神华煤的预处理及其新型固体酸催化液化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭直接液化是解决石油短缺、保障能源供应安全的有效途径之一。提高煤的液化反应活性、缓和液化条件和增加油收率已成为当今煤直接液化领域的研究热点。本文以神华煤为原料,利用间歇式高压反应器研究了水热处理和溶胀处理对神华煤液化性能的影响。通过浸渍沉淀法制备了SO_4~(2-)/ZrO_2固体酸催化剂,利用FTIR、NH_3-TPD等分析技术及间歇式加氢液化试验,考察了制备条件对其结构、酸性和催化液化性能的影响,探讨了煤液化中新型固体酸的催化作用机理。此外,还研究了在该催化剂作用下的神华煤液化动力学,建立了相关模型。
     研究结果表明,热处理和水热处理能在一定程度上改变煤分子间的交联作用,尤其是非共价键作用形式和强度。较高温度下热处理时,伴随脱挥发分和热解反应,煤分子间产生了新的非共价键和共价键交联,热处理煤的溶胀和抽提性能低于原煤;适当温度的水热处理具有加氢作用,从而提高了处理煤CS_2/NMP混合溶剂抽提率和液化转化率,如250℃水处理煤液化转化率较原煤提高了6.3%。
     神华煤溶胀预处理研究表明:神华煤的主体为共价键结合的网络结构,以非共价键作用结合于煤分子主体结构中的小分子化合物含量较低;NMP和THN溶胀处理能够提高神华煤的CS_2/NMP混合溶剂抽提率和液化转化率。溶胀动力学研究表明,40~160℃范围内溶胀符合一级动力学方程,它们的表观活化能分别为0.77 KJ/mol和5.23 KJ/mol。
     对新型固体酸的研究表明:它对神华煤液化具有明显的催化活性,主要表现为对煤及其重质产物的催化裂解作用。其催化性能与强酸中心比例有关,酸性越强催化裂解能力越强,从而有利于煤大分子结构催化裂解,提高液化转化率。此外,SO_4~(2-)/ZrO_2也表现出较好的加氢作用。采用一种适宜条件制备的SO_4~(2-)/ZrO_2,在5MPa H_2、催化剂用量5%(wt)、400℃、30min等条件下,煤的转化率达到76.77%。此外,SiO_2负载SO_4~(2-)/Fe_2O_3的酸强度和催化性能类似于SO_4~(2-)/ZrO_2,且具有高的油气产率。
     神华煤加氢液化动力学研究表明:在375~450℃范围内,所建立的液化动力学模型能够较好地模拟神华煤液化动力学过程,其液化反应的速率常数介于0.2~18.9×100 min~(-1)之间,表观活化能在90~145KJ/mol~(-1)范围内。同时,前沥青烯二次液化的动力学行为及液化产物的元素分析和~1H-NMR表征都进一步证明所建立的神华煤液化模型的合理性。
Direct liquefaction of coal will be one of effective paths to compensate the shortage of petroleum sources and ensure the energy supplement. At present, it has becoming main research issues to improve the liquefaction reactivity of feed coal, to moderate the liquefaction conditions and increase the oil yield. Therefore, the aim of this dissertation is to research the pretreatment of feed coal and develop a novel solid acid with higher catalytic cracking activity in order to explore a high efficiency liquefaction technology under moderated conditions. Shenhua coal was used as a feedstock in this dissertation. The effects of hydrothermal treatment and swelling treatment on the hydro-liquefaction behavior of Shenhua coal were studied by the liquefaction experiment in a batch autoclave. Meanwhile, a series of SO_4~(2-)/ZrO_2 solid acids were prepared by precipitation and impregnation, and characterized by FTIR、NH_3-TPD techniques as well as batch hydro-liquefaction experiments. The impacts of the preparation conditions of catalyst on its structure, acidity and hydro-liquefaction properties were investigated. The catalytic liquefaction mechanism of solid acid was explored. In addition, the kinetics of the hydro-liquefaction of Shenhua coal was studied and a kinetic model was proposed.
     Results of thermal and hydrothermal pretreatments of Shenhua coal suggest that the cross-linking structure of Shenhua coal, especially the strength and distribution of non-covalent bonds such as hydrogen bond, were changed. The swelling ratio and extraction yield of thermal treated coal are lower than those of raw coal due to the formation of new non-covalent and covalent bond cross link in the process of thermal treatment under higher temperature, in which the devolatilization and the pyrolysis occured obviously. Because of obviously existing hydrogenation during hydrothermal treatment at certain temperature, the CS_2/NMP extraction yield and liquefaction conversion of Shenhua coal were improved. For example the conversion of treated coal at 250℃is 6.3% more than that of raw coal.
     The results of swelling pretreatment demonstrate that the principal structure of Shenhua coal consists of a large molecular network with covalent bond and the content of small molecular compounds bonding with non-covalent interactions is lower. The CS_2/NMP extraction yield and liquefaction conversion of Shenhua coal can be improved by swelling pretreatment with NMP or THN. The swelling kinetics studies suggest that the swelling process of Shenhua coal between 40℃and 160℃fits to a first order kinetic equation and the apparent activation energy of swelling in NMP and THN are respectively 0.77 KJ/mol and 5.23 KJ/mol.
     For the hydro-liquefaction of Shenhua coal, the SO_4~(2-)/ZrO_2 solid acid displays good catalytic activity, especially for the catalytic cracking of coal and its heavy products. Its catalytic activity on the coal liquefaction is related to the strength of acid site and the content of strong acid site. Strong acid site is favorable to catalyze the cracking of coal matrix and large molecular structural units, therefore increasing liquefaction conversion. In addition, the SO_4~(2-)/ZrO_2 solid acid shows also a good catalytic activity for the hydrogenation reactions. For the hydro-liquefaction of Shenhua coal, the optimal preparation conditions of SO_4~(2-)/ZrO_2 solid acid are 1 mol/l H2SO4 used as impragnant and calcination at 650℃for 3 hours. The conversion of Shenhua coal reached to 76.77%,when 5%(wt, to coal) SO_4~(2-)/ZrO_2 and 5.0 MPa H2 were used for the hydro-liquefaction under 400℃for 30min. In addition, the strength of acid site and catalytic properties of SO_4~(2-)/Fe_2O_3 loaded on SiO_2 are similar to SO_4~(2-)/ZrO_2, and it gives higher yield of oil+gas compared to that of SO_4~(2-)/ZrO_2 used as catalyst.
