蛋白质模型分子水溶液中溶质—溶质相互作用的热力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是许多生物现象的重要物质基础。氨基酸是重要的生物活性物质,是组成蛋白质的基本结构单位,被认为是理论研究中最重要的生物模型化合物;酰胺因为含有一些多肽链单元,多肽链单元含有酰基和非极性残基,已成为研究水溶液里肽链性质的模型化合物。糖类和羟基化合物能够稳定球形蛋白质的天然构象,而有机溶剂对蛋白质的溶解性、变性行为、折叠和解折叠及酶的活性等都有很大影响。通过研究水溶液中氨基酸、酰胺与有机溶剂化合物的热力学性质,既可以获得水溶液中溶剂化的溶质分子间的相互作用方面的信息,又有助于了解有机溶剂化合物对蛋白质的稳定机理及氨基酸、酰胺在蛋白质中的构象稳定性和解折叠过程中所担当的角色。
     本论文主要由以下几部分组成:
     第一部分:概述了蛋白质模型分子体系溶液热力学的研究状况。
     第二部分:选择六种典型氨基酸——甘氨酸、L-丙氨酸、L-丝氨酸、L-缬氨酸、L-脯氨酸、L-苏氨酸为研究对象,用LKB-2277热活性检测仪的流动混合测量系统测定了298.15 K、303.15 K和310.15 K时它们与2,2,2-三氟乙醇(TEF)在水溶液中的混合焓及各自的稀释焓,根据McMillan-Mayer理论关联得到各级异系焓相互作用系数,从溶质一溶质相互作用角度,研究了氨基酸与2,2,2-三氟乙醇分子间的相互作用机制,并探讨了温度的影响。
     结果表明:(1)氨基酸与2,2,2-三氟乙醇分子间的h_(xy)均为正值,说明两种溶质分子混合过程中吸热效应占优势,不同氨基酸与2,2,2-三氟乙醇分子间的h_(xy)值的不同主要取决于不同氨基酸分子侧链结构的差异。(2)三个温度下氨基酸与2,2,2-三氟乙醇分子间的h_(xy)值有较大的差异。310.15 K时氨基酸与2,2,2-三氟乙醇分子间的焓对相互作用系数均大于298.15 K和303.15 K时的数值。说明当温度升高时,由于氢键的协同作用加大了分子间的疏水相互作用,增强了羟基的部分去水化作用,且温度越高,氢键的协同作用越明显,所以310.15 K时氨基酸与2,2,2-三氟乙醇的h_(xy)出现较大的正值,这可能是2,2,2-三氟乙醇可以作为可逆变性剂的一个主要原因。(3)脯氨酸具有独特的吡咯环结构,它们在确定多肽性质方面具有特殊的重要性。结果表明吡咯环具有较大的疏水作用,而且脯氨酸与2,2,2-三氟乙醇分子作用的h_(xy)值是随着温度的递增而递增的。
     第三部分:研究氨基酸298.15K(甘氨酸、L-丙氨酸、L-丝氨酸、L-缬氨酸、L-脯氨酸、L-苏氨酸)和N,N-二甲基乙酰胺(DMAC)分别与二甲亚砜分子间的异系焓相互作用,根据得到的焓对相互作用系数讨论了氨基酸和N,N-二甲基乙酰胺分别与二甲亚砜分子的作用机制,得到结论如下:
     (1)水溶液中上述六种氨基酸、DMAC与二甲亚砜的相互作用均为吸热过程,焓对作用系数表现为正值。在298.15 K时,模型化合物与二甲亚砜异系焓对相互作用系数出现了以下顺序:h_(xy)(Gly)     (2)与氨基酸相比,DMAC分子中极性的酰胺键是一个共轭体系,而且这个共轭体系受3个甲基的包围,产生很大的位阻效应,这大大降低了DMAC与二甲亚砜分子间的亲水-亲水相互作用;而与氮原子相连的两个甲基大大增强了两者之间的疏水-疏水相互作用;所以,h_(xy)(DMAC)表现出较大的正值。
     第四部分:采用2277热活性检测仪的流动混合测量系统测定了298.15 K时N,N-二甲基乙酰胺与葡萄糖、蔗糖分子的混合过程焓变及各自的稀释焓,根据McMillan-Mayer理论关联得到各级焓作用系数,探讨了其相互作用机理。
     研究结果表明:
     在水溶液中DMAC与葡萄糖、蔗糖相互作用均为吸热过程,焓对作用系数表现为正值。在298.15 K时,DMAC与葡萄糖、蔗糖异系焓对相互作用系数出现了h_(xy)(葡萄糖)Amino acids, which have been used extensively as the most important biological model compounds, are not only the basic building blocks of proteins, but also the typical zwiterionic compounds and important active materials in living things.Sugars and polyols help in stabilizing the naitve conformation of globular proteins.There has been significant interest in the investigation on the interaction in aqueous solutions between amino acids and organic molecules present in living organisms or possessing functional group identical. The principle reasons for studying such systems are to obtain (i) the information that contributes to the growing body of knowledge aboutsolute solvation and solute-solute interactions in aqueous media, and (ii) a beter understanding of their role played in the conformational stability and unfolding behavior of proteins.
     This paper mainly consists of the following four parts.
     The first part summarizes the current status of studies on the thermodynamic properties of sytems containing portein model molecules.
     In the second part.enthalpies of mixing of aqueous amino acids solutions (glycine, L-alanine, L-serine, L-valine, L-proline, L-threonine)with aqueous 2,2,2-Trifluoroethanol (TEF) solutions have been determined at 298.15 K ,303.15 K and 310.15 K by the LKB-2277 flow microcalorimetric system. These results along with enthalpies of dilution of these aqueous solutions have been used to obtain the enthalpic interaction coefficients (h_(xy),h_(xxy), etc.) in terms of the McMillan-Mayer theory. The enthalpic pairwise interactions between amino acids and TEF have been discussed by solute-solute interactions.
