掺Bi石榴石纳米颗粒的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要围绕制备粒径小、粒度均匀的YIG及Bi掺杂粉体展开的。通过强化粉体制备过程(如分别采用共沉淀、微乳液法、明胶模板等方法制备Bi-YIG粉体,外加微波场,采用盐熔融法煅烧粉体等)控制粉体粒径,对制备的Bi-YIG粉体进行表面改性,提高其与聚合物的相容性;选用MMA单体与Bi-YIG粉体进行原位聚合制得Bi-YIG/PMMA磁旋光复合材料。改善材料的加工性能,降低成本,以期达到制备高性能且低成本纳米磁旋光复合材料的目的。具体如下:
     (1)以十六烷基三甲基溴化铵/正辛烷/正丁醇体系,采用微乳液法制备了YIG(Y3Fe5O12),并与共沉淀法所制备的样品进行了对比。采用热分析(TG-DTA)对其前驱体进行表征,粉末X射线衍射(XRD)、透射电镜(TEM)及振动样品磁强计(VSM)等方法研究YIG颗粒大小及其特性。将YIG颗粒分散到MMA单体中,进行本体聚合,得到YIG/PMMA复合材料,并用法拉第磁光仪对复合材料进行表征。结果表明:与共沉淀法相比,微乳液法制备的YIG在颗粒大小和磁光等方面都呈现出较好的性能。
     (2)以硝酸铁、硝酸钇和硝酸铋为原料,通过共沉淀法制备了不同Bi含量掺杂的石榴石BixY3-xFe5O12纳米颗粒,并系统的研究了制备过程中各种条件的影响。其中包括Bi含量对YIG粉体成相温度及性能的影响;热处理温度对磁性颗粒大小及饱和磁化强度的影响;不同类型表面活性剂对Bi-YIG性能的影响;外加微波场对Bi-YIG性能的影响。另外,将制得Bi-YIG纳米颗粒分散在MMA单体中,通过本体聚合制备得到Bi-YIG/PMMA复合材料,通过法拉第磁光效应仪研究其磁光性能。结果表明:复合材料的磁光效应随着入射波长的缩短而增大;随着Bi含量的增加,Bi掺杂石榴石(Bi-YIG)成相温度降低、饱和磁化强度降低、Bi-YIG/PMMA复合材料法拉第磁光旋转角也随之增大。通过在共沉淀过程中加入表面活性剂和微波辐射可以制得性能较好的Bi-YIG。其中,阳离子表面活性剂(CTAB)效果最好、非离子表面活性剂(PEG-20000)次之、阴离子表面活性剂(SDS)效果最差;引入微波辐射能得到均匀性较好的Bi-YIG纳米颗粒。采用盐熔融法煅烧前驱体,Bi-YIG的成相温度较低(盐熔融工艺:600℃开始形成Bi-YIG相,650℃能得到纯的Bi-YIG,而普通热处理:650℃开始形成Bi-YIG相,700℃能得到纯的Bi-YIG)、得到的Bi-YIG性能较好(如颗粒的均匀性、大小、较低的Ms、光吸收小和较好的磁光性能)。
     (3)采用明胶模板法制备Bi-YIG并研究了明胶浓度对Bi-YIG性能的影响。探讨了明胶模板法制备纳米颗粒的机理,并采用乳液法对所制备的Bi-YIG进行了表面改性。产物经TEM、XRD、VSM及磁光测试,结果表明:明胶模板法制备Bi-YIG的成相温度为700℃,明胶浓度对材料的性能有较大影响。明胶浓度越大,制得的Bi-YIG性能越好。当明胶浓度为20%时,Bi-YIG/PMMA复合材料的磁光性能最好,复合材料在532nm处的磁优值为2.66°。采用乳液法改性,能够改善Bi-YIG在MMA中的分散性,提高Bi-YIG/PMMA复合材料的磁光性能。改性后的Bi-YIG/PMMA复合材料在532nm处的磁优值得到很大的提高(3.29°)。
Bi-YIG nanoparticles with narrow size distribution were prepared. Three methods have been employed to prepare YIG and substituted ones, such as co-precipitation, microemulsion and gelatin-template. To enhance the dispersibility of Bi-YIG nanoparticles in the organic monomer (e.g. MMA), the emulsion-based bottom-up self-assembly (EBS) method was used to modify Bi-YIG nanoparticles. To invest the magneto-optical properties of Bi-YIG, Bi-YIG/PMMA composite was prepared by in-situ bulk polymerization. The composite shows great potential for magneto-optical applications.
