Mg_3RE基氢化物水解性能及合金元素Ni、Al对其水解性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MgH2水解制氢,纯度高,无污染,但是反应过程形成的钝化层阻碍水解的进一步,使得反应难以完全进行,产率低。为了克服MgH2的这些缺点,本文对国内外水解制氢的研究进展进行综述,研究了Mg_3RE基氢化物(H-Mg_3RE)的水解性能并着重探讨了Ni、Al对Mg_3RE合金水解性能的影响。本文所用合金采用感应熔炼法制备,将制备的Mg_3RE合金、Mg_3RENi_(0.1)合金和Mg_3RENi_(0.1)Al_(0.1)合金进行氢化并使其饱和吸氢,然后在常温下水解;运用X射线衍射(XRD)、能谱(EDX)分析等手段,研究了加入Ni、Al后的Mg_3RE合金球磨后的微观结构,同时研究了相应的氢化过程和水解过程的反应机理;测定了H-Mg_3RE水解产氢量,并对水解动力学做了初步的分析。
     研究表明,Mg_3RE合金球磨后仍然保持其原来的相不变,Mg_3RENi_(0.1)以Mg_3RE(D03结构)为基本相,形成少量的REMg2Ni,或者少量的RE2Mg17;Mg_3RE基合金氢化后的产物都为MgH2和REH2~3。Mg_3Nd氢化物(H-Mg_3Nd)水解反应不完全,有Nd2H5残余,Mg_3CeNi_(0.1)氢化物(H- Mg_3CeNi_(0.1))水解产物为Mg(OH)2和CeO2,其余Mg_3RE氢化物的水解产物为Mg(OH)2和RE(OH)2~3。
     Mg_3RE氢化物在常温下发生水解反应,在前5分钟,Mg_3Mm合金氢化物(H-Mg_3Mm)的水解反应速度最快,达到131ml/(g.min),H-Mg_3Nd合金的水解反应速度最慢,只有82ml/(g.min)。H-Mg_3Mm的水解产氢量最大,达到1039ml/g。从反应机制来看,Mg_3La合金氢化物(H-Mg_3La)、Mg_3Pr合金氢化物(H-Mg_3Pr)和H-Mg_3Nd的水解反应机制为三维表面反应机制,Mg_3Ce合金氢化物(H-Mg_3Ce)和H-Mg_3Mm的水解反应机制为一维扩散反应机制,一维扩散反应机制的水解性能优于三维表面反应机制。
     添加Ni元素后,Mg_3RENi_(0.1)氢化物(H-Mg_3LaNi_(0.1)、H-Mg_3CeNi_(0.1)、H-Mg_3PrNi_(0.1)、H-Mg_3NdNi_(0.1)和H-Mg_3MmNi_(0.1))在常温298K下的水解产氢量分别达到9.05 wt%,9.71 wt% ,8.52 wt%,7.49 wt%和8.48 wt%。在前5分钟,H-Mg_3MmNi_(0.1)合金的水解反应速度最快,H-Mg_3CeNi_(0.1)的最后产氢量最大。从反应机制看,Ni的加入使得H-Mg_3RENi_(0.1)在常温298K下的水解反应都是一维扩散反应控制机制。
     继续添加Al到Mg_3LaNi_(0.1),Mg_3LaNi_(0.1)Al_(0.1)合金氢化物(H-Mg_3LaNi_(0.1)Al_(0.1))水解反应前5分钟产氢速率最快,达到120 ml/g·min。而H-Mg_3LaNi_(0.1)的水解产氢量最高,达到1024ml/g。由于Ni和Al的加入,水解反应控制机制由H-Mg_3La的三维表面反应机制变为H-Mg_3LaNi_(0.1)和H-Mg_3LaNi_(0.1)Al_(0.1)合金的一维扩散反应控制机制。
The characteristics of MgH2 in hydrolysis are high hydrogen purity and environment friendly. However, the passivation of Mg(OH)2 hinders the further hydrolysis and leads to the low hydrogen generation yield. To overcome these shortcomings, in this thesis, it not only focuses its attention on the hydrolysis properties of Mg_3RE (RE=La, Ce, Pr, Nd and Mm) hydrides, but also the effect of Ni and Al addition on the hydrolysis, based on the reviewing of world wide development of hydrolysis. The Mg_3RE and the Mg_3RE-based alloys prepared by induction melting were hydrogenated fully, and then hydrolyzed at room temperature. the phase structure before/after ball-milling and hydrolysis reaction agent was investigated by using X-ray diffraction(XRD) and energy dispersive X-ray spectroscopy(EDX) in order to understand the reaction mechanism during the process of hydrogenation and hydrolysis. And meanwhile, the hydrolysis processes were also tested. Based on the data of hydrolysis, the hydrolysis kinetics was also analyzed.