     The results show: (1) The disprepancy of h_(xy) values between amino acids and TEF can were determined by the side-chain of amino acids. Amino acids with different side-group can make different contributions to h_(xy). (2) Under the three temperatures there has a big difference for the h_(xy) values between amino acids and TEF molecules. For the same kind of amino acid, the h_(xy) value between amino acid and TEF molecules at 310.15 K is larger than that of 298.15 K and 303.15 K. Because of the synergistic effect of the hydrogen bonds, the intermolecular hydrophobic interactions strengthen and subsequently the partial dehydration of the dydroxyl groups enhance when the temperature increases. The higher the temperature, the synergistic effect of the hydrogen bonds more obvious. Therefore, the h_(xy)coefficients between amino acids and TEF at 310.15 K appear relatively larger positive values. This probably is the main reason that TEF is used as a reversible denaturant. (3) Proline is a natural amino acid that has one pyrrole ring. Its special structure makes it important to the properties of polypeptide. On one hand, the cyclic structure weakens the attracting interactions between proline molecules due to the steric effect, which makes solvation easy. The results indicate that the pyrrole ring has the bigger hydrophobic interaction. The hxy value between Proline and TEF molecules increases with the increment of temperature.
     In the third part, the heterotactic enthalpic interactions have been investigated between the six kinds of amino acids studied above, DMAC and DMSO and the interaction mechanism has been discussed.
     The results show: (1) The h_(xy) values between the six kinds of amino acids, DMAC and DMSO molecules are all positive. The h_(xy) coefficients at 298.15 K are in the following sequence: h_(xy)(Gly)      The forth part, the enthalpies of mixing of the DMAC aqueous solution with the saccharides (glucose, sucrose) aqueous solutions have been determined at 298.15 K by the LKB-2277 flow microcalorimetric system. These results along with enthalpies of dilution of these aqueous solutions have been used to obtain the enthalpic interaction coefficients (h_(xy),h_(xxy), etc.) in terms of the McMillan-Mayer theory. The enthalpic pairwise interactions between DMAC and saccharides have been discussed from the point view of solute-solute interactions.
     The results show: The h_(xy) values between DMAC and glucose and sucrose molecules are all positive. At 298.15 K, the h_(xy) coefficients increase in the order: h_(xy) (glucose) < h_(xy)(sucrose). Sucrose is a dimer formed by a glucose molecule and a fructose molecule through the 1,4-glucoside bond. But owing to many complex factors, such as the intermolecular hydrogen bonding or steric hindrance between two monomers, two hydroxyl groups have been consumped during the course of the formation of glucoside bond for the monosaccharide. So the thermodynamic property of sucrose is between glucose and fructose, not the simple adduct of these two monosaccharide molecules.
引文
[1]Griko,Y.N; Feire, E; Privalov,P.L.,Energetics of the a-Lactalbumin States: A Calorimetric and Statistical Thermodynamic Study? [J].Biochemistry, 1994,33:1889-1899.
    