     (1) Yttrium iron garnet (YIG, Y3Fe5O12) was prepared in reverse microemulsion consisting of water, CTAB, octane and n-butanol, and subsequent heating treatment. A contrastive experiment has been conducted to study the properties of YIG powders prepared by microemulsion and co-precipitation. Particles were characterized by thermal gravity-differential thermal analysis (TG-DTA), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), respectively. Moreover, the transparency and Faraday rotation of the polymethyl methacrylate slices filled with yttrium iron garnet (YIG/PMMA) were investigated by visible spectrophotometer and Faraday rotation meter, respectively. All results reveal that both of particles prepared by microemulsion and co-precipitation show great potential for magneto-optical applications and the microemulsion-based powders show better properties with respect to particle size and Faraday rotation.
     (2) Bismuth substituted yttrium iron garnet (Bi-YIG, BixY3-xFe5O12) particles were prepared by co-precipitation using ammonia aqueous solution as precipitant. The influences of surfactants, microwave, and anneal process on the properties of Bi-YIG particles were investigated. Results suggest that Bi-YIG phase transition temperatures and Ms of Bi-YIG particles decrease, the magneto-optical properties of Bi-YIG/PMMA composite increase as the increasing Bi content. Bi-YIG nanoparticles with good magneto-optical properties can be prepared by the addition of surfactant and the irradiation of microwave at the co-precipitation process. Homogenous Bi-YIG nanoparticles were also successfully synthesized by molten-salt method in NaCl-KCl flux at a relatively low temperature (650 oC), and the molten-salt-based powders exhibit better properties than common heat process-based powders, e.g., more homogenized and better particles, lower Ms, lower UV-vis optical absorption and better magneto-optical properties.
     (3) Bi-substituted yttrium iron garnet (Bi-YIG, Bi1.8Y1.2Fe5O12) particles with homogeneous size have been prepared by a gel-network co-precipitation method using gelatin as template. The influence of gelatin concentration on the properties of Bi-YIG particles was studied, and emulsion-based bottom-up self-assembly (EBS) method was used to modify the prepared Bi-YIG nanoparticles. The obtained products were characterized by XRD, TEM, dynamic light scattering (DLS) and VSM, respectively. Moreover, the transparency and Faraday rotation of Bi-YIG/PMMA composite were investigated by visible spectrophotometer and Faraday rotation meter, respectively. Results show that Bi-YIG particles exihibit better properties as the increasing gelatin concentration, and Bi-YIG particles modified by EBS exhibit better properties with respect to particle size and magneto-optical properties.
引文
(1) Mizoguchi, Y.; Kagawa, M.; Syono, Y.; Hirai, T. Film synthesis of Y3Al5O12 and Y3Fe5O12 by the spray-inductively coupled plasma technique, J. Am. Ceram. Soc. 2001, 84, 651.
    (2) Fu, Y. P.; Lin, C. H.; Pan, K. Y. Exchange anisotropy in PtMn/Ni80Fe20 films on MgO (110), J. Magn. Magn. Mater. 2004, 272-276, 2202.
    (3) Yang, Q.; Zhang, H.; Liu, Y.; Wen, Q.; Jia, L. The magnetic and dielectric properties of microwave sintered yttrium iron garnet, Mater. Lett. 2008, 62, 2647.
    (4) Rajendran, M.; Dek, S.; Joy, P.A.; Bhattachary, A. K. Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders, J. Magn. Magn. Mater. 2006, 301, 212.
    (5) Vajargah, S. H.; Hosseini, H. R. M.; Nemati, Z. A. Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel, J. Alloy. Compd. 2007, 430, 339.
