高温高压处理对ZnO纳米晶微观结构和压敏特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,在六面顶压机上对氧化锌纳米晶进行了高温高压处理,用扫描电子显微镜和X射线衍射仪对处理后的样品的微观结构进行了表征,用半导体特性测量系统测试了样品的伏安特性。由实验结果,分析了高温高压处理对于氧化锌纳米晶的微观结构和压敏特性的影响。
     首先,我们考察了不同的温度和压力参数下氧化锌纳米晶的微观形貌、晶粒大小、相结构的变化。SEM像和XRD测试结果显示,本实验高温高压条件下的样品均为标准六方相纤锌矿结构。在一定压力下,随着处理温度的升高,氧化锌晶粒尺寸持续增大,逐渐由纳米级粒子转化为常规体相材料。表明高温条件可以促进晶粒生长。在一定温度下,随着处理压力的增大,氧化锌晶粒演化呈现不同的规律:在室温下,晶粒尺寸随着处理压力的增大而减小;在高温下,晶粒尺寸随着处理压力的增大而增大。文中利用压力对材料晶粒大小产生不同影响的两种效应对此作出了解释:室温下,压力导致的压致晶粒碎化效应占主导地位,而高温下,高温高压共同引起的晶粒长大占主导地位。低于850℃,6GPa的高温高压条件下,没有观测到氧化锌的新相。这表明要研究氧化锌的高压相变,需要在更高的温度和压力条件下进行。这将为今后进一步研究氧化锌的高压相变问题时,对温度和压力参数的选取提供参考依据。
     接着,本文研究了冷高压和高温高压处理对氧化锌纳米晶的压敏特性的影响。冷高压下,氧化锌呈现出高阻值的线性电阻特性。而经高温高压条件处理后的样品在相同的外部测试电场范围内,明显地显示出非线性电学特性。实验结果表明,高温高压调制可以得到充分长大的晶粒,从而显著降低氧化锌的压敏电压。这对于目前主要考虑通过掺杂、制备氧化锌薄膜使压敏电阻低压化的研究现状,无疑是提供了新的途径和研究方法。同时,我们发现,不同的高温高压处理条件对样品的非线性系数也会产生一定的影响。本文利用压敏电阻的双肖特基势垒模型对此作出了初步的解释。
In this paper, the ZnO nanocrystals were processed under high pressure and temperature on a cubic high pressure apparatus. The microstructure of the obtained ZnO were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), the I-V characteristics were measured by using semiconductor characterization system. With the experimental results, effect of high pressure and temperature treatment on the microstructure and varistor properties of ZnO nanocrystals, were investigated.
     Firstly, the variety of morphology, grain sizes, and structure of the samples under different temperature and pressure were studied. The SEM and XRD results show: all of the samples in our experiment present a hexagonal wurtzite structure. The nanocrystals eventually transform to bulk materials while the grain sizes increase with increasing the temperature under a certain pressure. It indicates that high temperature can obviously promote the growth of the grain. Respectively the ZnO nanocrystals show various evolutions with increasing the pressure under a certain temperature. Under the room temperature, the grain size decreases with increasing the pressure, while under the high temperature, the grain size increases with increasing the pressure. The differences were caused by pressure's two different kinds of effects on crystals, which is that under room temperature, the pressure-induced grain fragmentation takes on a more significant role, while under the high temperature, the growth of the grain caused by high temperature and pressure does. Below the 850℃, 6GPa treatment, the phase transformation of ZnO was not observed. Therefore, the research on the phase transformation of ZnO should be done under higher pressure and temperature conditions.
     Then, effect of high pressure and temperature treatment on the varistor properties of ZnO nanocrystals, were investigated. Under room temperature and high pressure, ZnO shows a high-resistance and linear electrical property. Relatively, the crystals processed under high temperature and pressure develop a nonlinear electrical property. The experimental results show that high pressure and temperature treatment can produce large grain and effectively decrease the varistor voltage. It can be a new method for preparing low varistor voltage Zone ceramic varistors. Meanwhile, it is found that the nonlinear coefficient changed under the high pressure and temperature treatment.
引文
[1] 童长钿.ZnO纳米粉末的制备及其结构形貌控制机理:[硕士学位论文].重庆:中南大学冶金工程系,2004
    [2] Yoshino Y, moue K, Takeuchi M, et al. Effects of interface microstructure in crystallization of ZnO thin films prepared by radio frequency sputtering. Vacuum, 1998. 51 (4):601~607
    [3] A. Kamato, H. Mitsuhashi, and H. Fujita, Appl. Phys. Lett. 1993. 63:3353
    [4] E. M. Wong, J. E. Bonevich, and P. C. Searson, J. Phys. Chem. B 1998. 102:7770.