    [2]Rand,R.P.. Raising Water to New Heights [J]Scince,1992,256(5057):618.
    
    [3]Hamada,D.; Kuruda,Y.; Tanaka,T.; et al. HIGH HELICAL PROPENSITY OF THEPEPTIDE FRAGMENTS DERIVED FROM BETA-LACTOGLOBULIN, APREDOMINANTLY BETA-SHEET PROTEIN [J]. J.Mol.Biol, 1995,254:737-746.
    
    [4]Lilley, T. H.. Thermodynamic relationships of 1:1 electrolytes [J]. Trans. FaradaySoc. 1968, 64: 2947-2950.
    
    [5]Palecz, B;The enthalpies of interaction of glycine with some amides and ureas inwater at 25℃[J]. J. Solution Chem. 1995, 24:537-550.
    
    [6]Bartlomiej, P.; Henryk. P. Enthalpies of solution of glycine in aqueous solutions of1.2-diols and glycerol at 25℃[J]. J. Solution Chem, 1997,26: 621-629.
    
    [7]任小玲,林瑞森.胡新根.等.甘氨酸在DMF/水和乙醇/水混合溶剂中的焓对相互作用[J].化学学报,1999,57:875-880.
    
    [8]胡新根,林瑞森,宗汉兴.水/乙醇混合溶剂中氨基酸离解的取代基效应[J].化学学报,1999,57:479-484.
    
    [9]厉刚,林瑞森,宗汉兴.α-氨基酸在水-乙醇中羧基质子化热力学[J].物理化学学报,2000,16:188-192.
    
    [10]任小玲,倪亚明,林瑞森.L-丝氨酸在乙醇-水混合溶剂中的稀释焓[J].物理化学学报,2000,16:166-169.
    
    [11]Casreonuovo, G.; Elia, V.The role of preferential interactions between similar domains in determining the behavior of aqueous solutions of aminoalkanols. A microcalorimetric study[J]. Thermochim. Acta, 1998.575:125-130.
    
    [12]Castronuovo, G.; Dario, R. P.; Delia Volpe, C; et al. A model for the interaction between hydrophilic and hydrophobic solutessaqueous solutions containing biuret or urea and hydroxylated substances[J].Thennochim. Acta ,1992. 206:43-54.
    
    [13]Cascella, C; Castronuovo, G.; Elia, V.; et al.Hydrophobic interactions of alkanols[J]. J. Chem. Soc, Faraday Trans.1990, 86: 85-88.
    
    [14]Barone, G.; Castronuovo, G.; Doucas, D.; et al.Excess Enthalpies of Aqueous Solutions of Monosaccharides at298.15 K: Pentoses and 2-Deoxy Sugars[J]. J. Phys. Chem, 1983,87:1931-1937.
    
    [15]卢雁,甄少强,卢锦梭.甘氨酸与氯化碱金属在水中的焓相互作用参数[J].物理化学学报,1994,10:281-284.
    
    [16]Ren, X.-L.; Hu, X.-G; Lin, R-S.; et al. Apparent Molar Volumes of L-Glycine, L-Alanine, and L-Serine in Water + Dimethylformamide Mixtures[J]. J. Chem. Eng.??Data, 1998, 43:700-702.
    