    (6) Vaqueiro, P.; Arturo, M.; Quintela, L.; Rivas, J. Synthesis of yttrium iron garnet nanoparticles via coprecipitation in microemulsion. J. Mater. Chem. 1997, 3, 501.
    (7) Wang, C. C.; Yu, W. T. Synthesis of yttrium iron garnet using polymer-metal chelate precursor, J. Colloid Interf. Sci. 2007, 306, 241.
    (8) Godoi, R. H. M.; Jr, M. J. Protected magnetic particles: silica on yttrium iron garnet, J. Magn. Magn. Mater. 2001, 226-230, 1918.
    (9) Taketomi, S.; Sorensen, C. M.; Klabunde, K. J. Preparation of yttrium–iron-garnet nanocrystals dispersed in nanosize-pore glass, J. Magn. Magn. Mater. 2001, 222, 54.
    (10) Chen, G. J.; Lee, H. M.; Chang, Y. S.; Lin, Y. J.; Chai, Y. L. Preparation and properties of yttrium iron garnet microcrystal in P2O5-MgO glass, J. Alloy. Compd. 2005, 388, 297.
    (11) Szeri, H.; Ghazanfari, N. The synthesis of nanocrystalline YIG in anammonium nitrate melt, Mater. Chem. Phys. 2009, 113: 977.
    (12)章春香,殷海荣,刘立营,磁光材料的典型效应及其应用,磁性材料与器件,2008,39,8.
    (13) Dillon, J. F. Optical properties of several ferrimagnetic garnets, J. Appl. Phys. 1958, 29, 539.
    (14) Dillon, J. F. Faraday rotation in rare-earth iron garnets, J. Appl. Phys. 1968, 39, 922.
    (15) Scott, G. B.; Laklison, D. E. Magneto-optic properties and applications of bismuth substituted iron garnets, IEEE Trans. Magn. 1976, 12(4), 292.
    (16) Scott, G. B.; Laklison, D. E.; Page, J. L. Absorption spectra of Y3Fe5O12 (YIG) and Y3Ga5O12: Fe3+, Phys. Rev. B, 1974, 10(9), 971.
    (17) Hansteen, F.; Helseth, L. E.; Johansen, T. H.; Hunderi, O.; Kirilyuk, A.; Rasing, T. Optical and magnetooptical properties of bismuth and gallium substituted iron garnet films, Thin Solid Filus, 2004, 455-456, 429.
    (18) Buhrer, C. F. Faraday rotation and dichroism of bismuth calcium vanadium iron garnet, J. Appl. Phys. 1969, 40(11), 4500.
    (19) Wittekoek, S.; Poma, T. J. S.; Robertson, J. M. Faraday rotation spectra of bismuth substituted ferrite garnet films with in-plane magnetization, Phys. Rev (B). 1975, 12, 2777.
    (20) Bremer, J.; Vaieikauskas, V. Influence of surface plasmons on the Faraday effect in bismuth-substituted yttrium iron garnet films. J. APPI. Phys. 2001, 89, 6177.
    (21)张怀武,刘颖力,王豪才,姚熹,Bi代石榴石膜晶化机理研究,电子学报,1994, 22(11),80.
    (22)王洪松,于含云,掺Bi石榴石单晶薄膜的磁光特性,山东师大学报,1996,11,37.
    (23) Keszei, B.; Vertesy, Z.; Vertesy, G. Growth of Bi and Ga substituted YIG and LuIG layers by LPE method. Cryst. Res. Technol. 2001, 36, 953.
    (24) Ganne, J. P.; Lebourgeois, R.; Paté, M.; Dubreuil, D.; Pinier, L.; Pascard, H. The electromagnetic properties of Cu-substituted garnets with low sintering temperature, J. Euro. Cera. Soc. 2007, 27, 2771.
    (25) Zhou, X. T.; Lin, F. T.; Ma, X. M.; Shi, W. Z. Fabrication and magnetic properties of Ce1Y2Fe5O12 thin films on GGG and SiO2/Si substrates, J. Magn. Magn. Mater., 2008, 320, 1817.
