NiO和RuO_2电极材料的制备及电容特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种新型储能电源,电极材料是保证其具有高性能的基础。本论文主要研究了RuO_2·xH_20薄膜电极、纳米NiO电极及复合电极材料的制备和电容特性,取得了良好的研究结果。
     本文采用阴极电沉积法在Ti基体上制备RuO_2·xH_2O薄膜电极,研究其表面结构和电化学性能,并研究沉积量对氧化钉薄膜电极比容量的影响,提出最佳沉积量。试验表明:所制备的RuO_2·xH_2O薄膜电极比容量高达786 F/g,充放电效率为99.6%,具有良好的功率特性和优异的循环寿命。
     在超声波条件下运用沉淀法制备RuO_2·xH_2O/CNTs复合材料,对氧化钌电极进行改性,氧化钌的比容量达到865 F/g。采用阴极电沉积法制备RuO_2·xH_2O/CNTs纳米粉体,在1.0 mol/L H_2SO_4溶液中,CNTs和RuO_2·xH_2O/CNTs电极的比容量分别为18和159 F/g。表明CNTs的复合提高了氧化钌的利用率,改善其功率特性。
     分别采用化学沉淀法、熔盐合成法和水热合成法制备具有不同形貌的纳米NiO电极材料,并于2.0 mol/L KOH溶液中研究所制备的NiO电极材料的赝电容性能,结果表明:在2.0 mol/L KOH溶液中,NiO具有良好的赝电容特性,最高比容量分别达到92,65.4和137 F/g。
     采用化学共沉淀法制备稀土掺杂NiO,研究不同稀土元素掺杂对NiO电极电化学性能的影响,找出最佳掺杂稀土元素;详细研究掺Dy氧化镍电极的结构和电化学性能,试验结果表明:当Dy与Ni的摩尔比为2:98时,比容量达到147 F/g。
     以十二烷基苯磺酸钠为模板剂,尿素为沉淀剂,利用均匀沉淀法-热处理制备出多孔结构的NiO/CNTs复合材料,其比表面积高达228 m2/g。首次研究NiO/CNTs复合材料在2.0 mol/L KOH电解液中的大电流充放电性能。在大电流密度2 A/g条件下,复合材料的比电容高达191 F/g,具有优异的循环性能。当CNT比例为10%时,复合材料的最高比容量可高达206 F/g。将NiO与NiO/CNTs组装得到扣式电容器,电容量分别为4.4 F和6.4 F。
Supercapacitor is a new kind of energy storage device.Electrode material is the basis to guarantee supercapacitor with excellent supercapacitive properties. This dissertation mainly investigated preparation and supercapacitive performance of RuO_2·xH_2O film electrode, nano NiO electrode and their composite electrode materials. Good results have been gained in this dissertation.
     Cathodic electrochemical deposition method was introduced to prepare RuO_2·xH_2O film on Ti electrode. Its surface structure, electrochemical performance and influence of specific capacitance on deposited weight of RuO_2·xH_2O were studied, furthermore to find the best deposited weight. The result indicated that the specific capacitance of RuO_2·xH_2O reaches 786 F/g, with the discharge-charge efficiency of 99.6%.The RuO_2·xH_2O electrode shows good power characteristic and an excellent cycle performance.
     RuO_2 was deposited on CNTs to get RuO_2·xH_2O/CNTs composites by ultrasonic synthesis process. RuO_2 were modified with CNTs, and the specific capacitance of RuO_2·xH_2O reaches 865 F/g. The RuO_2·xH_2O/CNTs nano composite powder was prepared by cathodic deposition method. In 1.0 mol/L H_2SO_4 solution, the specific capacitances of CNTs and RuO_2·xH_2O/CNTs nano composite were 18 and 159 F/g, respectively. The results display that CNTs was composed to enhance the utilization of RuO_2 and improve the power characteristics of RuO_2.