     Based on the XRD analysis, Mg_3RE alloys are composed of the D03 structure. While the phases of Mg_3RENi_(0.1) alloys are are composed of Mg_3RE with D03 structure phase and small amount of REMg2Ni and/or RE2Mg17. The products of Mg_3RE based alloys after hydrogenated are MgH2 and REH2~3. Except that the products of Mg_3Nd hydrides (H-Mg_3Nd) after hydrolysis are Nd2H5 and Mg(OH)2, and Mg_3CeNi_(0.1) hydrides (H-Mg_3CeNi_(0.1)) are Mg(OH)2 and CeO2, the products of other Mg_3RE hydrides alloys after hydrolysis are Mg(OH)2and RE(OH)2~3.
     In the first 5 min, the hydrogenated Mg_3Mm had the quickest hydrolysis rate (131ml/(g.min)) and the hydrogenated Mg_3Nd reacted with water at the slowest hydrolysis rate (82ml/(g.min)). And the highest hydrogen yield is 1039 ml/g for the hydrogenated Mg_3Mm. The hydrolysis mechanism of H-Mg_3RE was also discussed in this thesis.
     After introducing the Ni element into Mg_3RE alloy, the hydrogen generation capacity for Mg_3RENi_(0.1) hydrides (H-Mg_3LaNi_(0.1), H-Mg_3CeNi_(0.1), H-Mg_3PrNi_(0.1), H-Mg_3NdNi_(0.1) and H-Mg_3MmNi_(0.1)) were up to 9.05 wt%,9.71 wt%,8.52 wt%,7.49 wt% and 8.48 wt%. In the first 5 min, H-Mg_3MmNi_(0.1) had the highest hydrolysis among all these alloys.
     When Al was introducd into Mg_3LaNi_(0.1), it could be found that Mg_3LaNi_(0.1)Al_(0.1) hydrides (H-Mg_3LaNi_(0.1)Al_(0.1)) had the quickest hydrogen generation rate, which is up to 120 ml/g?min. this is due to the addition of Ni and Al, the hydrolysis mechanism had been changed.
引文
[1] Robert A., Hefner III. Toward sustainable economic growth: The age of energy gases [J], International Journal of Hydrogen Energy, 1995, 20(12): 945-948
    [2] Yoda S, Ishihara K. The advent of battery-based society and the global environment in the 21st century [J]. Power Sources, 1992, 162: 81-82
    [3]胡子龙编著.贮氢材料[M].化学工业出版社. 2002.1
    [4]大角泰章.金属氢化物的性质与应用[M].北京:化学工业出版社,1990
    [5]常彬杰.低温甲醇洗技术在神华煤制氢装置中的应用[J].神华科技,2009,7(3):80-83
    [6]郭亮、罗成华、张成华.新QXB303耐硫低变催化剂在煤制氢中的应用[J].氮肥技术2009,30(2):29-32
    [7]宁红军,赵新亮,曹晓宝.焦炉煤气变压吸附制氢新工艺的开发与应用[J].现代工,2007,27(7):42-46
    [8]王峰,田文栋,肖云汉.煤直接制氢实验研究[J].中国电机工程学报,2007,27(32):40-45
    [9] Mat hiak J, Heinzel A, Roes J et al. Coupling of a 2.5 kW steam reformer with a 1 kWel PEM fuel cell[J]. Journal of Power Sources, 2004, 131 (1/ 2): 112-119
    [10] Mit suaki Echigo, Norihisa Shinke, Susumu Takami. Performance of a natural gas fuel processor for residential PEFC system using a novel CO preferential oxidation catalyst1 Journal of Power Sources, 2004, 132(1/ 2): 29-35
    [11] Yang Xiuchun (杨修春) , Wei Yanan (韦亚南). Research progress in methane reforming catalyst for t he production of hydrogen1 Materials Review(材料导报),2007, 21 (5):49-52