    (26) Xu, H. T.; Yang, H.; Xu, W. S.; Feng, B. Magnetic properties of Ce, Gd-substituted yttrium iron garnet ferrite powders fabricated using a sol-gel method, J. Mater. Proc. Technol. 2008, 197, 296.
    (27) Bouziane, K.; Yousif, A.; Widatallah, H. M.; Amighian, J. Site occupancy and magnetic study of Al3+ and Cr3+ co-substituted Y3Fe5O12, J. Magn. Magn. Mater. 2008, 320, 2330.
    (28) Amighian,J.; Hasanpour, A.; Mozaffari, M. The effect of Bi mole ratio on phase formation in BixY3-xFe5O12 nanoparticles. Phys. Stat. Sol. (c). 2004, 1, 1769.
    (29) Ristic, M.; Nowikb, I.; Popovic, S.; Felner, I.; Music, S. Influence of synthesis procedure on the YIG formation, Mater. Lett. 2003, 57, 2584.
    (30)黄敏,张守业,掺Ce稀土铁石榴石块状单晶生长及磁光性能研究,材料研究学报,2000,14(4),393.
    (31) Grosseau, P.; Bachiorrini, A.; Guilhot, B. Preparation of polycrystalline yttrium iron garnet ceramics, Powder Technol. 1997, 93, 247.
    (32)赵宏杰,周济,低温烧结Bi取代钇铁石榴石的复阻抗研究,四川大学学报(自然科学版),2005,42,375-378.
    (33) Jr, M. J.; Godoi, R. H. M. Preparation and characterization of spherical yttrium iron garnet via coprecipitation, J. Magn. Magn. Mater. 2001, 226, 1421.
    (34) Kim, T. Y.; Yamazaki, Y.; Hirano, T. Magneto-optical properties of Bi-YIG nanoparticle with polymethacrylate matrix materials, Phys. Stat. Sol. (b). 2004, 241, 1601.
    (35) Kim, T.; Nasu, S.; Shima, M. Growth and magnetic behavior of bismuth substituted yttrium iron garnet nanoparticles, J. Nanopart. Res. 2007, 9, 737.
    (36) Fu, Y. P.; Hung, D. S.; Cheng, C. W.; Tsai, F. Y.; Yao, Y. D. Non-isothermal crystallization kinetics and microwave properties of Bi0.75Y2.25Fe5O12 prepared by coprecipitation, Ceram. Int. 2009, 35, 559.
    (37)王巍,兰中文,姬洪,梁魁,王豪才,Ce: YIG粉体的制备及性能研究,电子元件与材料,2002,21,3.
    (38)王巍,兰中文,王豪才,多晶Ce: YIG粉体的制备、结构与磁性研究,硅酸盐学报,2003,6,566.
    (39)王巍,兰中文,Ce:YIG纳米粉体结构与磁性的研究,功能材料与器件学报, 2006,12,139.
    (40)兰中文,王巍,余忠,姬海宁,共沉淀法制备纳米Ce:YIG磁性粉体的表征,材料导报,2004,18,99.
    (41)赵斌,庄乃锋,郭飞云,陈建中,液相法制备纳米级YIG多晶粉体,福州大学学报(自然科学版),2004,32,371.
    (42)汪敏强,姚熹,朱翔鹰,孔凡滔,张良莹,溶胶-凝胶法合成钇铁石榴石(YIG)的凝胶化及热处理研究,硅酸盐学报,2002,30,325.
    (43) Laulajainen, M.; Paturi, P.; Raittila, J.; Huhtinen, H.; Abrahamsen, A. B.; Andersen, N. H.; Laiho, R. BixY3-xFe5O12 thin films prepared by laser ablation for magneto-optical imaging of superconducting thin films, J. Magn. Magn. Mater. 2004, 279, 218.
    (44) Guo, X. Z.; Ravi, B. G.; Devi, P. S.; Hanson,J. C.; Margolies, J.; Gambino, R. J.; Parise, J. B.; Sampath, S. Synthesis of yttrium iron garnet (YIG) by citrate-nitrate gel combustion and precursor plasma spray processes, J. Magn. Magn. Mater. 2005, 295, 145.