     Nano NiO electrode material with various morphologies was prepared by the methods of chemical precipitation, molten salt synthesis and hydrothermal synthesis, respectively. Pseudocapacitance behavior of the as prepared NiO electrode was studied in 2.0 mol/L KOH solution. The result exhibited that NiO electrodes showed excellent pseudocapacitance characteristics in 2.0 mol/L KOH solution and their highest specific capacitances are 92, 65.4 and 137 F/g.
     Rare earth elements doped nano-NiO electrodes were fabricated by chemical co-deposition reaction. Influence of NiO electrochemical capacitive performance on different rare earth elements were investigated to Find the best rare earth element doped. The results indicated that when ratio of n(Dy) to n(NiO) is 2:98, The specific capacitance of the Dy doped NiO electrode reaches 147 F/g.
     Porous nickel oxide/ carbon nanotubes (NiO/CNTs) composite precursor was synthesized using sodium dodecyl phenyl sulfate as a soft template and urea as hydrolysis-controlling agent. After heat treatment, NiO with a high specific surface area of 228 m~2/g was obtained. The charge/discharge capability of the NiO/CNTs composite at a high specific current density were studied for the first time in 2.0 mol/L KOH electrolyte. The composite has a specific capacitance of 191 F/g and shows an excellent cycle performance at a high current density of 2 A/g. A specific capacitance approximate to 206 F/g has achieved with NiO/CNTs (10 wt.%).Supercapcitors are fabricated using pure NiO and NiO/CNTs composite as electrode material, and their capacitances for supercapcitors are 4.4 and 6.4 F,respectively.
引文
[1] Bockris J 0 M, Reddy A K N. Modern Electrochemistry[M]. New York,Plenum Press, 1970
    [2] Becker H L. Low voltage electrolytic capacitor[P]. U. S. Patent. 2800616.1957-07-23
    [3] An K H, Jeon K K, Heo J K, Lim S C, Bae D J, Lee Y H.High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole[J]. J Electrochem Soc,2002, 149(4):A1058-A1062P
    [4] Kim J Y, Chung I J. An all-solid-state electrochemical supercapacitor based on poly3- (4-fluorophenylthiophene) composite electrodes[J]. J Electrochem Soc, 2002,149(10): A1376-A1380P
    [5] Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization[J]. J Power Sources, 2002,112(1):236-246P
    [6] Shukla A K, Arico A S, Antonucci V. An appraisal of electric automobile power sources[J]. Renewable and Sustainable Energy Reviews, 2001,5(2): 137-155P
    [7] Conway B E, Pell W G Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices[J]. J Power Sources, 2002, 105(2): 67-79P
    [8] Pell W G, Conway B E. Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge[J]. J Power Sources, 2001, 96(1): 57-67P
    [9] Leggett J. A guide to the Kyoto Protocol: a treaty with potentially vital strategic implications for the renewable industry[J]. Renewable and Sustainable Energy Reviews,1998,4(3): 345-351P
    [10] Conway B E. Electrochemical Supercapacitor: scientific fundamentals and technological application[M]. New York, Kluwer Academic/Plenum Publishers, 1999
    [11] Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochim Acta, 2000,45: 2483-2498P
    [12] Conway B E, Transition R. From "supercapacitor" to "battery" behavior in electrochemical energy storage. J Electrochem Soc, 1991, 138(6):1539-1548P
    [13] Song C S. Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002,77: 17-49P