    [12] Aidu Qi, Brant Peppley, Kunal Karan. Integrated fuel processors for fuel cell application: A review1 Fuel Processing Technology, 2007, 88(1): 3-22
    [13]代磊,李明,胡鸣若.用于PEMFC的天然气水蒸气制氢系统[J].化工学报2009,60:90-94
    [14] Park Eun Duck, Lee Doohwan, Lee Hyun Chul. Recent progress in selective CO removal in a H2 rich stream[J]. Applied Catalysis A: General, 2009, 139 (4) :280-290
    [15] Sakae Takenaka, Hitoshi Ogihara, et al.,Decomposition of methane over supported-Ni catalysts:Effects of the supports on the catalytic life-time[J]. Appl. Catal. A:Gen.,2001,217,101~110
    [16] T. J. Zhang, M. D. Amiridis.Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts [J]. Appl.Catal. A:General,1998,167,161~172
    [17]刘婧.一株厌氧发酵菌Biolog鉴定及利用不同碳源对产氢的影响[J].环境研究监测,2008,21(1):11-13
    [18] Chen J S, Mortenson L E. Purification and properties of hydrogennase from Clost ridium pasteurianum W5. Biochim Biophys Acta, 1974, 371:283-298
    [19] Li Yongfeng, Ren Nanqi, Hu Lijie et al. Biohydrogen process and H2 producing mechanism. Energy environmental protection, 2005, 19:5-7
    [20] Wykoff D D, Davies J P, Melis A. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii[J]. Plant Physiology, 1998,117
    [21]张文强,于波,陈靖.高温固体氧化物电解水制氢技术.化学进展,2008 20(5):779-787
    [22] Joel M.F,Pham A.Q,Aceves S.M. A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen[J]. International Journal of Hydrogen Energy,2003,28(5):483-489
    [23] Kogon A. Direct solar thermal splitting of water and on site separation of the products I. Theoretical evaluation of hydrogen yield [J]. International Journal of Hydrogen Energy, 1997, 22(5):481-486
    [24] Norman G.H, Besencruch L.C, Brown L.C,et al.Thermochemical water-splitting Cycle[R].Final Report for The Period February 1997 through December 31,1981.GA-A16713,1982
    [25]张平,于波,陈靖,等.热化学循环水解制氢研究进展[J].化学进展,2005 17(4):643-650
    [26] Yoshida K,Kameyama H,Aochi T, et al. A simulation study of the UT-3 thermochemical hydrogen production process[J].International Journal of Hydrogen Energy,1990,15(3):171-178
    [27] Sakurai M,Bilgen E,Tsutsumi A, et al. Solar Energy,1996,57(1):51-58
    [28]王景儒.制氢方法及储氢材料研制进展.化学推进剂与高分子材料[J]. 2004, 2(2): 13-17
    [29] Makar G.L., Kruger J. Corrosion studies of rapidly solidified magnesium alloys [J].Journal of the Electrochemical Society, 1990, 137(2): 414-421
    [30]李振亚,易玲,杨林,等.含镓、锡的铝合金在碱性溶液中的活化机理[J].电化学, 2001, 7(3): 316-320
    [31] Kolbenev L.L., Volyntsev N.F., Sarmurzina R.G., et al. Hydrogen production via hydrolysis of Al-based materials [J].Kiev, 1988,29: 96—99
    [32]范美强,刘颖雅,杨黎妮.铝锡合金制氢技术研究[J].高等学校化学学报,2008,29(2):356-359
    [33]戎维仁,邱德仁.硼氢化钠溶液的分解和氢氧化钠在溶液中的稳定机理[J].复旦学报:自然科学版,1998,37(3):276-278.
