sar,Ali Karaipekli,Cemil Alkan. Preparation,characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material[J]. Chemical Engineering Journal, 2009, 155(3):899–904.
    [68] Simone Raoux, Robert M.Shelby, Jean Jordan-Sweet, Becky Munoz, Martin Salinga, Yi-Chou Chen, Yen-Hao Shih, Erh-Kun Lai, Ming-Hsiu Lee. Phase change materials and their application to random access memory technology[J]. Microelectronic Engineering, 2008, 85: 2330–2333.
    [69]宋晓庆,姜猛进等.石蜡/聚乙烯醇相变储能纤维的制备与表征[J].复合材料学报,2008,1(25):17–23.
    [70]白永庆,龚福忠,李丹等.微乳液的结构性质及其应用进展[J].化工技术与开发,2007, 36 (11):24–30.
    [71] Osama Mesalhy, Khalid Lafdi, Ahmed Elgafy, Keith Bowman. Numerical studyfor enhancing the thermal conductivity of phase change material(PCM)storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46: 847–867.
    [72] Jianli Li, Ping Xue, Hong He, et. al. Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system[J]. Energy and Buildings, 2009, 41: 871–880.
    [73] Chao Chen, Haifeng Guo, et al. A new kind of phase change material(PCM) for energy-storing wallboard[J]. Energy and Buildings, 2008, 40: 882–890.
    [74] Dale P.Bentz, Randy Turpin. Potential applications of phase change materials in concrete technology[J]. Cement&Concrete Composites, 2007, 29: 527–532.
    [75] M.Marinkovic, R.Nikolic, J.Savovic, et al. Thermochromic complex compounds in phase change materials:Possible application in an agricultural greenhouse[J]. Solar Energy Materials and Solar Cells, 1998, 51: 401–411.
    [76] Ahmet Sar, Kamil Kaygusuz. Thermal performance of myristic acid as a phase change material for energy storage application[J]. Renewable Energy, 2001, 24: 303–317.
    [77] C.J.Ho, J.Y.Gao. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material[J]. International Communications in Heat and Mass Transfer, 2009, 36: 467–470.
    [78] Yutang Fang, Shengyan Kuang, Xuenong Gao, et al. Preparation and characterization of novel nanoencapsulated phase change materials[J]. Energy Conversion and Management, 2008, 49: 3704–3707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700