中国典型动力煤及含氧模型化合物热解过程的化学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤的热转化是当前煤炭加工利用中最重要的过程,而煤热解是煤转化的最基本过程。煤无论是进行燃烧,还是气化、液化、干馏,都有煤的热解作为其初始和伴随反应,对后面的转化步骤有重要影响,煤的热解与煤的热加工技术关系极为密切,煤热解过程的深入研究对煤的热加工转化过程有直接的指导作用。本文从煤、有机显微组分、煤抽提物和具有准确分子结构模型化合物不同尺度重点研究我国典型动力煤种热解过程中其有效组分的转化特征,主要包括以下几方面内容:
     1.选取了10种中国典型动力煤种,系统考察了不同热解条件下煤热解产物的分布、逸出规律、组成和性质;研究和探讨了煤中C、H、O元素不同热解温度下在产物中的分布及其变化规律。主要结论如下:
     煤在热解过程中,700℃时大部分的挥发分已经释放,与此对应的是在300-700℃温度范围,气相和液相产物的产率快速增加。900℃时煤中的碳大部分残留在焦中,而H和O元素在焦中存在很少,绝大部分以焦油和气体产物的形式释放出去。在400-700℃温度范围内,焦中的碳所占的比例呈明显的下降趋势,相对应的是进入热解气体和焦油中碳呈增加趋势。400-700℃温度范围内大量的烃类气体和焦油产生,使得焦中氢迅速减少。700℃以后,焦中氢比例仍然呈下降趋势,主要是由于热缩聚反应放出氢气造成的。超过75%以上的煤中氧进入到了热解含氧气体,只有不到10%的氧进入到焦油中,焦中氧含量降低主要发生在400-700℃。热解气体中各组分的逸出规律明显不同。从10种煤的各热解产物释放随温度的变化规律看,热解产物的释放强烈依赖于热解温度,对煤阶不敏感,但是产物的释放量与煤阶密切相关。
     2.采用热重分析仪和热解-红外光谱联用仪(Py-FTIR)考察了神府镜煤四氢呋喃抽提物的热解过程。热重的研究结果表明:抽提物的热解失重行为与镜煤的热解失重行为有很大不同,抽提物有两个明显的DTG峰,190℃左右时出现一个DTG峰,在439℃出现第二个DTG峰,与镜煤相比,抽提物的失重速率显著高于镜煤,且最大失重峰向低温区移动。抽提物的热解产物中脂肪烃的释放量多于镜煤,而且脂肪烃类产物释放的温度区间小,说明脂肪烃的释放更集中和快速,
    
     太原理工大学博士学位论文
    但是甲烷的生成量明显少于镜煤;抽提物热解产物中有少量的co:生成,几乎没
    有产生CO。热解过程中抽提物易融化、膨胀。
     3.对两种有机显微组分热解特性和差异进行了比较研究,实验结果表明:镜
    质组的失重量比丝质组大,镜质组达到最大失重速率的温度小于丝质组。镜质组
    热解产物中的脂肪烃含量要大于丝质组和原煤;原煤的甲烷放出最大,镜质组其
    次,丝质组最少。CO:的释放量由大到小的顺序是丝质组>原煤>镜质组,而且丝
    质组CO:释放温度范围要大于原煤和镜质组。
     4.选取了12种与煤分子结构中含氧官能团相关的含氧模型化合物,系统考
    察这些含氧模型化合物热解特性,结合实验结果对上述含氧模型化合物的热解机
    理进行了分析和推断,得出了下面的结论:
     芳香酸的热解机理主要是正离子型机理,自由基机理的可能性较小。酚在受
    热的情况下会放出HZ,并确认是由于分子中O一H键断裂而产生的,O一H键断裂
    后生成酚氧基(C6H50),而且酚的热分解不会导致分子内的C一O键的断裂。可以
    肯定酚类的热解过程有CO的丢失,并伴随六元的芳香环变为五元环。芳香酮主
    要发生a碎裂,醛类的质谱行为与酮类是很相似的,也是通过。碎裂形成偶电子
    离子,然后通过i碎裂过程失去CO。烷氧基热解的一条路线是烷氧基中的氧以
    CO的形式放出,另一条路线是烷氧基中的氧形成酚轻基,失掉烷基,醚键的断
    裂伴随着酚轻基的形成。杂环氧的热解可以产生CO,但热分解的温度高,并伴
    随着环的破裂。
     5.考察了高邻土、蒙脱石粘土矿物质对直链烷烃的催化裂解,结果表明,矿
    物质对直链烷烃的催化裂解生烃的效果是明显的,其中蒙脱石的催化作用最大。
    氧化钙和Y一A120。是通过吸附裂解对挥发分的释放起抑制作用。
     6.芳烃上的甲基的断裂产生甲基自由基的过程需要较高的温度,与甲基苯或
    多甲基取代苯相比,乙基苯或更长链的烷基取代苯热解更易产生甲基自由基,产
    物中的甲烷量要多。
Prompted by the need of non-petroleum-based fuels, coal research has reemerged to center stage today. Pyrolysis research, in particular, has gained considerable momentum because of its close connection to combustion, gasification and liquefaction. The results of scientific investigations of coal pyrolysis are the indispensable basis for technology in almost all areas of utilization of coal. In the present paper, we conducted the pyrolytic experiments of coals, macerals, coal extract and coal model compounds containing oxygen groups, respectively. The aim is to describes the distribution and evolution characteristics of pyrolysis products of used samples under different thermal conditions and present a purposely view of the relationship between a coal structure and pyrolysis reactivity. The theme includes such contents as follows:
    10 kinds of Chinese steam coal samples were chosen and their pyrolysis experiments were done under different conditions. Distribution and evolution characteristics of products during pyrolysis were observed. Elemental analysis, FTIR spectroscopy, GC-MS, 13C-NMR and XRD techniques were employed to characterize the tars and chars in details. Mass balance of elements C, H, O in various products produced at different temperature was obtained. The results show that the formation of volatile matter was mainly in temperature range of 400-700 ℃ and the evolution of products is functions of temperature. In bituminous coals where the weight loss is dominated by tar, the ultimate yield appears to increase very little beyond 700 ℃, while in lignites a considerable fraction of the volatiles consists of CO, CO2 and hydrocarbon gases, the ultimate weight loss continues increasing with temperature beyond 700 ℃. Almost all H and O of coal converted into volatile at 900 ℃. About 75% oxygen evolution in the gas phase oxygen, t
    
    he great mass of this converted into the gas phase between 400-700℃. The conversion to tar-O was always is less than10%. Coal rank is a very important factor in the amounts of evolution of various products. The evolution characteristics of gaseous products are different.
    As the important part of coal organic structure, low molecular weight compound is thought to play a key role in the structure of coal and has a significant effect on the process of coal pyrolysis. The extract sample was obtained from vitrain extracted by
    
    
    
    tetrahydrofuran. The thermal decomposition behavior of vitriain and its extract were investigated by means of TG and Py-FTIR, the latter can continuously obtain IR spectra of the volatiles as the sample is heated. The TG and DTG curves of extract are different from that of vitrain. The rate of weight loss of extract is higher than that of vitrain. The maximum peak in DTG curve of extract moves towards low temperature compared with vitrain. The results of experiments using Py-FTIR shows that the amounts of aliphatic evolution of extract is higher than that of vitriain, the evolution profile indicates the evolution of aliphatic is fast. The amounts of methane and CO2 evolution from extract were lower than that of vitrain. No CO was produced from extract.
    Pyrolysis of macerals from Shenfu coal was performed using TG and Py-FTIR techniques. It was found that vitrinite has a lower peak temperature of evolution of volatile matter and greater weight loss rate than those of coal and inertinite. Vitrinite has higher yield of paraffin than that of coal and inertinite, while coal and inertinite give more evolution of oxygen-containing products.