    (45) Cheng, Z. J.; Yang, H.; Yu, L. X.; Cui, Y. M.; Feng, S. H. Preparation and magnetic properties of Y3Fe5O12 nanoparticles doped with the gadolinium oxide, J. Magn. Magn Mater. 2006, 302, 259.
    (46) Vajargah, S. H.; H. Hosseini, R. M.; Nemati, Z. A. Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel, J. Alloys Compd. 2007, 430, 339.
    (47) Xu, H. T.; Yang, H.; Xu, W.; Feng, S. H. Magnetic properties of Ce,Gd-substituted yttrium iron garnet ferrite powders fabricated using a sol-gel method, J. Mater. Process. Technol. 2008, 197, 296.
    (48)艾延宝,金永君,法拉第磁致旋光效应及应用,物理与工程,2002,12(5),50.
    (49)徐时清,杨中民,戴世勋,Tb掺杂Faraday磁光玻璃的研究进展,硅酸盐学报,2003,31(4),377.
    (50) Pierpaolo, B.; Davide, P.; Andrea T. Polarization independent bidirectional optical switch for communication signals, Proc SPIE. 2000, 4089, 297.
    (51) Irvine, S. E.; Elezzabi, A. Y. Broadband optical modulation using magneto-optic Bi-YIG thin films, Proc SPIE. 2003, 5260, 580.
    (52)章春香,殷海荣,刘立营,磁光材料的典型效应及其应用,磁性材料与器件,2008,39,8.
    (53)周静,王选章,谢文广,磁光效应及其应用,现代物理知识,2004,17,45.
    (54)艾延宝,金永君,法拉第磁致旋光效应及应用,物理与工程,2002,12,50.
    (55)张溪文,董博,洪炜,娄骁,张守业,韩高荣,光隔离器及其相关的磁光材料,材料科学与工程,2002,79,438.
    (56)张怀武,稀土磁光材料在信息存储中的应用,中国稀土学报,2002,20,86.
    (57)晁月盛,马准备,杨玉玲,新型磁记录材料-碳化铁磁粉制备的研究,材料科学与工艺,2000,8(4),93.
    (58)金延,磁记录材料的发展,金属功能材料,2002,9(3),40.
    (59) Xu, Y. L.; Zhou, H. J. Damping cable vibration for a cable-stayed bridge using adjustable fluid dampers, J. Sound Vib. 2007, 306, 349.
    (60) Sims, N. D.; Stanway, R. Modelling of force-velocity hysteresis in smart fluid dampers, J. Sound Vib., 2007, 300, 429.
    (61) Hong, S. R.; Wereley, N. M.; Choi, Y. T.; Choi, S. B. Analytical and experimental validation of a nondimensional bingham model for mixed-mode magneto rheological dampers, J. Sound Vib., 2008, 312, 399.
    (62) Zhou, Q.; Nielsen, S. R. K.; Qu, W. L. Semi-active control of shallow cables with magneto rheological dampers under harmonic axial support motion, J. Sound Vib., 2008, 311, 683.
    (63) Jang, K. I.; Seok, J. W.; Min, B. K.; Lee, S. J. Behavioral model formagnetorheological fluid under a magnetic field using Lekner summation method, J. Magn. Magn. Mater. 2009, (in press).
    (64) Yang, Y.; Li, L.; Chen, G.; Liu, E. J. Synthesis and characterization of iron-based alloy nanoparticles for magnetorheological fluids, J. Magn. Magn. Mater. 2008, 320, 2030.
    (65) Lyskawinski, W.; Szelag, W. Simulation and investigation of magnetorheological fluid brake, Power Electron. Motion Control Conf. 2008, 13, 2406.
    (66) Lu, J. B.; Yan, Q. S.; Yu, J.; Tian, H.; Gao, W. Q.; A study of micro machining with instantaneous tiny-grinding wheel based on the Fe3O4 magnetorheological fluid, Key Eng. Mater. 2008, 359, 389.
    (67) Mei, D. Q.; Kong, T. R.; Shih, A. J.; Chen, Z. C. Magnetorheological fluid-controlled boring bar for chatter suppression, J. Mater. Process. Tech., 2009, 209, 1861.