    [17]Castronuovo, G.; Dario, R. P.; Elia, V. The hydrophobic effect in aqueoussolutions of positional isomers of alkan-n-ols: A calorimetric study at 298.15 K[J].Thermochim. Acta, 1991,181:305-313.
    
    [18]Gallardo.M.A.; LilleyXH.; Lindell. H.; et al. Aqueous solutions containing aminoacids and peptides. XXIX: The enthalpies of dilution of some amino acids at 25℃[J].Thermochimica Acta,1993,223:41-49.
    
    [19]沈同,王镜岩,赵帮悌主编.生物化学[M].高等教育出版社,上海,1986.
    
    [20]Lilley, T.H.. The interplay between solute solvation and solute- solute interactionsin solutions containing amino acids, peptides and related species[J]. Pure & Appel.Oiem.1993,65(12):2551-2560.
    
    [21]Lilley,T.H..Interactions in solutions: The interplay between solute solvation andsolute-solute interactions[J].Pure & Appel. Chem, 1994,66:429-434.
    
    [22]Savage,J. J.; Wood, R. H. Enthalpy of dilution of aqueous mixtures of amides,sugars, urea, ethylene glycol, and pentaerythritol at 25℃:enthalpy of interaction ofthe hydrocarbon, amide, and hydroxylfunctional groups in dilute aqueous solutions[J].J.Solution Chem, 1976,5: 733-739.
    
    [23]Franks, F.; Pedley, M; Reid, D. S..Solute interactions in dilute aqueous solutions[J].J. Chem. Soc. Faraday Trans, 1976,72: 359-367.
    
    [24]Barone,G.;Giancola,C..Peptide-peptide interactions in water and concentratedurea solutions[J]. Pure & Appel.Chem, 1990,62(1):57-68.
    
    [25]Kiyohara,O.;Perron,G.;Desnoyer,J.E..Volumesand Heat Capacities of Dimethylsulfoxide.Acetone, and Acetamide in Water and of some Electrolytes in these MixedAqueous Solvents[J]. Can.J.Chem., 1975,53:3263-3268.
    
    [26]Wadi,R. K.; Ramasami,P.. Partial molar volumes and adiabatic compressibilitiesof transfer of glycine and DL-alanine from water to aqueous sodium sulfate at 288.15298.15 and 308.15 K[J]. J. Chem. Soc Faraday Trans. 1997, 93: 243-247.
    
    [27]Andini.S.;Castronuovo,G.; Elia,V.:et al. Chiral recognition in aqueous solutions:on the role of urea in hydrophilic and hydrophobic interactions of unsubstituted aminoacids[J]. J Solution Chem, 1996, 25:837-848.
    
    [28]Prasad,K.P.;Ahluwalia,J.C. Heat-capacity changes and partial molal heatcapacities of several amino acids in water[J]. J.Soln.Chem, 1976,5:491-507.
    
    [29] MacMillan, W. G.; Mayer, J. E. The statistical thermodynamics of??multicomponents systems[J].J. Chem. Phys. 1945, 13:276-305.
    
    [30]Castronuovo, G.; Elia, V.; Velleca, F.. Dependence of the cooperativity of hydrophobic interactions on the nature of functional groups. A microcalorimetric study of binary aqueous solutions of R,(?)-difunctional compounds at 298.15 K[J]. J. Chem. Soc. Faraday Trans,. 1996,92: 3093-3096.
    
    [31]Fortier,J.L.; Ledrc,P.A.; Desnoyers.J.E..Thermodynamic properties of alkali halides: II. Enthalpies of dilution and heat capacities in water at 25℃[J]. J.Solution Chem, 1974,5:323-349.
    
    [32]Samoilov,O.Ya.. Structure of Aqueous Electrolyte Solutions and the Hydration of Ions[M].Consultants Bureau,New York.Plenum Press,London, 1965.
    