    Because of the complex, ill-defined molecular compositions and structures of coals, and because of the multiplicity of possible reactions when coal undergo pyrolysis, pure organic compounds are often used as models of some facet of the nature of coal. Understanding the reactivity and the mechanism of organic molecules is developing from studies aimed at explaining how organic matter, especially those with oxygen-containing functional groups in coal, breaks during pyrolysis. Pyrolytic reactions of 12 organic compounds containin
引文
[1] 肖晨,科学时报,200211,23:第一版
    [2] 朱之培,高晋生,煤化学,上海科学技术出版社,1984:171-172
    [3] Gavalas G R, Cheong P H K, Jain R, Moel of coal pyrolysis 1. qualitative development, Ind. Eng. Chem. Fundam., 1981,20:113
    [4] Gavalas G R, Jain R, Cheong P H K, Moel of coal pyrolysis 2. qualitative formation and results, Ind. Eng. Chem. Fundam., 1981,20:122
    [5] Gavalas G R, Coal Science and Technology4, Coal pyrolysis, Elsevier, New York,1982:19-33
    [6] Thorns P E, Phillip F B, Buchanan Ⅲ A C, Does decarboxylation lead to cross-linking in lowrank coals, Energy & Fuels, 1996,10(6): 1257-1261
    [7] Manion J A, McMillen D F, Malhortra R, Decarboxylation an coupling reactions of aromatic acid under coal-liquefaction conditions, Energy & Fuels, 10(6):776-778
    [8] Badzioch S, Hawksley P G W, Kinetics of thermal decomposition of pulverized coal particles, Ind. Eng. Chem. Process Design Dev., 1970,9(7): 521
    
    
    [9] Miura K and Maki T, A simple method for estimating f(E) and k_0(E) in the distributed activation energy model, Energy & Fuel 1998, 12, 864
    [10] Braun RL, Burnham A K, Analysis of chemical reactions using a distribution of activation energies and simpler models, Energy & Fuel 1987,1(2):153-161
    [11] Lakshmanan C C, Bennett M L and White N, Implications of multiplicity in kinetic parameters to petroleum exploration: distributed activation energy models, Energy & Fuel 1991,5(1):110-117
    [12] Pradeep k A, John B A, Niranjan R and Robert W, Distributed kinetic parameters for the evolution of gaseous species in the pyrolysis of coal, Fuel, 1987,66:1097-1105
    [13] Okuo H, Kojima T, Yamashita Y, Inaba A, An analysis of coal pyrolysis rates usiing thermogravimetry, proceedings of ICCS'97:653-656
    [14] Suuberg E M, Peter W A and Howard J B, Ind. Eng. Chem. Process Des.Dev.1978,17:37
    [15] 刘旭光,煤热解DAEM模型分析及固定床煤加压气化过程数学模拟,中国科学院博士学位论文,2002
    [16] Kabayshi H, Howard J B, Saofirm A F, Coal devolatilization at high temperature, 16th symp of on Combustion, 1977:411
    [17] Solomon P R, Hamblen D G et al, Can coal science be perdictive, Fuel Chem. Prep., 1991, 36: 268-297
    [18] Niksa S, Kerstein A R, Flashichain theory for rapid coal devolatilization kinetics.1. Formulation, Energy & Fuel, 1991,5:647-665
    [19] Niksa S, Kerstein A,R, Flashichain theory for rapid coal devolatilization kinetics.2.Impact of operation condition, Energy & Fuel, 1991,5: 665-673
    [20] Niksa S, Kerstein A R, Flashichain theory for rapid coal devolatilization kinetics.3. Modeling the behavior of various coals, Energy & Fuel, 1991,5:673-683
    [21] Grant D M, Pugmire R J, Chemical model of coal devolatilization using percolation lattice statistics, Energy &Fuels,1989,3:175-186
    [22] Fletcher T H, Kerstein A R., Chemical percolation model for devolatilization, Energy &Fuels, 1990,4:54-60