    [5] C. L. Yang, J. N. Wang, W. K. Ge, et al. J. Appl. Phys. 2001. 90:4489.
    [6] 朱仁江.ZnO掺杂及其特性研究:[硕士学位论文].重庆:重庆师范大学无线工程系,2006
    [7] M. Matsoka, J. Appl. Phys.1971, 10:736
    [8] 吕文中,汪小红.电子材料物理.北京:电子工业出版社,2002.96~97
    [9] 孟凡明,孙兆奇.ZnO压敏材料研究进展.安徽大学学报,2006.30(4):61~64
    [10] 杨景景.掺杂ZnO薄膜的制备工艺、光学特性及稀磁性能研究:[硕士学位论文].安徽:安徽大学材料学系2006
    [11] 张丛春,周东祥,龚树萍,等.Sb2O3掺杂对ZnO压敏陶瓷晶界特性和电性能的影响.硅酸盐学报,2001.29(6):602~605
    [12] 张丛春,周东祥,龚树萍,等.Co、Mn的掺杂形式对低压氧化锌压敏陶瓷电性能的影响.电子元件与材料,2000.19(6):7~9
    [13] 范坤泰,韩述斌,吴德喜.低压压敏电阻器性能的改善.电子元件与材料,1998.17(5):32~33
    [14] 李盛涛,刘辅宜,宋晓兰.压敏陶瓷的非线性功能添加剂.陶瓷学报,1997.18(2):73~77.
    [15] 陈洪存,减国忠,王矜奉,等.MgSiO_3掺杂对ZnO压敏电阻器电学性质的影响.电子元件与材料,2006.25(8):19~21
    [16] M Matsuoka. Nonohmic properties of Zinc Oxide Ceramics. J. Appl. Phys. 1971. 10(6): 736~746
    [17] 任省平,石永杰,石微静.ZnO压敏电阻器生产工艺的改进.电子元件与材料,1998.17(4):27~29
    [18] 卢振亚.ZnO压敏元件非线性特性的劣化及恢复.电子元件与材料,2000.19(1):24~25.
    [19] 章天金,周东祥,龚树萍,等.籽晶法制备低压ZnO压敏电阻器.电子元件与材料,1998.17(4):10~11
    [20] 禹争光,杨邦朝,敬履伟.纳米氧化锌粉体的制备对ZnO压敏电阻器性能的影响.硅酸盐学报,2003.31(12):1184~1187
    [21] 康雪雅,庄顺昌.烧结温度对低压ZnO压敏陶瓷显微结构及电性能的影响.硅酸盐学报,1994.22(2):202~206
    [22] N. H. Tran, Andreas J Hartmann, Robert N. Lamb, J. Phys. Chem. B, 1999. 103(21):4264
    [23] 王巍,戴建明,谢敬波,等.传感器技术.1998.17(6):18
    [24] 汪雷.ZnO薄膜生长技术的最新研究进展.材料导报,2002.16(9):33~36
    [25] ac S H, Lee SY, Jin B J, et al. Applied Surface Science, 2000. 154~155: 458
    [26] Bailk DG, Cho S M. Thin Solid Films, 1999. 354: 227
    [27] Nakanishi Y, Miyake A, Kominami H, et al. Applied Surface Science, 1999. 142:233
    [28] H. Tabata, M. Saeki, et al. Physica B, 2001. 308~310: 993
    [29] T. Dietl, H. Ohno, F. Matsukure, et al. Science, 2000. 287:1019
    [30] Lin Feng-Gang, Takao Y, Shimizu Y, et al. J. AM. Ceram. Soc,1995. 78(9):2301
    [31] Shimizu Y, Lin Feng-Gang, Takao Y, et al. J. AM. Ceram. Soc,1998. 81(6):1633
    [32] Suzoki Y, Ohki A, Mizutani T, et al. J. Phys. D: Appl. Phys, 1987. 20:511
    [33] Bagnall D M, Chen Y F, Zhu Z, et al., Optically Pumped Lasing of ZnO at room temperature. Appl Phys Lett, 1997. 70(17):2230
    [34] 刘吉平,廖莉玲.无机纳米材料.北京:科学出版社,2003.64~69
    [35] Han J, Mantas P. Q, Senos A. M. R. Grain growth in Mn-doped ZnO. Journal of the European Ceramic Society, 2000. 20(16): 2753~2758
    [36] Lavrov, E. V. Infrared absorption spectroscopy of hydrogen-related defects in ZnO. Physical B, 2003, 340~342: 195~200
    [37] J. V. Badding, J. F. Meng, and D. A. Polvani. Pressure tuning in the search for new and improved solid state material. Chem. Mater, 1998. 10: 2889