    [14] Faggioli E, Rena P, Danel V, Andrieu X, Mallant R, Kahlen H.Supercapacitors for the energy management of electric vehicles[J]. J Power Sources, 1999, 84(2): 261-269P
    [15] Bonnefoi L, Simon P, Fauvarque J F, Sarrazin C, Sarrau J F, Lailler P.Multielectrode prismatic power prototype carbon /carbon supercapacitors[J]. J Power Sources, 1999, 83: 162-169P
    [16] Pell W G, Conway B E, Adams W A, Oliveira J D. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV application[J]. J Power Sources, 1999, 80: 134-141P
    [17] Schaller K V, Gruber C. Fuel cell drive and high dynamic energy storage systems-Opportunities for the future city bus[J]. Fuel Cells Bulletin, 2000,3(27): 9-13P
    [18] Gutmann G. Hybrid electric vehicles and electrochemical storage systems-a technology push-pull couple[J].J Power Sources,1999,84(2):275-279P
    [19] 张治安,邓梅根,胡永达,杨邦朝.电化学电容器的特点及应用[J].电子元件与材料,2003,22(11),3:1-5页
    [20] Ftitts D H. An analysis of electrochemical capacitors[J]. J Electrochem Soc,1997,144(6): 2233-2241P
    [21] Sparnaay M J. The electric double layer[M]. Sydney: Pergamon Press Pry.Ltd.,1972: P4
    [22] Matsumoto M. Electrical phenomena at interfaces: fundamentals,measures and application[C]. Vol.76,Surfactant science series. New York: Marcel Dekker,Inc.,1998: 87-89P
    [23] Burke A. Ultracapacitors: why,how and where is the technology[J]. J Power Souces,2000,91: 37-50P
    [24] Conway B E,Birss V,Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. J Power Sources,1997,66(1-2): 1-14P
    [25] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties[M]. New York: Kodansa Press,1988: 326
    [26] Shi H. Activated carbons and double layer capacitance[J]. Electrochim Acta,1996,41: 1633-1639P
    [27] Qu D Y,Shi H. Studies of activated carbons used in double-layer capacitors[J]. J Power Sources,1998,74: 99-107P
    [28] Momma T,Liu X J,Osaka T,Ushio Y,Sawada Y. Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor[J]. J Power Sources,1996,60: 249-253P
    [29] Nakamura M,Nakanishi M,Yamamoto K. Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors[J]. J Power Sources,1996,60: 225-231P
    [30] Toupin M,Belanger D,Hill I R.,Quinn D. Performance of experimental carbon blacks in aqueous supercapacitors[J]. J Power Sources,2005,140:203-210P
    [31] Braun A,Bartsch M,Schnyder B,Kotz R,Haas O,Haubold H G,Goerigk G. X-ray scattering and adsorption studies of thermally oxidized glassy carbon[J]. J Non-Crystalline Solids,1999,260:1-14P
    [32] Yoshizawa N,Hatori H,Soneda Y,Hanzawa Y,Kaneko K,Dresselhaus M S. Structure and electrochemical properties of carbon aerogels polymerized in the presence of Cu~(2+)[J]. J Non-Crystalline Solids,2003:330: 99-105P
    [33] Hu C C,Li W Y,Lin J Y. The capacitive characteristics of supercapacitors consisting of activated carbon fabric-polyaniline composites in NaNO_3[J].J Power Sources,2004,137:152-157P
    [34] Sivakumar C,Nian J N,Teng H. Poly(o-toluidine) for carbon fabric electrode modification to enhance the electrochemical capacitance and conductivity[J]. J Power Sources,2005,144: 295-301P
    [35] Chen J H,Li W Z,Wang D Z,Yang S X,Wen J G,Ren Z F.Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors[J]. Carbon,2002,40:1193-1197P
    [36] Xiao Q F,Zhou X. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor[J]. Electrochim Acta,2003,48:575-580P
    [37] Iijima S. Helical microtubules of graphic carbon[J]. Nature,1991,354:56-58P
    [38] 江奇,刘宝春,瞿美臻,周固明,张伯兰,于作龙.多壁碳纳米管结构 与其电化学容量之间关系的研究[J].化学学报,2002.60(8):1539-1542页