    (68) Kim, Y.; Langari, R.; Hurlebaus, S. Semiactive nonlinear control of a building with a magnetorheological damper system, Mech. Syst. Signal Pr. 2009, 23, 300.
    (69) Bajkowski, J.; Nachman, J.; Shillor, M.; Sofonea, M. A model for a magnetorheological damper, Mathem. Comp. Model. 2008, 48, 56.
    (70) Mazlan, S. A.; Ekreem, N. B.; Olabi, A. G. An investigation of the behavior of magnetorheological fluids in compression mode, J. Mater. Proc. Technol. 2008, 201, 780.
    (71) Mazlan, S. A.; Issa, A.; Chowdhury, H. A.; Olabi, A. G. Magnetic circuit design for the squeeze mode experiments on magnetorheological fluids, Mater. Design. 2009, (in press).
    (72) Jung, S. L.; Seok, B. S. J. Parametric study of a magnetorheological fluid in a finishing process for hard materials, Smart Manuf. App. 2008, 12, 243.
    (73) Corti, R. Noninvasive imaging of atherosclerotic vessels by MRI for clinical assessment of the effectiveness of therapy, Pharmacol. Therapeut. 2006, 110(11), 57.
    (74) Lubovsky, O.; Liebergall, M.; Mattan, Y.; Weil, Y.; Mosheiff, R. Earlydiagnosis of occult hip fractures MRI versus CT scan, Injury, Int. J. Care Injured. 2005, 36(66), 788.
    (75) Maillard, S. M.; Jones, R.; Owens, C. M.; Pilkington, C.; Woo, P. M.; Wedderburn, L. R.; Murray, K. J. Quantitative assessments of the effects of a single exercise session on muscles in juvenile dermatomyositis, Arthrit. Rheum. 2005, 53(4), 558.
    (76) Tez, S.; Tunca, A.; Karaarslan, Y.; Sabuncuoglu, H. Acute spinal cord dysfunction in bacterial meningitis: MRI findings, Clinical Radiol. Extra. 2004, 59(2), 11.
    (77) Selim, K. M. K.; Ha, Y. S.; Kim, S. J.; Chang, Y.; Kim, T. J.; Lee, G. H.; Kang, I. K. Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes, Biomaterials, 2007, 28(4), 71.
    (78) Olbrich, C.; Gessner, A.; Schroder, W.; Kayser, O.; Muller, R. H. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption, J. Control. Release, 2004, 96(83), 425.
    (79) Kim, D. K.; Mikhaylova, M.; Wang, F. H.; Kehr, J.; Bjelke, B.; Zhang, Y.; Tsakalakos, T.; Muhammed, M. Starch-coated superparamagnetic nanoparticles as MR contrast agents, Chem. Mater. 2003, 15(2323), 4343.
    (80) Lesieur, S.; Madelmont, C. G.; Menager, C.; Cabuil, V.; Dadhi, D.; Pierrot, P.; Edwards, K. Evidence of surfactant-induced formation of transient pores in lipid bilayers by using magnetic-fluid-loaded liposomes, J. Am. Chem. Soc. 2003, 125(18), 5266.
    (81) M, Boutnonet.; Stenivs, S. P. The preparation of monodisperse colloidal metal particles from microemulsions, Colloids and Surfaces, 1982, 5, 209.
    (82) Chen, D.H.; Wu, S. H. Synthesis of nickel nanoparticles in water-in-oil microemulsions, Chem. Mater. 2000, 12 (5), 1354.
    (83) Zhang, X.; Chan, K. Y. Water-in-oil microemulsion synthesis of platinum?ruthenium nanoparticles, their characterization and electrocatalytic properties, Chem. Mater., 2003, 15 (2), 451.
    (84) Lin, J. C.; Dipre, J. T.; Yates, M. Z. Microemulsion-directed synthesis ofmolecular sieve fibers, Chem. Mater., 2003, 15 (14), 2764.
    (85) Ahmad, T.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K. J. Mater. Chem. 2004, 14, 3406.