     The studies of hydro-liquefaction kinetics indicate that the proposed kinetic model is suitable to describe the hydro-liquefaction process of Shenhua coal catalyzed by solid acid between 375℃and 450℃. For all reactions in the model, the rate constants are in the range of 0.2~18.9×100 min-1 and the apparent activation energies are in the range of 90~145KJ/mol-1. The hydro-liquefaction of preasphaltene and the element analyses and 1H-NMR spectra of liquefied products also further confirmed that this model is reasonable.
引文
[1]胡社荣.煤炭液化的工业化发展战略若干问题探讨[J].科技导报,2005,23(6):20-24
    [2]舒歌平主编.煤直接液化技术[M].北京:煤炭工业出版社,2003,p-85
    [3]高晋生,张德祥编著.煤液化技术[M].北京:化学工业出版社,2005
    [4]虞继舜主编.煤化学[M].北京:冶金工业出版社,2000
    [5]魏贤勇,宗志敏,秦志宏,陈茺编著.煤液化化学[M].北京:科学出版社(2002版)
    [6]陈茺,许学敏,高晋生.氢键在煤大分子溶胀行为中的作用[J].燃料化学学报,1997,5(6):524
    [7] E H Simsek, A Karaduman, S Caliskan and T Togrul. The Effect of Preswelling and/orPre-treatment of Some Turkish Coals on the Supercritical Fluid Extract Yield[J].Fuel, 2002,81(4): 503-506
    [8] K Masaki, T Yoshida, C Li, T Takanohashi. The Effects of Pretreatment and the Additionof Polar Compounds on the of "HyperCoal" from Subbituminous Coals[J], Energy & Fuels,2004, 18(4): 995-1000
    [9] F Pinto, I Gulyurtlu, L S Lobo, I Cabrita. Effect of Coal Pre-treatment with SwellingSolvents on Coal Liquefaction[J]. Fuel. 1999, 78(6): 629-634
    [10]谢克昌著.煤的结构与反应性[M].北京:科学出版社,2002,p-71
    [11] M Nishioka. The Associated Molecular Nature of Bituminous Coal[J]. Fuel. 1992, 71(8):941-948
    [12] D W van Krevelen. Coal[M]; Elsevier: New York, 1961; Chapter 23
    [13] J L Faulon. Calculating the Number-Averaged Molecular Weight (Mo) of Aromatic andHydroaromatic Clusters in Coal using Rubber Elasticity Theory[J]. Energy & Fuels. 1994, 8:1020-1023
    [14] C Chen, J Gao and Y Yan. Role of Noncovalent Bonding in Swelling of Coal [J]. Energy& Fuels. 1998, 12(6): 1328-1334
    [15] J W Larsen and A J Baskar. Hydrogen Bonds from a Subbituminous Coal to SorbedSolvents. An Infrared Study [J]. Energy & Fuels. 1987, 1(2): 230-232
    [16] C Chen, J Gao, Y Yan. Observation of the Type of Hydrogen Bonds in Coal by FTIR[J].Energy & Fuels. 1998, 12(3): 446-449
    [17] J W Larsen, T K Green, Kovac. The Nature of the Macromolecular Network Structure ofBituminous Coals[J]. Journal of Organical Chemistry. 1985, 50(24): 4729-4735
    [18] H W Sternberg, R Paymond, F K Schweightarst. Selective Alkylation of Acidic HydroxylGroups in Coal[J]. Fuel. 1979, 58(10):724-728
    [19] P C Painter, M Sobkowiak, J Youtcheff. FT-i.r. Study of Hydrogen Bonding in Coal[J].Fuel. 1987, 66(7): 973-978
    [20] K Miura, K Mae, W Li, T Kusakawa, F Morozumi, and A Kumano. Estimation ofHydrogen Bond Distribution in Coal through the Analysis of OH Stretching Bands in DiffuseReflectance Infrared Spectrum Measured by in-Situ Technique[J]. Energy & Fuels. 2001,15(3): 599-610
    
    [21] D Li, W Li and B Li. A New Hydrogen Bond in Coal[J]. Energy & Fuels 2003, 17(3):791-793
    [22] K Mae, T Maki, H Okutsu, K Miura. Examination of Relationship between CoalStructure and Pyrolysis Yields Using Oxidized Brown Coals Having DifferentMacromolecular Networks[J]. Fuel. 2000, 79(3-4): 417-425
    [23] Miura K, Mae K, Sakurada K, K Hashimoto. Flash Pyrolysis of Coal Following ThermalPretreatment at Low Temperature[J]. Energy & Fuels. 1992, 6(1): 16-21
    [24] A S Glass, J W Larsen. Specific Interactions of Organic Bases with the Illinois No. 6Coal Surface are the Same as Their Hydrogen-bond Strengths with Phenol[J]. Energy & Fuels.1994, 8(l):284-285
    [25]张丽芳,马蓉,倪中海,袁新华,宗志敏,魏贤勇.煤的溶胀技术研究进展[J].化学研究与应用.2003,15(2):182-186
    [26] Mallya N, Stock L M. The Alkylation of High Rank Coals. Non-covalent BondingInteractions[J]. Fuel. 1986, 65(5): 736-738.
    [27] Masaharu Nishioka and John W Larsen. Association of Aromatic Structures in Coals.Energy & Fuels. 1990, 4(1): 100-106.