    [33]Sijpkes, A.; Sommen, H.. Enthalpic interaction coefficients of some dipeptides dissolved in N,V-dimethylformamide[J]. J. Chem. Soc. Faraday Trans. I, 1989, 85: 2563-2569.
    
    [34]Sijpkes, A.; Staneke, P.; Sommen, G..Enthalpies of interaction of some N-acetylamidesof L-serine. L-threonine and L-hydroxyproline dissolvedin N,N-dimethylformamideat 298.15 K[J]. Thermochim. Acta.1990,167: 65-72.
    
    [35]Humphrey.R.S.; Hedwig,G.R.; Watson,I.D.; et al. The partial molar enthalpies in aqueous solution of some amino acids with polar and nonpolar side[J].J. Chem. Thermodyn,1980,12:595.
    
    [36]Castronuovo. G.: Elia, V.; Velleca, F.. Molecular recognition: A thermodynamic study of non-bonded interactions in aqueous solutions of iminoacids. Effects of steric and geometric isomerism[J]. J. Solution Chem, 1996, 25:51-59.
    
    [37]李淑琴.非水溶液中溶质-溶剂相互作用的热力学研究[J].浙江大学博士论文,1999.
    
    [38]邵爽,胡新根,林瑞森.水溶液中八种氨基酸与尿素的焓相互作用[J].化学学报,2000,58(10):1240-1246.
    
    [39]邵爽,胡新根,林瑞森.水溶液中氨基酸与甲脲的焓相互作用[J].物理化学学报,2001,17(7):645-650.
    
    [40]Liu, H.-J.; Lin, R.-S.; Zhang, H.-L. Enthalpic interactions of amino acids with saccharides in aqueous solutions at 298.15 K[J]. J. ChemEng. Data 2004, 49:416-420.
    
    [41]Yu, L.; Yuan. S.-L; Hu, X.-G.; et al. Studies on the interactionsbetween some amino acids with a non-polar side chain and two saturated cyclic ethers at 298.15 K: enthalpic measurement and computer simulation[J]. Chem. Eng. Sci., 2006,??61:794-801.
    
    [42]Huang,K; Park,Y.-D; Cao,Z.-F ; et al. Reactivation and refolding of rabbit musclecreatine kinase denatured in 2,2,2-trioroethanol solutions[J].Biochimica etBiophysica Acta. 2001,1545:305-313?
    
    [43]Miranker,A.; Radfors,S.E.; Karplus.M.; et al. Demonstration by NMR of foldingdomains in lysozyme[J].Nature. 1991,349: 633-636.
    
    [44]Radford,S.E.;Dobson,C.M.;Evans,P.A.. The folding of hen lysozyme involvespartially structured intermediates and multiple pathways[J].Nature, 1992,358: 302-307.
    
    [45]Barker,S.; Mayo,K.H.. Trifluoroethanol drives platelet factor 4 subunit associationrate toward the Smoluchowski- Stokes-Einstein dynamic diffusion limit[J]. J. Am.Chem. Soc., 1991,775:8201-8203.
    
    [46]邢其毅,徐瑞秋,周政.基础有机化学[M].北京,高等教育出版社,1983,955-956.
    
    [47]Uedaira, H... Activity Coefficients of Glycyglycine and R-Aminobutyric Acid inAqueous Sucrose Solutions[J]. Bull. Chem. Soc. Jpn.,1977, 50:1298-1304.
    
    [48] Li, S.-Q; Hu, X.-G; Lin, R.-S; et al. Enthalpic Interaction of Glycinein AqueousGlucose and Sucrose Solutions at 298.15 K[J]. Thermochim.Acta, 1999,342:1-6.
    
    [49]Liu, H.-J; Lin, R-S; Zhang, H. Enthalpies of dilution and enthalpies of mixing ofamino acids with sucrose in aqueous solutions at 298.15K[J]. J. Solution Chem, 2006,35:679-688
    
    [50]Back, J. F.; Oakenfull, D.; Smith, M. B.. Increased Thermal Stability of Proteinsin the Presence of Sugars and Polyols[J]. Biochemistry, 1979, 19:5191-5196.
    