    [23] Xie K C, Zhang Y F and Wang Y G, Structure and pyrolysis of the macerals from Pingshuo gas coal, Proceedings of the third China-Japan Coal Chemistry and C1 Chemistry: 91-96
    [24] 李文英,谢克昌,平朔气煤的煤岩显微组分结构研究,燃料化学学报,1992,20(4):375-383
    [25] Seewald J S, Eglinton L B, One Y L, An experimental study of organic-inorganic interactions during vitrinite maturation, Geochimica et Cosmochimica Acta, 2000, 64(9) :1577-1591
    [26] 张军,袁建伟,徐益谦,矿物质对煤粉热解的影响,燃烧科学与技术,1998,4(1):64-68
    [27] 缪岩,蒋君衍,张鹤声,煤催化热解过程的动力学研究,燃烧科学与技术,1995,1(4):140-150
    [28] Slaghuis H J, Ferreiral L C, Judd M R, Volatile material in coal effect to inheret mineral matter, Fuel, 1991,70(3):471
    
    
    [29] 李凡,张永发,谢克昌,矿物质对煤显微组分热分解的影响,燃料化学学报,1992,20(3):300
    [30] Unger P E, Suugberg E M, Molecular weight distributions of tars produced by flash pyrolysis of coals, Fuel, 1984,63:606-611
    [31] Solomon P R, Serio M A, Carangelo R M, Markham J R, Very rapid coal pyrolysis, Fuel, 1986,65:182-191
    [32] Teo K C, Watkinson A P, Rapid pyrolysis of Canndian coals in a miniature spouted bed reactor, Fuel, 1986,65:949-959
    [33] Khan M R, A literature survey and an experimental study of coal devolatilization at mild and severe conditions: influences of heating rate, temperature, and reactor type on products yield and composition, Fuel, 1989,68:1522-1530
    [34] LedesmalE B, Kalishc M A, Nelsona P F, Wornatc M J, Mackieb J C, Formation and fate of PAH during the pyrolysis and fuel-rich combustion of coal primary tar, Fuel,2000,79: 1801-1814
    [35] Yu L E, Hildemann L M, Trends in aromatic ring number distributions of coal tars during secondary pyrolysis, Energy & Fuels 1998 12 (3):450-456
    [36] Gorbaty M L, Prominent frontiers of coal science: past, present and future, Fuel,1994, 73(12):1819-1828
    [37] 陈国昌,鲜学福,煤结构的研究及其发展,煤炭转化,1998,21(2):7-13
    [38] Takanohashi T, Terao Y, Iino M, Irreversible structural changes in coals during heating, Energy Fuels, 1999,13:506-512
    [39] Kidena K, Bandoh N, Kouchi M, Murata S, Nomura M, Methyl group migration during heat treatment of coal in the presence of polycyclic aromatic compounds, Fuel, 2000,79:317-322
    [40] Ndaji F E, Butterfied L M, Thomas K M, Changes in the macromolecular structure of coals with pyrolysis temperature, Fuel 76(2) 1997:169-176
    [41] Kawashima H, Yamashita Y, Saito I, Studies on structural changes of coal density-separated components during pyrolysis by means of solid-state ~(13)C-NMR spectra, Journal of Analytical and Applied Pyrolysis, 2002, 53:35-50
    [42] Butterfield L M, Thomas K Mark, Some aspects of changes in the macromolecular structure of coals in relation the thermoplastic properties, Fuel, 1995,74(12): 1780-1785
    [43] Nomura S, Thomas K M, Fundamental aspects of coal structural changes in the thermoplastic phase, Fuel, 1998,77(8):829-836
    [44] Dunlop N F, Johns R B, Thermally induced chemical changes in the macromolecular structure of an Indonesian coal, Organic Geochemistry, 1999,30:1301-1309
    [45] Yun Y, Suuberg E M, New application of differential scaning calorimetry and solvent swelling for studies of coal: prepyrolysis structure relaxation, Fuels, 1993,72(8): 1245-1254
    [46] Green Y K, Kovac J, Larsen J W, A rapid and converient method for measuring the swelling of coals by solvents, Fuel, 1984,63(7): 935
    
    
    [47] Solomon P R, Serio M A, Cross-Link reaction during coal conversion, Energy & Fuels, 1990 4(1): 42-54
    [48] Nomura S, Thomas K M, Fundamental aspects of coal structural changes in the thermoplastic phase, Fuel, 1998,77(8):829-835