    (86) Bunker, C. E.; Harruff, B. A.; Pathak, P.; Payzant, A.; Allard, L. F.; Sun, Y. P. Formation of cadmium sulfide nanoparticles in reverse micelles: extreme sensitivity to preparation procedure, Langmuir, 2004, 20, 5642.
    (87) Carr, C. S.; Shantz, D. F. Synthesis of high aspect ratio low-silica zeolitel rods in oil/water/surfactant mixtures, Chem. Mater. 2005, 17(24), 6192.
    (88) Ahmad, T.; Vaidya, S.; Sarkar, N.; Ghosh, S.; Ganguli, A. K. Zinc oxalate nanorods: a convenient precursor to uniform nanoparticles of ZnO, Nanotechnology. 2006, 17, 1236.
    (89) Niemann, B.; Veit, P.; Sundmacher, K. Nanoparticle precipitation in reverse microemulsions: Particle formation dynamics and tailoring of particle size distributions, Langmuir, 2008, 24 (8), 4320.
    (90) Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles, Han, Y.; Jiang, J.; Lee, S. S.; Ying, J. Y. Langmuir, 2008, 24 (11), 5842.
    (91) Koole, R.; Schooneveld, M. V.; Hilhorst, J.; Donegá, C. M.; Dannis, C. H.; Blaaderen, A. V.; Vanmaekelbergh, D.; Meijerink, A. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method, Chem. Mater. 2008, 20 (7), 2503.
    (92) Shape-controllable synthesis of crystalline Ni complex particles via AOT-based microemulsions, Chen, M.; Wu, Y. F.; Zhou, S. X.; Wu, L. M. J. Phys. Chem. B, 2008, 112 (21), 6536.
    (93) Vaidya, S.; Rastogi, P.; Agarwal, S.; Gupta, S. K.; Ahmad, T.; Antonelli Jr., A. M.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K. Nanospheres, nanocubes, and nanorods of nickel oxalate: Control of shape and size by surfactant and solvent, J. Phys. Chem. C, 2008, 112 (33), 12610.
    (94) Rehspringer, J. L.; Bursik J.; Niznansky D.; Klarikova A. Characterisation of bismuth-doped yttrium iron garnet layers prepared by sol-gel process, J. Magn. Magn.Mater. 2000, 211, 291.
    (95) Gangopadhyay, S.; Hadjipanayis, G. C.; Dale, B.; Sorensen, C. M.; Klabunde, K. J.; Papaefthymiou, V.; Kostikas, A. Magnetic properties of ultrafine iron particles, Phy. Rev. B. 1992, 45, 9778.
    (96) Batlle, X.; Obradors, X.; Medarde, M.; Carvajal, J. R.; Pernet, M.; Regí. M. V. Surface spin canting in BaFe12O19 fine particles, J. Magn. Magn. Mater. 1993, 124, 228.
    (97) Tang, Z. X.; Sornesen, C. M.; Klabunde, K. L.; Hadjipanayis, G. C. Observation of electromagnetically induced transparency in collisionally broadened lead vapor, Phys. Res. Rev. lett. 1991, 67, 3062.
    (98) Sanchez, R. D.; Rivas, J.; Vaqueir, P.; Lopez-Quintela, M. A.; Caeiro, D. Particle size effext on magnetic properties of yttrium iron garnet prepared by a sol-gel method, J. Magn. Magn. Mater. 2002, 247, 92.
    (99) Li, Z. S.; Zhang, S. W.; Lee, W. E.; Molten salt synthesis of zinc aluminate powder, J. Eur. Ceram. Soc. 2007, 27, 3407.
    (100) Manukyan, K. V.; Aydinyan, S. V.; Kirakosyan, K. G.; Kharatyan, S. L.; Blugan, G.; Muller, U.; Kuebler, J. Molten salt-assisted combustion synthesis and characterization of MoSi2 and MoSi2-Si3N4 composite powders, Chem. Eng. J. 2008, 143, 331.
    (101) Mao, C. L.; Wang, G. S.; Dong, X. L.; . Zhou, Z. Y.; Zhang, Y. Y. Low temperature synthesis of Ba0.70Sr0.30TiO3 powders by the molten-salt method, Mater. Chem. Phys. 2007, 106, 164.