    [34] KANAME S,YOSHIYUKI N.A method of generating hydrogen gasby aluminum dissolution in water[J].Technology Repots of the Osaka Univerisity,1989,38:179-183
    [35]Lluis S,Jorge M,Maria M.Synergistic hydrogen generation from aluminu,aluminum alloys and sodium borohydride in aqueous solutions[J] . J Power Sources,2007,169:144-151
    [36]范美强,徐芬,孙立贤.铝汞合金体系常温水解制氢技术[J].电源技术,2009,33(8):683-686
    [37] Nagim K.,$himizu T..Method of Producing Hydrogen and Material Used Therefore, US 4752463[P], 1988
    [38] Kravehenko O.V.,Somenenko K.N.,Bulyehev B.M.,et al..Journal of Alloys and Compounds. [J], 2005, 397: 59—62
    [39]范美强,刘颖雅,杨黎妮等.铝锡合金制氢技术研究[J].高等学校化学学报,2008,29(2):356-359
    [40]Reboul M.C.,Gilrlenez P.H.,nanl∞u J.J..Corrosion[J], 1984, 40: 366-37l
    [41]王志远,周晶,高洪涛.硼氢化钠水解制氢研究进展[J].化工技术与开发,2009, 38(4):15-19
    [42] Schlesinger H I, Brown H C, Finholt A E, et al. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen[J], J Am Chem Soc, 1953, 75: 215–219
    [43] RICHARD B, BROWN H C, BROWN C A. New, Highly Active Metal Catalysts for the hydrolysis of Borohydride [J]. J Am Chem Soc, 1962, 84: 1493-1497
    [44] Amendola S C, Sharp-Goldman S L, Janjua M S, et al. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst [J]. J Power Sources, 2000, 85(2): 186-189
    [45] Kojima Y, Suzuki K, Fukumoto K, et al. Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide[J], Int. J. Hydrogen Energy, 2002, 27(10): 1029—1034
    [46] Wu C, Zhang H, Yi B. Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells [J]. Catal. Today, 2004, 93/95: 477-483
    [47]潘相敏,马建新.燃料电池汽车供氢新技术--硼氢化钠水解制氢[J].天然气工,2003,28 (5):51-55
    [48]C.Haertling, R.J.Hanrahan Jr., R.Smith. A literature review of reactions and kinetics of lithium hydride hydrolysis [J]. Journal of Nuclear Materials, 2006, 349(1-2):195-233
    [49]W. Machin, F. Tompkins. Kinetics of the reaction of water vapours with crystalline Lithium hydride [J], Trans. Faraday Soc. 1966, 62: 2205-2209
    [50] J. McLaughlin, S. Cristy, Composition of corrosion films on lithium hydride surfaces after exposure to air, Oak Ridge Y-12 Plant report Y-1929, Oak Ridge Y-12 Plant, 1974
    [51] S. Cristy, SIMS depth profiling of an insulating air-sensitive material, Oak Ridge Y-12 Plant report Y/DW-725, Oak Ridge Y-12 Plant, 1987
    [52]W. Machin, F. Tompkins, Trans. Faraday Soc. 62 (1966), 2205.