    [51]Uedaira,H..The Effect of Sugars on the Thermal Denaturation of Lysozyme[J].Bull. Chem. Soc.Jpn., 1980,53:2451-2455.
    
    [52]Yu,L ; Zhu,Y; Hu,X.-G; et al. Enthalpic interactions of some amino acids with1,2-ethanediol in aqueous solutions at 298.15K[J].Fluid Phase Equilibria, 2007, 252:28-32.
    
    [53] Yu, L: Zhu,Y;Hu,X.-G; et al. Enthalpies of Interaction of N,N--Dimethylformamidewith Polyalcohols inAqueous Solutions at 298.15 K[J].J. Chem. Eng. Data ,2006,51:1110-1114.
    
    [54]Yu.L;Zhu,Y;Zhang,H.-L; et al.Enthalpic interactions between some amino acidsandcyclohexanone in aqueous solutions at 298.15 K[J).Thennochimica Acta,2006,448:154-156.
    
    [1]Liu,H,-J; Lin,R.-S; Zhang,H.-L. Enthalpic Interactions of Amino Acids with Saccharides in AqueousSolutions at 298.15 K[J]. J. Chem. Eng. Data,2004,49: 416-420.
    
    [2]林青松,颜思旭.中华猕猴桃蛋白酶在甲醇溶液中的构象与活力变化研究[J].厦门大学学报(自然科学版),1994,033(001):0100-0109.
    
    [3]胡新根;林瑞森;宗汉兴.有机酸取代基和溶剂效应的静电模型[J].化学学报,1997,4(55):328-333.
    
    [4]刘文彬,王建吉,王采兰,等.氨基酸在甲醇-水混合溶剂中粘度的研究[J].物理化学学报,1992,8(6):742-748.
    
    [5]任小玲,林瑞森,胡新根,等.甘氨酸在DMF/水和乙醇/水混合溶剂中的焓对相互作用[J].化学学报,1999,57:875-880.
    
    [6]任小玲,倪亚明,林瑞森.L-丝氨酸在乙醇-水混合溶剂中的稀释焓[J].物理化学学报,2000,16:166-169.
    
    [7]Yu, L; Zhu,Y; Hu,X.-G; et al. Enthalpic interactions of some amino acids with 1,2-ethanediol in aqueous solutions at 298.15K[J].Fluid Phase Equilibria, 2007, 252: 28-32.
    
    [8]朱焰,庞现红,程学礼,等.氨基酸-丁醇-水三元体系中分子间的异系焓相互作用[J].高等学校化学学报,2004,25(12):2312-2316.
    
    [9]Huang,K;Park,Y.-D;Cao, Z.-F; et al. Reactivation and refolding of rabbit musclecreatine kinase denatured in 2,2,2-trioroethanol solutions[J].Biochimica etBiophysica Acta, 2001,1545 :305-313.
    
    [10]Miranker,A.; Radfors,S-E.; Karplus,M.; et al. Demonstration by NMR of foldingdomains in lysozyme[J].Nature, 1991,349: 633-636.
    
    [11]Radford,S.E.; Dobson,C.M.; Evans,RA.. The folding of hen lysozyme involvespartially structured intermediates and multiple pathways[J].Nature, 1992, 358:302-307.
    
    [12]Barker,S.; Mayo,K.H.. Trifluoroethanol drives platelet factor 4 subunit associationrate toward the Smoluchowski- Stokes-Einstein dynamic diffusion limit[J]. J. Am.Chem. Soc., 1991,113:8201-8203.
    
    [13]Zilberberg,L.;Shinkaruk,S.;Lequin,O.;et al..Structure and inhibitory effectsonangiogenesis and tumordevelopmentofa new vascular en-dothelial growthinhibitor[J].J BiolChem,2003,278(37):35564-35573.
    
    [14]Lilley,T. H. Thermodynamic relationships of 1:1 electrolytes[J]. Trans.FaradaySoc., 1968,64:2947-2950.
    