    (102) Qiu, W.; Zheng, Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J. 2009, 145, 483.
    (103) Li, L.; Shi, L. Y.; Cao, S. M.; Zhang, Y.; Wang, Y. LiNO3 molten salt assisted synthesis of spherical nano-sized YSZ powders in a reverse microemulsion system, Mater. Lett. 2008, 62, 1909.
    (104) Cai, Z. Y.; Xing, X. R.; Yu, R. B.; Liu, G. R.; Xing, Q. F. Large-scale synthesis of Pb1-xLaxTiO3 ceramic powders by molten salt method, J. Alloys Compd.2006, 420, 273.
    (105) Template synthesis and luminescent properties of nano-sized YAG:Tb phosphors, Zhou, J. G.; Zhao, F. Y.; Wang, X.; Li, Z. Q.; Zhang, Y.; Yang, L, J. Lumin. 2006, 119-120, 237.
    (106)周建国,李振泉,赵凤英,夏树屏,高世扬,均分散球形Y2O3: Eu3+纳米晶的制备研究,稀有金属材料与工程,2005,34,632.
    (107)綦艳,孟建新,刘敏,纳米LaPO4:Ce,Tb的明胶网格沉淀法制备及发光研究,稀土,2006,27,15.
    (108)綦艳,孟建新,纳米LaPO4:Eu的凝胶网格法制备及发光特性,发光学报,2006,27,397.
    (109) Liu, Z. G.; Sun, X. D.; Xu, S. K.; Lian, J. B.; Li, X. D.; Xiu, Z. M.; Li, Q.; Huo, D.; Li, J. G. Tb3+- and Eu3+-doped lanthanum oxysulfide nanocrystals. Gelatin-templated synthesis and luminescence properties, J. Phys. Chem. C, 2008, 112, 2353.
    (110) Kim, S. H.; Cho, Y. S.; Jeon, S. J.; Eun, T. H.; Yi, G. R.; Yang, S. M. Microspheres with tunable refractive index by controlled assembly of nanoparticles, Adv. Mater. 2008, 9999, 1.
    (111) Spillane, S. M.; Kippenberg, T. J.; Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature. 2002, 415, 621.
    (112) Mahurin, S.; Mehta, A.; Hathorn, B.; Runge, K.; Sumpter, B. G.; Noid, D. W.; Barnes, M. D. Photonic polymers: A new class of photonic wire structure from intersecting polymer-blend microspheres, Opt. Lett. 2002, 27, 610.
    (113) Gómez, D. E.; Santos, I. P.; Mulvaney, P. Tunable whispering gallery mode emission from quantum-dot-doped microspheres, Small, 2005, 1, 238.
    (114) Serpe, M. J.; Kim, J.; Lyon, L. A. Colloidal hydrogel microlenses, Adv. Mater. 2004, 16, 184.
    (115) Lu, Y.; Yin, Y.; Xia, Y. A self-assembly approach to the fabrication of patterned, Two dimensional arrays of microlenses of organic polymers, Adv. Mater. 2001, 13, 34.
    (116) Goldenberg, J. F.; McKechnie, T. S. Diffraction analysis of bulk diffusersfor projection-screen applications, J. Opt. Soc. Am. A. 1985, 2, 2337.
    (117) Battersby, B. J.; Bryant, D.; Meutermans, W.; Matthews, D.; Smythe, M. L.; Trau, M. J. Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry, J. Am. Chem. Soc. 2000, 122, 2138.
    (118) Song, L.; Ahn, S.; Walt, D. R. Fibre-optic microsphere-based arrays for multiplexed biological warfare agent detection, Anal. Chem. 2006, 78, 1023.
    (119) Fan, H. Y. Nanocrystal-micelle: synthesis, self-assembly and application, Chem. Commun. 2008, 12, 1383.
    (120) Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y .D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals, Angew. Chem. 2007, 119, 6770.
    (121) Xia, A.; Hu, J. H.; Wang, C. C.; Jiang, D. L. Synthesis of magnetic microspheres with controllable structure via polymerization-triggered self-positioning of nanocrystals, Small, 2007, 3, 1811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700