    [53]J. Tanski, Analysis of a New Reaction Mechanism for Hydrolysis of LiH, Los Alamos National Laboratory, LAUR-00-5324, 2000
    [54] Jun Lu, Zhigang Zak Fang. A hybrid method for hydrogen storage and generation from water [EB/OL], doi:10.1016/j.jpowsour.2007.05.021
    [55] R.A. Varina, M. Janga, M. Polanskib. The effects of ball milling and molar ratio of LiH on the hydrogen storage properties of nanocrystalline lithium amide and lithium hydride (LiNH2 + LiH) system [J]. Journal of Alloys and Compounds, 2010, 491(1-2):658-667
    [56]Aiello R, Matthews MA, Reger DL, Collins JE. Production of hydrogen gas from novel chemical hydrides[J]. International Journal of Hydrogen Energy 1998; 23(12):1103-1108
    [57] Kong VCY, Foulkes FR, Kirk DW, Hinatsu JT. Development of hydrogen storage forfuel cellgenerators. i: Hydrogen generation using hydrolysis hydrides[J]. International Journal of Hydrogen Energy 1999; 24(7):665-675
    [58] Kong VCY, Kirk DW, Foulkes FR, Hinatsu JT. Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride[J]. International Journal of Hydrogen Energy 2003; 28(2):205-214
    [59]Huot J, Liang G, Schulz R. Magnesium-based nanocomposites chemical hydrides [J]. Journal of Alloys and Compounds 2003; 353(1-2):L12-L15
    [60] Grosjean MH, Zidoune M, Huot JY. Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials[J]. International Journal of Hydrogen Energy, 2006,31(1):109-119
    [61]胡连喜,王尔德.纳米晶MgH2和MgH2基复合物粉末的水解制氢[C].全国粉冶金学术及应用技术会议,2005
    [62] Grosjean MH, Zidoune M, RouéL. Hydrogen production from highly corroding Mg-based materials elaborated by ball milling [J]. Journal of Alloys and Compounds 2005; 404-406:712-715
    [63] Pourbaix M. Atlas of the Electrochemical Equilibria in Aqueous Solutions [C] // 2nd ed., Houston, Texas: National Association of Corrosion Engineers; 1974,143-147
    [64] Makar G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloy [J]. J Electrochem Soc, 1990, 137(2): 414-421
    [65] Ouyang LZ, Xu YJ, Dong HW. Production of hydrogen via hydrolysis of hydrides in Mg–La system[J]. International Journal of Hydrogen Energy, 2009, 34(24):9671-9676
    [66] Grosjean MH, Zidoune M, Huot JY, RouéL. Hydrogen generation via alcoholysis reaction using ball-milled Mg-based materials[J]. International Journal of Hydrogen Energy 2006; 31(9):1159-1163
    [67]许玉江.Mg3RE基合金储氢及水解性能[D].华南理工大学,2009
    [68]赵永丰.氢能.见:《化工百科全书》编辑委员会主编.化工百科全书[M].北京:化工工业出版社,1997, 13: 49
    [69]陈丹之.氢能.见:《化工百科全书》编辑委员会主编.化工百科全书[M].北京:化工工业出版社, 1997, 13:95
    [70]邹仁鋆,王小曼.氢技术——研究、开发及工业应用展望化工进展[J]. 1992, 3: 20-25
    [71] Abdel-aal H.K., et al. Non-petroleum routes to petrochemicals [J]. International Journal of Hydrogen Energy, 1992, 17(5): 359-367
    [72] Kyu-Sung Sim, et al. Some thermochemical cycles composed of copper compounds with three-step reactions [J]. International Journal of Hydrogen Energy, 1993, 18(4): 287-290
    [73] Darkrim F.L., Malbrunot P., Tartaglia G.P. Review of hydrogen storage by adsorption in carbon nanotubes [J]. International Journal of Hydrogen Energy, 2002, 27(2): 193-202
    [74] Ouyang L.Z., Peng C.H., Zhu M. A new type of Mg-based metal hydride with promising hydrogen storage properties [J]. International Journal of Hydrogen Energy, 2007, 32(16): 3929-3935
    [75] Tessier JP, Palau P, Huot J, Schulz R, Guay D. Hydrogen production and crystal structure of ball-milled MgH2–Ca and MgH2–CaH2 mixtures. Journal of Alloys and Compounds 2004; 376:180-185
    [76] Zhou Z. L., Song Y. Q., Qian W .L. et al. Effects of partial substitution of aluminium and neodymium on electrode properties of La-Mg-Ni based AB3.5-type hydrogen storage alloys [J]. Journal of the Chinese Rare Earth Society, 2007, 25: 714
    [77] Fu Y., Groll M., Mertz R., Kulenovic R. Effect of LaNi5 and additional catalysts on hydrogen storage properties of Mg [J]. Journal of Alloys and Compounds, 2008, 460(1-2): 607-613
    [78] Hadano M., Urushihara N., Inoue T., Uchida H. The effect of O2 preadsorption on the rate of H2 absorption on the surface of rare earths (La, Ce, Tb, Dy) at 298K [J]. Journal of Alloys and Compounds, 1999, 293–295: 403-406

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700