    [15]Palecz, B. The enthalpies of interaction of glycine with some amides and ureas inwater at 25℃[J]. J. Solution Chem., 1995, 24:537-550.
    
    [16]Bartlomiej, P.; Henryk, P.. Enthalpies of solution of glycine in aqueous solutions??of 1,2-diols and glycerol at 25℃[J]. J. Solution Chem., 1997,26:621 -629.
    
    [17]任小玲,林瑞森,胡新根,等.甘氨酸在DMF/水和乙醇/水混合溶剂中的焓对相互作用[J].化学学报,1999,57:875-880.
    
    [18]胡新根,林瑞森,宗汉兴.水/乙醇混合溶剂中氨基酸离解的取代基效应[J].化学学报,1999,57:479-484.
    
    [19]厉刚,林瑞森,宗汉兴.α-氨基酸在水-乙醇中羧基质子化热力学[J].物理化学学报,2000,16:188-192.
    
    [20]任小玲,倪亚明,林瑞森.L-丝氨酸在乙醇-水混合溶剂中的稀释焓[J].物理化学学报,2000,16:166-169.
    
    [21]Castronuovo,G.;Dario,R.P.;Elia,V..The hydrophobic effect in aqueous solutions of positional isomers of alkan-n-ols:A calorimetric study at 298.15K[J]. Thermochim. Acta, 1991,181:305-313.
    
    [22]Castronuovo,G.;Elia,V.;Velleca,F..Molecular recognition: A thermodynamic study of non-bonded interactions in aqueous solutions of iminoacids. Effects of steric and geometric isomerism[J]. J. Solution Chem., 1996.25:51-59.
    
    [23]李淑芹;林瑞森.丝氨酸在蔗糖水溶液中的稀释焓[J].物理化学学报,2002,18(9):825-829.
    
    [24]王旭,许莉,林瑞森,等.甘氨酸在氯化钟水溶液中的稀释焓[J].化学学报,2004,62(15):1405-1408.
    
    [25]王旭,许莉,张锐,等.甲酰胺在乙二醇-水混合溶剂中的稀释焓[J].高等学校化学学报,2006,27(9):1752-1754.
    
    [26] Wegrzyn,T.F.; Watson, D.; Hedwing,G.R.. Enthalpies of mixing of aqueous solutions of the amino acids glycine, 1-alanine and 1-serine[J].J Solution Chem.,1984, 13(4):233-244.
    
    [27]LiIley,T.H.;Barret,G..C..The Chemistry and Biochemistry of Amino Acids[J]. Chapman Hall-Methueon,1984, 591.
    
    [28]Barone,G..;Castronuovo,G..;Doucas,D.; et al.Excess Enthalpies ofAqueous Solutions of Monosaccharides at 298.15 K: Pentoses and 2-Deoxy Sugars[J]. J. Phys. Chem., 1983,87:1931-1937.
    
    [29]邵爽,胡新根,林瑞森.水溶液中氨基酸与甲脲的焓相互作用[J].物理化学学报,2001,17(7):645-650.
    
    [1]邢其毅,徐瑞秋,周政.基础有机化学.[M].北京,高等教育出版社.1983,955-956.
    
    [2]Andrew,W.H.;Michelle.M.D.;Sheri,A.K.. Apparent molar heat capacities and volumes of some aqueous solutions of aliphatic amino acids at 288.15, 298.15, 313.15, and 328.15 K[J].Can. J. Chem., 1994,72:362-368.
    
    [3]陈文凯,许娇,章永凡,等.2-羟基吡啶质子转移过程的理论研究[J].物理化学学报,2002,18(9):802-807.
    
    [4]陈文凯,许娇,章永凡.2-羟基吡啶与水氢键作用的理论研究[J].结构化学,2002,21(5):567-571.
    
    [5]蒲雪梅,郑文旭,王伟周.羟基二酰亚胺二聚体分子间相互作用的量子化学研究[J].化学学报,2003,61(3):325-330.
    