    [28] E M Y Quinga and J W Lersen. Noncovalent Interactions in High-Rank Coals[J]. Energy& Fuels. 1987,1(3): 300-304
    [29] J O Mapstone. Effect of Hydrothermal Pretreatment on Coal Structure and the MildGasification Process[J]. Energy & Fuels. 1991, 5(5): 695-700
    [30] Song C, Schobert H H, Hatcher P G. Temperature-programmed Liquefaction of aLow-rank Coal[J]. Energy & Fuels. 1992,6(3): 326-328
    [31] I Watanabe, K Sakanishi, and I Mochida. Changes in Coal Aggregate Structure by HeatTreatment and Their Coal Rank Dependency [J]. Energy & Fuels. 2002, 16(1): 18-22
    [32] K Sakanishi, I Watanabe, T Nonaka, M Kishino, I Mochida. Effects of Organic AcidPretreatment on the Structure and Pyrolysis Reactivity of Coals[J]. Fuel. 2001, 80(2): 273-281
    [33] J Hayashi, Y Matsuo, K Kusakabe, S Morooka. Effect of Light Heat Treatment onPyrolysis Reactivity of Brown Coal[J]. Energy & Fuels. 1995, 9(2):284-289.
    [34] J V Ibarra, R Moliner, M P Gavila'n. Functional group dependence of cross-linkingreactions during pyrolysis of coal[J]. Fuel. 1991, 70(3): 408-413
    [35] J Hayashi, H Takahashi, S Doi, H Kumagai, T Chiba, T Yoshida, A Tsutsumi. Reactionsin Brown Coal Pyrolysis Responsible for Heating Rate Effect on Tar Yield[J]. Energy & Fuels2000, 14(2): 400-408
    [36] K Mae, T Maki, K Miura. A new method for estimating the cross-linking reaction duringthe pyrolysis of brown coal[J]. J. Chem. Eng. Jpn. 2002, 35: 778-782
    [37] C Zeng, H Wu, J Hayashi, C Li. Effects of thermal pretreatment in helium on thepyrolysis behaviour of Loy Yang brown coal[J]. Fuel. 2005, 84(12-13): 1586-1592.
    [38] I Mochida, T Shimohara, Y Korai, H Fujitsu. Carbonization of coals to produceanisotropic cokes: 5. Structural factors of coals influencing carbonization properties[J]. Fuel.1984, 63(6): 847-853
    [39] Y Yun, E M Suuberg. New applications of differential scanning calorimetry and solventswelling for studies of coal structure: Prepyrolysis structural relaxation[J]. Fuel. 1993, 72(8):1245-1254
    [40] Y Otake, E M Suuberg. Temperature Dependence of Solvent Swelling and DiffusionProcesses in Coals[J]. Energy & Fuels. 1997, 11(6): 1155-1164
    [41] M Nishioka, J W Larsen. Mild pyrolytic production of low-molecular-weight compoundsfrom high-molecular-weight coal extracts[J]. Energy & Fuels. 1988, 2(3): 351-355
    [42] R A Graff, S D Brandes. Modification of coal by subcritical steam: pyrolysis andextraction yields[J]. Energy & Fuels. 1987, 1(1): 84-88
    [43] S D Brandes, R A Graff, M L Gorbaty, M Siskin. Modification of coal by subcriticalsteam: an examination of modified Illinois No. 6 coal[J]. Energy & Fuels. 1989, 3(4):494-498
    [44] Komeizi A, et al. Liquefaction of Victorian brown coal. (15) effect of hydrothermaltreatment of Victorian brown coal. Sekitan Kagaku Kaigi Happyo Ronbunshu. 1994,31:131-134(in Japanese).
    [45] P R Bienkowski, R Narayan, R A Greenkorn, K Chao. Enhanced coal liquefaction withsteam pretreatment[J]. Ind. Eng. Chem. Res. 1987, 26(2): 202-205.
    [46] M R Khan, W Chen and E Suuberg. Influence of steam pretreatment on coal compositionand devolatilization[J]. Energy & Fuels, 1989, 3(2):223-230
    [47] M Iino, T Takanohashi, C Li and H Kumagai. Increase in Extraction Yields of Coals byWater Treatment[J]. Energy & Fuels. 2004, 18(5): 1414-1418
    [48] D S Ross, A Hirschon. The effects of hydrothermal treatment on Wyodak coal[J]. Prepr.Pap.-Am. Chem. Soc, Div. Fuel Chem. 1990, 35:2199
    [49] M A Serio, E Kroo, P R Solomon. Liquefaction of water pretreated coal[J]. Prepr.Pap.-Am. Chem. Soc, Div. Fuel Chem. 1992, 37(1): 432
    [50] M A Serio, E Kroo, S Chapeney, P R Solomon. Improved liquefaction of low rank coalsby reduction of retrogressive reactions[J]. Prepr. Pap.-Am. Chem. Soc, Div. Fuel Chem. 1993,38(3): 1021
    [51] H Shui, Z Wang, G Wang. Effect of hydrothermal treatment on the extraction of coal inthe CS2/NMP mixed solvent[J]. Fuel. 2006, 85(12-13): 1798-1802
    [52]白金峰,王勇,胡浩权,郭树才,陈国华.溶胀对扎赉诺尔褐煤热解及液化性能的研究[J].煤炭转化.2000,23(4):50-54.