    [49] Given P H, Marzec A, Barton W A, The concept of a mobil or molecular phase within the macromolecular network of coals: a debate, Fuel, 1986, 65(2): 155-163
    [50] Yang J I, Stansberry P G, Zondlo J W, Stiller A H, Characteristics and carbonization behaviors of coal extracts, Fuel Processing Technology, 2002,79(3): 207-215
    [51] Chigier N A(金如山等译),煤的燃烧与应用,北京航空学院出版社,1986
    [52] Artok L, Schobert H H, Reaction of carboxylic acids under coal liquefaction condition. 1: Under nitrogen atmosphere, Journal of Analytical and Applied Pyrolysis, 2000, 54: 215-233
    [53] Artok L, Schobert H H, Reaction of carboxylic acids under coal liquefaction condition. 2: Under hydrogen atmosphere, Journal of Analytical and Applied Pyrolysis, 2000, 54:235-246
    [54] Artok L, Erbatur O, Schobert H H, Reaction of dinaphthyl and diphenyl ethers at liquefaction condition, Fuel Processing Technology, 1996,47:153-176
    [55] Eskay T P, Britt P F, Buchanan Ⅲ A C, Does decarboxylation lead to cross-linking in low-rank coals, Energy & Fuels, 1996,10(6): 1257-1261
    [56] Eskay T P, Britt P F, Buchanan Ⅲ A C, Pyrolysis of coal compounds containing aromatic carboxylic acids:the role of carboxylic acids in cross-linking reaction in low-rank coals, Proceedings of ICCS'97, Essen, Germany, 1997:1385-1356
    [57] Manion J A, McMillen D F, Malhortra R, Decarboxylation an coupling reactions of aromatic acid under coal-liquefaction conditions, Energy & Fuels, 1996,10(6): 776-778
    [58] Amen-Chen C, Pakdel H S, Roy C, Production of monomeric phenols by thermochemical conversion of biomass: review, Bioresoruce Technology, 2001(79): 277-299
    [59] Hayashia J I, Takahashia H, Iwatsukia M, Essakib K, Tsutsumib A, Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor, Fuel, 2000,79 439-447
    [60] 艾利奥特,煤利用化学(上册),化学工业出版社,1991:580-586
    [61] Wiktorsson L P, Wanzl W, Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of date from different laboratory equipment, Fuel, 2000,79:701-716
    [62] Eddinger R. T. et al, Fuel, 1966, 45:245
    [63] Badzioch S, Hawksley P G W, Kinetics of thermal decomposition of pulverized coal particles, Ind. Eng. Chem. Process Desigh and Dev., 1970,9(7): 521-530
    [64] 陈彩霞,孙学信,层流曳带流反应器内流动和温度特性的数值模拟,华中理工大学学报,1994,22(3):30-35
    [65] 陆昌伟,奚同庚,热分析质谱法,上海科学技术文献出版社,2002
    [66] Carangelo R M, Solomon P R, Gerson D J, Application of TG-FT-i.r. to study hydrocarbon
    
    structure and kinetics, Fuel, 1987,66:960-967
    [67] Gavalas G R, Coal Science and Technology4 ,Coal Pyrolasis, New York,1982:39-45
    [68] Glaude P A, Battin-Leclerc F, Judenherc B, Warth V, Experimental and modeling study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers, Combustion and Flame, 2000 121: 345-355
    [69] Smoot L D, Smith P J,煤的燃烧与气化,科学出版社,1992:75-76
    [70] Gurgel Veras C A, Saastamoinen J, Carvalho J A, Aho M, Overlapping of the devolatilization and char combustion stages in the burning of coal particles, Combustion and Flame, 1999,116: 567-579
    [71] Niksa S, Cho S, Characterizing multicomponent fuel effects during the initial stages of pulverized coal combustion, Proceedings ICCS, 1997, Essen, Germany, 1147-1150
    [72] Seeker W R, Samuelsen G S, Heap M P, Troliner J S, The thermal decomposition of pulverized coal particles, 18th International Symposium on Combustion, Pittsburgh, 1981: 1213-1215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700