    [6]Wiewiór, PP.;Shirota,H;Castner,Jr.EW..Aqueous dimethyl sulfoxide solutions:Inter- and intra-molecular dynamics[J].J. Chem.Phys., 2002,116: 4643.
    
    [7]Chang,H.-C:Jiang,J.-C;Feng,C.-M;et al. High-pressure spectroscopic probe ofhydrophobic hydration of the methyl groups in dimethyl sulfoxide[J].J. Chem.Phys.,2003,118: 1802.
    
    [8]Mrazkova .E.;Hobza, P.. Hydration of Sulfo and Methyl Groups in DimethylSulfoxide Is Accompanied by the Formation of Red-Shifted Hydrogen Bonds andImproper Blue-Shifted Hydrogen Bonds: An ab Initio Quantum Chemical Study[J].J.Phys.Chem.A, 2003,107:1032-1039.
    
    [9]Kirchner.B.:Reiher.M.. The secret of dimethyl sulfoxide (DMSO) water mixtures.A quantum chemical study of 1DMSO-nWater clusters[J] J.Am.Chem.Soc., 2002,124:6206-6215.
    
    [10] Kirchner,B.; Hutter. J.. Solvent effects on electronic properties from Wannierfunctions in a Dimethyl Sulfoxide/water mixture[J]. J. Chem. Phys., 2004, 121:5133-5142.
    
    [11]Castronuovo,G.; Dario,R.P.; Elia,V..The hydrophobic effect in aqueous solutionsof positional isomers of alkan-n-ols:A calorimetric study at 298.15K[J]. Thermochim.Acta, 1991,181:305-313.
    
    [12]朱焰,庞现红,程学礼,等.氨基酸-丁醇-水三元体系中分子间的异系焓相互作用[J].高等学校化学学报,2004,25(12):2312-2316.
    
    [13]邵爽,胡新根,林瑞森.水溶液中氨基酸与甲脲的焓相互作用[J].物理化学学报,2001,17(7):645-650.
    
    [14]Castronuovo, G.; Elia, V.; Velleca, F. Molecular recognition: A thermodynamic study of non-bonded interactions in aqueous solutions of iminoacids. Effects of steric and geometric isomerism[J]. J. Solution Chem, 1996, 25:51-59.
    
    [1]Uedaira, H.. Activity Coefficients of Glycyglycine and R-Aminobutyric Acid in Aqueous Sucrose Solutions[J]. Bull. Cham. Soc. Jpn.,1977. 50:1298-1304.
    
    [2]Li, S.-Q; Hu, X.-G; Lin, R.-S.; et al. Enthalpic Interaction of Glycinein Aqueous Glucose and Sucrose Solutions at 298.15 K[J]. Thermochim.Acta ,1999, 342:1-6
    
    [3]Liu, H.-J.; Lin, R.-S; Zhang, H.-L. Enthalpies of dilution and enthalpies of mixing of amino acids with sucrose in aqueous solutions at 298.15K[J]. J. Solution Chem, 2006, 35: 679-688.
    
    [4]Back, J. F.; Oakenfull, D.; Smith, M. B.. Increased Thermal Stability of Proteins in the Presence of Sugars.and PolyoIs[J]. Biochemistry, 1979,19: 5191-5196.
    
    [5]Uedaira, H.; Uedaira, H. The Effect of Sugars on the Thermal Denaturation of Lysozyme[J]. Bull. Chem. Soc. Jpn., 1980, 53:2451-2455.
    
    [6]李淑芹,桑文强,林瑞森.丙氨酸在葡萄糖和蔗糖水溶液中的体积性质[J].高等学校化学学报,2003,24(8):1485-1488.
    
    [7]赵长伟,马沛生,华超.含NaCl、KCl葡萄糖水溶液的密度和粘度测定及分析[J].华东理工大学学报,2003,29(2):129-133.
    
    [8]赵长伟,马沛生,朱春英,等.葡萄糖水溶液扩散系数的测定与关联[J].化工学报,2005,56(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700