    [53] F E Ndaji, K M Thomas. Effects of solvent steric properties on the equilibrium swellingand kinetics of solvent swelling of coal[J]. Fuel. 1995,74(6):63-81
    [54] L Artok, A Davis, G D Mitchell, and H H Schobert. Swelling Pretreatment of Coals forImproved Catalytic Temperature-Staged Liquefaction[J]. Energy & Fuels. 1993, 7(1): 61-71
    [55] C J Brannan, C W Curtis, D C Cronauer. Interaction of swelling solvents and catalystprecursors in coal liquefaction systems[J]. Fuel Proc Technol. 1997,51(5): 63-81
    [56] J M Rincon and S Cruz. Influence of preswelling on liquefaction of coal[J]. Fuel. 1988,67(8): 1162-1163
    [57] J T Joseph. Beneficial effects of preswelling on conversion and catalytic activity duringcoal liquefaction[J]. Fuel. 1991,70(3 ): 459-464
    [58] L Artok, A Davis, G D Mitchell and H H Schobert. Swelling pretreatment of coals forimproved catalytic liquefaction [J]. Fuel. 1992,71(9):981-991
    [59] H Hu, G Sha, G Chen. Effect of solvent swelling on liquefaction of Xinglong coal at lesssevere conditions[J]. Fuel Processing Technology. 2000. 68(l):33-43
    [60] K Miura, K Mae, S Asaoka T Yoshimura, K Hashimoto. A new coal flash pyrolysis method utilizing effective radical transfer from solvent to coal[J]. Energy & Fuels. 1991,5(2): 340-346
    [61]胡浩权,钱晖,郭树才.溶胀预处理改善煤超临界萃取研究[J].燃料化学学报.1997,25(3):223-226
    [62] Nishioka, M. The associated molecular nature of bituminous coal[J]. Fuel. 1992, 71(8):941-948
    [63] H Charcosset, R Bacaud, M Besson, A Jeunet, B Nickel and M Oberson. On thechemical effects on catalysts in the direct liquefaction of coal[J]. Fuel Processing Technology.1986,12(2): 189-201
    [64] Y Nakao, S Yokoyama, Y Maekawa and K Kaeriyama. Coal liquefaction by colloidaliron sulphide catalyst[J]. Fuel. 1984, 63(5):721-722
    [65] K Hirano, and Y Kanda. Study on industrial catalyst for bituminous coal liquefaction[J].Fuel Processing Technology. 2001,72(1 ):35-45
    [66] J Alvarez, R Rosal, H Sastre and F V Diez. Characterization and deactivation of sulfidedred mud used as hydrogenation catalyst[J]. Applied Catalysis A: General. 1995, 128 (2),259-273
    [67] M Makabe, S Ohe, H Itoh and K Ouchi. Reaction mechanism of coal hydrogenation 4.Effect of catalyst type[J]. Fuel. 1986,65(2):296-298
    [68] K C Pratt and V Christoverson. Hydrogenation of a model hydrogen-donor system usingactivated red mud catalyst[J]. Fuel. 1982,61(5):460-462
    [69] K Hirano, et al. Catalysis of pyrite for coal liquefaction reaction[J]. Nippon EnerugiGakkaishi. 1996, 75 (11):977-866
    [70] R K Sharma, A H Stiller and D B Dadyburjor. Effect of Preparation Conditions on theCharacterization and Activity of Aerosol-Generated Ferric Sulfide-Based Catalysts for DirectCoal Liquefaction[J]. Energy & Fuels. 1996, 10(3):757-765
    [71] A Chadha, R K Sharma, C D Stinespring, D B Dadyburjor. Iron sulfide catalysts for coalliquefaction prepared using a micellar technique[J]. Ind. Eng. Chem. Res. 1996,35(9):2916-2919
    [72] D B Dadyburjor, T E Fout and J W Zondlo. Ferri-sulfide-based catalysts made usingreverse micelles: Effect of preparation on performance in coal liquefaction[J]. Catalysis Today.2000, 63(1):33-41.
    [73] Y Kuriki, et al. Coal liquefaction over Iron-base fine particles catalyst. Sulfidation andactivity of catalyst[J]. Sekitan Kagaku Kaigi Happyo Ronbunshu. 1993, 30:244-247
    [74] H Taniguchi, et al. Catalytic activities of iron carbonyl sulfur complexes in the coalliquefaction[J]. Sekitan Kagaku Kaigi Happyo Ronbunshu. 1995, 32:65-68
    [75] A Chadha, C D Stinespring, A H Stiller, J W Zondlo and D B Dadyburjor.Characterization and activity of ferric-sulfide-based catalyst in model reactions of direct coalliquefaction: effect of preparation conditions[J]. Ind. Eng. Chem. Res. 1997, 36(2):284-295
    [76] T Kaneko, K Tazawa, N Okuyama, M Tamura and K Shimasaki. Effect of highly dispersed iron catalyst on direct liquefaction of coal[J]. Fuel. 2000, 79(3-4):263-271
    [77] K Hirano, M Kouzu, T Okada, M Kobayaashi, N Ikenaga and T Suzuki. Catalytic activity of iron compounds for coal liquefaction[J]. Fuel. 1999, 78(15): 1867-1873
    [78] T Koyama, et al. Studies on brown coal liquefaction. (19). Effect of iron catalyst propertoes on liquefaction activity[J]. Sekitan Kagaku koigi Happyo Ronbunshu, 1993, 30:201-204
    [79] N Ikenaga, H Taniguchi, A Watanabe, and T Suzuki. Sulfiding behavior of iron based coal liquefaction catalyst[J]. Fuel, 2000,79(3-4):273-283.
    [80] D W Matson, et al. Progress in the development and production of nanoscale iron-containing catalysts[J]. Prepr. Fuel Chem. Div. 1993, 38(1): 14-18
    [81] K Tanabe, H Hattori, T Yamaguchi, S Yokoyama J Umematsu and Y Sanada. Effect of SO42- on catalytic activity of Fe2O3 for hydrocracking of coal[J]. Fuel. 1982,61(4):389-390
    [82] T Kotanigaw
    a, S Yokoyama, M Yamamoto and Y Maekawa. Behaviour of the Fe-O-S-H system under coal liquefaction conditions[J]. Fuel. 1987,66(10): 1452-1453.
    [83] T Kotanigawa, H Takahashi, S Yokoyama, M Yamamoto and Y Maekawa. Mechanism for formation of sulphate in S-promoted iron oxide catalysts for coal liquefaction[J]. Fuel.1988, 67(7):927-931.
    [84] S Yokoyama, M Yamamoto, Y Maekawa and T Kotanigawa. Catalytic activity of sulphate for hydroliquefaction of coal by using diphenylether and diphenylmethane[J]. Fuel.1989, 68(4):531-533.
    [85] G T Hager, et al. The activity of nanoscale iron oxide for model compound reactions[J].Prepr. Pap. Am. Chem. Soc, Div. Fuel Chem., 1995, 40(2):383-386.
    [86] M Farcasiu, C S V R Pradhan and I Wender. Iron compounds and iron catalysts: Activityin reactions relevant to direct coal liquefaction[J]. Fuel Processing Technology.1991,29(3): 199-208.