    [38] 宿太超.热电材料PbTe的高温高压掺杂及性质的研究:[硕士学位论文].吉林:吉林大学凝聚态物理专业,2006
    [39] Bates C H, White W B, Boy B. New high-pressure polymorph of Zinc Oxide. Science, 1962. 137: 993
    [40] Desgreniers S. High-Density Phases of ZnO: Structural and Compressive Parameters. Phys Rev B, 1998.58:14102
    [41] 武振羽,曹立,鲍忠兴,等.纳米氧化锌在高压下的性质与结构研究.高压物理学报,2003.17(1):1~7
    [42] 邵光杰,秦秀娟,刘日平,等.高温高压下氧化锌纳米晶的晶粒演化动力学.化学学报,2006.64(16):1649~1653
    [43] 邵光杰,秦秀娟,刘日平,等.氧化锌纳米晶高压下的晶粒演化和性能.物理学报,2006.55(1):472~475
    [44] W. Bridgman. The Physics of High Pressure, London: G Bell and Sons Ltd, 1952. 30~70
    [45] 焦虎军.新型热电材料的高温高压合成:[硕士学位论文].吉林:吉林大学凝聚态物理专业,2005
    [46] T. C. Haygarth, I. C. Geffing, and G. C. Kennedy. J. Appl. Phys. 1967。38: 4557
    [47] 洪时明,罗湘,王永国,等.600~760℃范围内超高压力的测定—铅熔点法.高压物理学报,1989.32(2):544~548
    [48] 代立东,李和平,刘丛强,等.高温高压下二辉橄榄岩的阻抗谱实验研究.高压物理学报,2005.19(01):29~34
    [49] 陶知耻.传压介质—叶蜡石及其在超高压高温条件下的传压密封机理.超硬材料与工程,1995.5(11):336~339
    [50] 余焜.材料结构分析基础.北京:科学出版社,2000.284~296
    [51] 王英华.X光衍射基础.北京:原子能出版社,1987.258~260
    [52] A. Uhlir, Jr., Bell System Tech. J., 1955. 34: 105.
    [53] F. M. Smits, Bell System Tech. J., 1958. 37: 711.
    [54] 隋郁,郑凡磊,许大鹏.高压物理学报.1997.4:245
    [55] Jaffe, J. E., Snyde, J. A., Lin, Z. Phys. Rev. B, 2000. 62(3): 1110
    [56] Recio, J. M., Blanco, M. A, Luana, V. Phys. Rev. B, 1998. 58:8949
    [57] Nahm, C. W, Ryu, J. S. Mater. Lett. 2002. 53:110
    [58] Jiang, J. Z, Gerward, L, Olsen, J. S. Scr. Mater. 2001. 44: 1983
    [59] 武振羽,曹立,鲍忠兴.高压物理学报,2003.17(1):45
    [60] Lu, G. Q., Nygren, E., Aziz, M. J. et al. Appl. Phys. Lett, 1990. 56:137
    [61] Jiang, J. Z, Olsen, J. S, Gerward, L. Europhys. Lett, 2000. 50:48
    [62] M. Matsoka, J. Appl. Phys, 1971. 10:736
    [63] 严群.稀土氧化物及纳米氧化锌掺杂压敏材料的制备及机理研究:[博士学位论文].四川:四川大学材料学专业,2003
    [64] Bemasconi J, Solid State Commun, 1977. 21: 867~870
    [65] Mahan G D, Levinson L M, Philipp H R. JAppl Phys, 1979. 50(4): 2799~2812
    [66] 章天金,周东祥,姜胜林.低压ZnO压敏陶瓷晶界特性的研究.电子元件与材料,2001.20(1):24~29
    [67] Maanusson K O, Wiklund S. J Aapl Phvs, 1994. 76: 7405~7409
    [68] 周东祥,章天金,龚树萍.低压氧化锌压敏陶瓷的显微结构及其电学性能的研究.功能材料,2000.31(1):66~68
    [69] 腾树新,王矜奉,陈洪存,等.CeO_2掺杂引起SnO_2压敏电阻的晶粒尺寸效应.电子元件与材料,2003.22(11):31~34
    [70] 陈志清,谢恒.氧化锌压敏瓷及其在电力系统中的应用.北京:水力水电出版社,1993
    [71] DieLmar Pridvhing, Azal H. Pecina. Temperature behavior of ZnO Varistors before and after Post-sintering heat treatment. Materials Letter, 2000. 43 (7): 295~302
    [72] 方磊,徐政.热处理对氧化锌压敏电阻的影响.江苏陶瓷,2002.35(4):33~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700