    [87] S Castillo, A Lauret, A Yaouancq, L Aries and J Traverse. Novel catalysts applied tohydroliquefaction of coal[J]. Fuel. 1992, 71(2):243-245
    [88] M Nomura, T Fujimoto and M Miyake. Hydroliquefaction of subbituminous coal[J]. Fuel.1985,64(10): 1401-1404
    [89] Y Kamiya, T Nobusawa and S Futamura. Catalytic effects of iron compounds and therole of sulfur in coal liquefaction and hydrogenolysis of SRC[J]. Fuel Processing Technology.1988, 16(l):l-10
    [90] A Martino, M Stoker, M Hicks, C H Bartholomew, A G Sault and J S Kawola. Thesynthesis and characterization of iron colloid catalysts in inverse micelle solutions[J]. Appliedcatalysis A: General. 1997,161(l-2):235-248
    [91] E S Oksib, and R K Sharma. Iron oxometallate catalysts for coal liquefaction[J]. Prepr.Am. Chemical Soc, Div. Pet. Chemical. 1997, 42(3):652-653
    [92] S R Virby and H H Schobert. Catalytic hydrodeoxygenation under coal liquefactionconditions using novel organometallic catalytic precursors[J]. Prepr. Am. Chemical Soc, Div.Pet. Chemical. 1997, 42(3):643-647
    [93] R Bacaud, M Besson, H Charcossetl, M Oberson, H T Vinh and J Varloud. Role ofcatalysts during direct coal liquefaction[J]. Fuel Processing Technology. 1986, 14: 213-220
    [94] R Ochoa et al. Relative activity and selectivity of nanoscale M02N, M02C and M0S2catalysts synthesized by laser pyrolysis. Proc. Mater. Res. Soc. Symp. Synthesis & Propertiesof Advanced Catalytic Materials. 1995, 368:27-32.
    [95] S Zhang, J R Shearman, M Domin, M Lazaro A A Herod and R Kandiyoti. Catalyticactivity of fullerenes for hydrocracking coal extracts[J]. Fuel. 1997,76(3):207-214.
    [96] M Besson, R Bacaud, D Brodski, et al. Hydroliquefaction of coal catalysed by tincompounds[J]. Fuel. 1990, 69(l):35-43
    [97] A Martino, et al. Synthesis and characterization of Fe and FeS2 (pyrite) catalyst particlesin inverse micelles[J]. Prepr. Fuel Chem. Div. 1993,38(1):21
    [98] Z Liu, J Yang, J W Zondlo, A H Stiller and D B Dadyburjor. In situ impregnatediron-based catalysts for direct coal liquefaction[J]. Fuel. 1996,75(l):51-57
    [99] J Zhu, J Yang, Z Liu, D B Dadyburior, B Zhong and B Li. Improvement andcharacterization of an impregnated iron-based catalyst for direct coal liquefaction[J]. FuelProcessing Technology. 2001, 72(3): 199-214
    [100] L Zhang, J Yang, J Zhu, Z Liu, B Li, T Hu and B Dong. Properties and liquefactionactivities of ferrous sulfate based catalyst impregnated on two Chinese bituminous coals[J].Fuel. 2002,81(7):951-958
    [101] H Hu, et al. Catalytic liquefaction of coal with highly dispersed Fe2S3 impregnatedin-situ. Annu. Int. Pittsburgh Coal Conf. 2000, (17):952-959
    [102] A V Cugini, D Krastman, R G Lett. Development of a dispersed iron catalyst for firststage coal liquefication[J]. Catalysis Today. 1994,19(3),395-407
    [103] M R Hatswell, W R Jackson, F P Larkins, M Marshall, D Rash and D E Rogers.Hydrogenation of brown coal. 2. Iron-based catalysis[J]. Fuel. 1983,62(3):336-341.
    [104] W L Yoon, H T Lee, H Chung, D K Lee, B H Lee, Y H Wi and C Y Kim. First-stagedirect liquefaction of a subbituminous coal with oil-soluble metal naphthenates as dispersedcatalyst precursors[J]. Fuel. 1997,76(5):397-405
    [105] B Demirel, et al. Characterizatio of phosphomolybdic acid for coal liquefaction[J].Prepr. Am. Chemical Soc, Div. Pet. Chemical. 1997, 42(3):648-651
    [106] B Demirel, E N Givens. Transformation of phosphomolybdic acid into an activecatalyst with potential application in coal liquefaction[J]. Catalysis Today.1999,50(2): 149-158
    [107] B Demirel, E N Givens. Liquefaction of Wyodak coal with molybdenum-basedcatalysts from phosphomolybdic acid[J]. Fuel Processing Technology. 2000,64(1-3): 177-187
    [108] Y Inukai. Hydroliquefaction of Illinois No. 6 coal with petroleum atmospheric residueusing oil-soluble molybdenum catalyst[J]. Fuel Process Technology. 1995, 43(2): 157-167
    [109] G M K Abotsi, et al. Effects of surface-active agents on molybdenum adsorption ontocoal for liquefaction[J]. Prepr. Pap.-Am. Chem. Soc, Div. Fuel Chem. 1996, 41(3):984-987
    [110] R Byrne and C Song. Promoting coal hydroliquefaction through co-use of water anddispersed molybdenum sulfide catalyst[J]. Prepr. Pap. Am. Chem. Soc, Div. Fuel Chem. 1995,40(3):537-541
    [111] C Song, A K Saini and Y Yoneyama. A new process for catalytic liquefaction of coalusing dispersed M0S2 catalyst generated in situ with added H2O[J]. Fuel. 2000,79(3-4):249-261
    [112] D Tian, R K Sharma, A H Stiller, C D Stinespring and D B Dadyburior. Directliquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo[J]Fuel. 1996,75(6):751-758.
    [113] X Zhan, and E N Givens. Liquefaction catalysis of Wyodak coal impregnated withwater soluble iron and molybdenum precursors[J]. Catalysis Today. 1999, 50(1): 141-148
    [114] H Hu, J Bai, S Guo and G Chen. Coal liquefaction with in situ impregnated Fe2(MoS4)3bimetallic catalyst[J]. Fuel. 2002, 81(11-12):1521-1524
    [115] C K J Hulston, P J Redlich, W R Jackson, F P Larkins and M Marshall. Nickelmolybdate-catalysed hydrogenation of brown coal without solvent or added sulfur[J]. Fuel.1996, 75(12): 1387-1392
    [116] C K J Hulston, P J Redlich, W R Jackson, F P Larkins and M Marshall. Hydrogenationof a brown coal pretreated with water-soluble nickel/molybdenum and cobalt/molybdenumcatalysts[J]. Fuel. 1997, 76, (14-15): 1465-1469
    [117] P N Ho and S W Weller. Effects of pore diameter and catalyst loading inhydroliquefaction of coal with COO/MOO3/Al2O3 catalysts[J]. Fuel Processing Technology.1981, 4(1): 21-29
    [118] J A Legarreta, B M Caballero, I Marco, M J Chomon and P M Uria. Comparison of theeffect of catalysts in coal liquefaction with tetralin and coal tar distillates[J]. Fuel. 1997,76(13)1309-1313
    [119] T Kaneko, et al. Development of a secondary hydrogenation catalyst for brown coalliquefaction—Effect of preasphaltene and ash content on catalyst deactivation[J]. KagakuKogaku Ronbunshu. 1995, 21,(6): 1110-1119
    [120] T Masuyama, Y Kageyama and S Kawai. A Ca-modified Ni—Mo catalyst forhydroprocessing of coal liquid bottoms in two-stage coal liquefaction[J]. Fuel. 1990,69(2):245-250
    [121] K Kondo, T Kawanishi, N Ikenaga and T Suzuki. Alumina plate-loaded rutheniumcatalyst for coal liquefaction[J]. Fuel. 2001, 80(7): 1015-1020.
    [123] K Sakanishi, H Hasuo, M Kishino, I Mochida and O Okuma. Catalytic Activity ofNiMo Sulfide Supported on a Particular Carbon Black of Hollow Microsphere in theLiquefaction of a Subbituminous Coal[J]. Energy & Fuels. 1996, 10(l):216-219
    [124] U Priyanto, K Sakanishi, O Okuma and I Mochida. Liquefaction of Tanito Harum coalwith bottom recycle using FeNi and FeMoNi catalysts supported on carbon nanoparticles[J].Fuel Processing Technology. 2002, 79(1):51-62
    [125] U Priyanto, K Sakanishi, O Okuma, S D S Murti, I Watanabe, Y Korai and I Mochida.Optimization of Two-Stage Liquefaction of Tanito Harum Coal with FeNi Catalyst Supportedon Carbon Black[J]. Energy & Fuels. 2001, 15(4):856-862
    [126] H Hasuo, et al. Improvement of oul yield and catalyst recovery by coal pretreatmentand two stage liquefaction using Ni-Mo supported on carbon black[J]. Sekitan Kagaku KaigiHappyo Ronbunshu. 1995, 32:113-116
    [127] K Sakanishi, H Taniguchi, H Hasuo and I Mochida. Remarkable Oil Yield from anIndonesian Subbituminuous Coal in Liquefaction Using NiMo Supported on a Carbon Blackunder Rapid Stirring[J]. Energy & Fuels. 1996, 10(l):260-261
    [128] M F Polubentseva, et al. Coal liquefaction in the presence of aluminum chloride[J].Khim. Tverd. Topi. (Moscow). 1996, (3): 118-124
    [129] F Pinto F, et al. The role of catalyst impregnation and solvent type in improvingliquefaction efficiencies[J]. Coal Sci. Technol., 1995, 24:1307-1310
    [130] M Nomura, Y Kawakami and M Miyake. Specific catalysis of SnCl2 melt forhydroliquefaction of subbituminous coal[J]. Fuel Processing Technology. 1986,14:261-268
    [131] A Chakma. Molten halide catalysts for coal-bitumen coprocessing under low severityconditions[J]. Fuel Processing Technology. 1993,36(1-3)155-160
    [132] C Song and M Nomura. Catalytic effects of M0Cl3- and NiCl2-containing molten saltsin hydroliquefaction of Akabira bituminous coal with and without hydrogen-donor vehicle[J].Fuel. 1987, 66(9): 1225-1229
    [133] M Miyake, T Kagajyo and M Nomura. Hydrocracking of asphaltene from coal usingZnCl2 as catalyst[J]. Fuel Processing Technology. 1984,9 (3):293-306
    [134] T J Frederick and A T Bell. Cleavage of diary lmethanes in the presence of zinchalides[J]. Journal of Catalysis. 1984,87 (1): 196-209
    [135] S S Salim and A T Bell. Effects of Lewis acid catalysts on the hydrogenation andcracking of three-ring aromatic and hydroaromatic structures related to coal[J]. Fuel. 1984,63(4) :469-476
    [136] K Shimizu, H Karamatsu, A Inaba, A Suganuma and I Saito. Solubilization of Taiheiyocoal under mild conditions without gaseous hydrogen: catalysis by trifluoromethanesulfonicacid[J]. Fuel. 1995,74:853-859
    [137] K Shimizu, H Karamatsu, Y Iwami, A Inaba, A Suganuma and I Saito. Solubilization oflignite with superacid (trifluoromethanesulfonic acid)/isopentane at the mild conditions[J].Fuel Processing Technology. 1995,45(2):85-94
    [138] D Fraenkel, V R Pradhan, J W Tierney and I Wender. Liquefaction of coal under mildconditions[J]. Fuel. 1991, 70(l):64-73
    [139] V R Pradhan, J W Tierney, I Wender and G P Huffman. Catalysis in direct coalliquefaction by sulfated metal oxides[J]. Energy & Fuels. 1991,5(3):497-507
    [140] J C Chemg, J Maioriello and J W Larsen. Homogeneous ionic hydrogenation usingH2O·BF3 and catalytically activated H2[J]. Energy & Fuels. 1989,3(3):321~329
    [141] S D Lin and M A Vannice. Hydrogenation of Aromatic Hydrocarbons over Supported PtCatalysts III. Reaction Models for Metal Surfaces and Acidic Sites on Oxide Supports[J].Journal of catalysis. 1993,143(2):563~567
    [142] F Benseradj, F Sadi and M Chater. Hydrogen spillover studies on diluted Rh/Al2O3catalyst[J]. Applied Catalysis A: General. 2002,228(1-2): 135-144
    [143] A Zhang, I Nakamura and K Fujimoto. A New Probe Reaction for Studying theHydrogen Spillover Phenomenon[J]. Journal of catalysis. 1997,168(2): 328-333
    [144] J Wang, L Huang and Q Li. Influence of different diluents in Pt/Al2O3 catalyst on thehydrogenation of benzene, toluene and o-xylene[J]. Applied Catalysis A: General.1998,175:191-199.
    [145] J T Miller, B L Meyers, F S Modica, G S Lane, M Vaarkamp and D C Konigsherger.Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported PlatinumCatalysts[J]. Journal of Catalysis. 1993,143(2):395-408
    [146] F S Modica, J T Miller, B L Meyers and D C Koningsberger. Koningsberger. Role ofspill-over hydrogen in the hydrogenolysis of neopentane[J]. Catalysis Today. 1994,21(l):37-48
    [147] J Wang, Q Li, J Yao. The effect of metal±acid balance in Pt-loading dealuminated Yzeolite catalysts on the hydrogenation of benzene[J]. Applied Catalysis A: General.1999,184(2): 181-188
    [148] R Hernandez-Huesca, J Merida-Robles, P Maireles-Torres. Hydrogenation andRing-Opening of Tetralin on Ni and NiMo Supported on Alumina-Pillaredα-ZirconiumPhosphate Catalysts. A Thiotolerance Study[J]. Journal of Catalysis. 2001,203(l):122-132
    [149] T Isoda, K Kusakabe, S Morooka and I Mochida. Reactivity and Selectivity for theHydrocracking of Vacuum Gas Oil over Metal-Loaded and Dealuminated Y-Zeolites[J].Energy & Fuels. 1998,12(3): 493- 520
    [150] T Shishido and H Hattori. Spillover of hydrogen over zirconium oxide promoted bysulfate ion and platinum[J]. Applied Catalysis A: General. 1996,146(1): 157-164
    [151] K Tanabe, H Hattori, T Yamaguchi, T Iizuka, H Matsuhashi, A Kimura and Y Nagase.Function of metal oxide and complex oxide catalysts for hydrocracking of coal[J]. FuelProcessing Technology. 1986,14:247-260
    [152] H Matsuhashi, Hideo Nakamura, K Arata, R Yoshida and Y Maekawa. Catalyticactivities of metal oxides containing iron for hydrocracking coal model compounds andTaiheiyo coal[J]. Fuel. 1997,76(10)913-918.
    [153]朱晓苏.煤炭直接液化高分散度固体酸催化剂的研制[J].煤炭转化.2001,24(2):66-76
    [154] I Mochida, K Sakanishi, N Suzuki, M Sakurai, Y Tsukui and T Kaneko. Progresses of coal liquefaction catalysts in Japan[J]. Catalysis Surveys from Japan. 1998,(2): 17-30
    [155] I Mochida, K Iwamoto, T Tahara, Y Korai, H Fujitsu, K Takeshita. Liquefaction ofsubbituminous coals under apparently non-hydrogenative conditions[J]. Fuel. 1982, 61(7):603-609
    [156] T Takanohashi and M Iino. Extraction of Argonne Premium Coal Samples withCS2/NMP Mixed Solvent at Room Temperature and ESR Parameters of Their Extracts andResidues[J]. Energy & Fuels, 1990,4(5):452-455.
    [157] T K Green, J Kovac, J W Larsen. A rapid and convenient method for measuring theswelling of coals by solvents[J]. Fuel. 1984, 63(7):935-938
    [158] T Takanohashi, T Yanagida, M Iino. Extraction and swelling of low-rank coal withvarious solvents at room temperature [J]. Energy & Fuels. 1996, 10(5): 1128~ 1132
    [159] M Fujiwara, H Ohsuga, T Takanohashi, and M Iino. Swelling of the Extracts andResidues from CS2-NMP Mixed Solvent Extraction[J]. Energy & Fuels. 1992,6(6): 859-862
    [160] K Xie, F Li, J Feng and J Liu. Study on the structure and reactivity of swollencoal[J]. Fuel Processing Technology. 2000, 64(1-3):241-251
    [161] P R Solomon, M A Serio, G V Despande, E Kroo. Cross-linking reactions during coalconversion[J]. Energy & Fuels. 1990,4(l):42-54
    [162] H Shui, Z Wang, J Gao. Examination of the role of CS2 in the CS2/NMP mixed solventsto coal extraction[J]. Fuel Processing Technology. 2006, 87(3): 185-190
    [163] D K Mukherjee, A N Sengupta, D P Choudhury, P K Sanyal and S R Rudra. Effect ofhydrothermal treatment of caking propensity of coal[J]. Fuel. 1996, 75(4):477-482
    [164]陈洪博,李文华,姜英.神东煤显微组分与基本结构特征研究[J].煤炭转化.2006,29(1):6-10.
    [165]郭崇涛主编煤化学[M].北京:化学工业出版社,1992
    [166] P H Given, A Marzec, W A Barton, L J Lynch and B C Gerstein. The concept of a mobile or molecular phase within the macromolecular network of coals: A debate[J]. Fuel. 1986,65(2): 155-163
    [167]陈茺,高晋生,魏贤勇.溶剂抽提与煤的净化[J].煤炭转化,1995,18(2):14
    [168]常鸿雁张德祥,韩文煜,高晋生.不同温度下煤在溶剂中的溶胀行为[J].华东理工大学学报.2004,30(4):406-409
    [169] P J Redlich, W R Jackson, F P Larkins, A L Chaffee and I Liepa. Studies related to thestructure and reactivity of coals[J]. Fuel 1989, 68 (12): 1538-1543
    [170] S Pande, D K Sharma. Studies of Kinetics of Diffusion of NM P, EDA and NM P+EDAMixed Solvent System in Chinakuri Coal by Solvent Swelling Techniques[J]. Energy & Fuels.2001,15(5):1063-1068
    [171]王知彩.S042-/ZrO2固体超强酸催化氯化苄与苯烷基化反应的气相色谱.质谱法分析[J].分析化学.2006,34(2):219-222
    [172]王知彩,张红玲.SO42-/ZrO2-TiO2固体酸催化剂的制备条件对苯与1-十二烯烷基化反应的影响[J].石油化工.2006,36(5):483-487
    [173]王知彩,孙康,刘九玲.SO42-/ZrO2-TiO2催化苯与1-十二烯烷基化合成十二烷基苯[J].分子催化.2007,21(1):38-42
    [174] Z Wang, H Shui. Effect of PO43- and PO43--SO42- modification of TiO2 on its photocatalytic properties[J]. Journal of Molecular Catalysis A: Chemical. 2006,263 (1):20-25
    [175] T Kotanigawa, M Yamamoto, M Sasaki, N Wang, H Nagaishi, T Yoshida. Active Site of Iron-Based Catalyst in Coal Liquefaction[J]. Energy & Fuels, 1997,11(1): 190-193.
    [176] F Derbyshire, T Hager. Coal liquefaction and catalysis[J]. Fuel. 1994, 73(7): 1087-1092
    [177] Shui H, Shen B, Gao J. Study on the structure of heavy oils[J]. Petroleum Science & Technology. 1997, 15(7-8):595-610
    [178] B H Davis, R A Keogh, R Srinivasn. Sulfated zirconia as a hydrocarbon conversion catalyst[J]. Catalysis Today, 1994, 20(2):219-256.
    [179]唐新硕,王新平,金松寿.SO42-/ZrO2型超强酸酸中心形成机理研究.中国科学(B辑).1994,24(6):584-595
    [180]高滋,陈建民,唐颐等.SO42-/ZrO2超强酸体系红外光谱研究[J].高等学校化学学报.1993,14:658-661
    [181]唐新硕,孔方明,张立庆.SO42-/MxOy型固体超强酸催化剂研究(I)[J].高等学校化学学报.1986,7(2):161-167
    [182]尹喜林,韩焕梅,郭灵姬,夏凯,黄建宏.SO42-/(ZrO2-TiO2-SnO2)催化剂的制备及催化剂性能的研究[J]_石油化工.1994,23(1):22-24
    [183] A A M Ali, M I Zaki. Thermal and spectroscopic studies of polymorphic transitions of zirconia during calcination of sulfated and phosphated Zr(OH)4 precursors of solid acid catalysts[J]. Thermochimica Acta. 1999, 336:17-25
    [184]张黎,王琳,陈建民.S2Os2-/ZrO2固体超强酸的研究[J].高等学校化学学报.2000,21(1):116-119
    [185] J M Parera. Promotion of zirconia acidity by addition of sulfate ion[J]. Catalysis today. 1992,15(3-4):481-490
    [186]魏长平,张亮,姜新华,王伟东,甑开吉.在SO42-/ZrO2上苯与苯丙烯的反应[J].化学物理学报.2004,17(2):191~195
    [187]高滋,陈建民.SO42-/TiO2和SO422/Fe2O3固体超强酸研究[J].高等学校化学学报.1994,15(6):873-877.
    [188]谷小会,周铭,史士东.神华煤直接液化残渣中重质油组分的分子结构[J].煤炭学报.2006,31(1):76-80
    [189]常鸿雁,韩文煜,张德祥,高晋生.煤直接液化中油煤浆热溶产物的变化[J].煤炭学报.2005,30(1):91-95
    [190]王永刚,周建明,王彩红,杨正伟.先锋煤和神华煤直接液化油的组成[J].煤炭学报.2006,31(1):81-84
    [191]谢晶曦,常俊标,王绪明编著.红外光谱在有机化学和药物化学中的应用[M],北京:科学出版社,2001
    [192] S W Weller. Kinetics of coal liquefaction: Interpretation of data[J]. Energy & Fuels.1995,9(2):384-385
    [193] A K Ghosh, G N Prasad, J B Agnew, T Sridhar. Generalized kinetic model for theuncatalyzed hydroliquefaction of coal[J]. Ind. Eng. Chem. Process Des. Dev. 1986,25(2):464-471
    [194] R E Lumpkin. Recent progress in the direct liquefaction of coal[J]. Science. 1988, 239:873.
    [195] J Giralt, A Fabregat, F Giralt. Kinetics of the solvolysis of a Catalan lignite with tetralinand anthracene oil [J]. Ind. Eng. Chem. Res. 1988, 27(7): 1110-1114
    [196] G Angel ova, D Kamenski, N Dimova. Kinetics of donor-solvent liquefaction ofBulgarian brown coal[J]. Fuel. 1989, 68(10): 1343-1346
    [197] J Salvado, J Giralt, A Fabregat, F Giralt. Catalytic hydroliquefaction of Bergueda lignitewith fuel oil and abthracene oil under various reactive atmospheres[J]. Fuel. 1990, 69(6):743-746
    [198] D.C. Cronauer, Y.T. Shah, R.G Ruberto, Kinetics of Thermal Liquefaction of Belle AyrSubbituminous Coal[J]. Ind. Eng. Chem. Process Des. Dev. 1978, 17(2): 281-288
    [199] G Angelova, D Kamenski, N Dimova. Kinetics of donor-solvent liquefaction ofBulgarian brown coal[J]. Fuel. 1989, 68(11): 1434-1438
    [200] K Ceylan, A Olcay. Kinetic rate models for dissolution of Turkish lignites in tetralinunder nitrogen or hydrogen atmospheres[J]. Fuel Processing Technology. 1998,53(3): 183-195
    [201] P K Ramdoss, A R Tarrer, Kinetic model development for single-stage coalcoprocessing with petroleum waste[J]. Fuel Processing Technology. 1997, 51(1-2): 83- 100
    [202] T Suzuki, T Ando, Y Watanabe. Kinetic studies on the hydroliquefaction of coals usingorganometallic complexes[J]. Energy & Fuels. 1987, l(3):294-300
    [203] J S Abichandani, Y T Shah, D C Cronauer, R G Ruberto. Kinetics of thermalliquefaction of coal[J]. Fuel. 1982, 61(3):276-281
    [204] T Suzuki. Development of highly dispersed coal liquefaction catalysis[J]. Energy &Fuels. 1994,8(2): 341-347
    [205] W Ding, J Liang and L L Anderson. Kinetics of thermal and catalytic coal liquefactionwith plastic-derived liquids as solvent[J]. Ind. Eng. Chem. Res. 1997,36(5): 1444-1452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700