    [39] Frackowiak E, Jurewicz K, Delpeux S, B(?)guin F.Nanotubular materials for supercapacitors[J]. J Power Sources, 2001, 97-98: 822-825P
    [40] Barisci J N, Wallace G G,Baughman R H. Electrochemical studies of single-wall carbonnanotubes in aqueous solutions[J]. J Electroanalytical Chemistry, 2000,488:92-98P
    [41] 马仁志,魏秉庆,徐才录,梁吉,吴德海.应用于超级电容器的碳纳米管电极的几个特点[J]_清华大学学报(自然科学版),2000,40(8):7-10页
    [42] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937-950P
    [43] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J]. J Electrochem Soc, 1995,142(8): 2699-2703P
    [44] Hu C C, Chang K H. Cycle voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide[J]. Electrochim Acta, 2000,45:2685-2696P
    [45] Fang Q L,Evans D A, Roberson S L, Zheng J P. Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors[J].J Electrochem Soc, 2001,148(8): A833-A837P
    [46] Kim I H, Kim K B, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrodes for electrochemical capacitor application[J]. J Electrochem Soc, 2006,153(2): A383-A389P
    [47] Hu C C, Wang C C. Improving the utilization of ruthenium oxide within thick carbon -ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors[J]. Electrochem Commun, 2002, 4: 554-559P
    [48] Wang C C,Hu C C. The capacitive performance of activated carbon-ruthenium oxide composites for supercapacitors: effects of ultrasonic treatment in NaOH and annealing in air[J]. Materials Chemistry and Physics,2004,83:289-297P
    [49] Chen W C,Hu C C,Wang C C,Min C K. Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors[J]. J Power Souces,2004,125: 292-298P
    [50] Hu C C,Chen W C,Effects of substrates on the capacitive performance of RuO_x·nH_2O and activated carbon-RuO_x electrodes for supercapacitors[J]. Electrochim Acta,2004,49:3469-3477P
    [51] 王晓峰,王大志,梁吉.氧化钌/活性炭超级电容器电极材料的研制[J].稀有金属材料与工程,2003,32(6):424-427页
    [52] 王晓峰,王大志,梁吉,刘庆国.氧化钌/活性炭超级电容器复合电极的电化学行为[J].物理化学学报,2002,18(8):750-753页
    [53] 王晓峰,孔祥华,刘庆国,解晶莹.氧化钌/活性炭超电容器电极材料电化学特性[J].电子元件与材料.2002.3:1-4页
    [54] Kim H,Popov B N. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by collidal method[J]. J Power Sources,2002,104:52-61P
    [55] Min M,Machida K,Jang J H,Naoi K. Hydrous RuO_2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors[J]. J Electrochem Soc,2006,153(2):A334-A338P
    [56] Zheng J P,Jow T R. High energy and high power density electrochemical capacitors[J]. J Power Sources,1996,62(2): 155-159P
    [57] Fang W C,Chyan O,Sun C L,Wu C T,Chen C P,Chen K H,Chen L C, Huang J H. Arrayed CN_xNT-RuO_2 nanocomposites directly grown on Ti-buffered substrate for supercapacitor applications[J]. Electrochem Commun, 2007, 9:239-244P
    [58] Lee J K, Pathan H M, Jung K D, Joo 0 S. Electrochemical capacitance of nanocomposite film formed by loading carbontubes with ruthenium oxide[J]. J Power Sources, 2006,159: 1527-1531P
    [59] Arabale G, Wagh D, Kulkarni M, Mulla I S, Vernekar S P, Vijayamohanan K, Rao A M. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide[J]. Chemical Physics Letters, 2003, 376: 207-213P
    [60] Takasu Y, Nakamura T, Murakami Y. Dip-coated Ru-Mo-O/Ti electrochemical capacitors[J]. Chemistry Letters, 1998,1: 215-216P
    [61] Ito M, Murakami Y, Kaji H, Yahikozawa K, Takasu Y. Surface characterization of RuO_2-SnO_2 coated titanium electrodes[J]. J Electrochem Soc, 1996, 143(1): 32-36P
    [62] Takasu Y, Nakamura T, Murakami Y, Ohkawauchi H, Murakami Y.Dip-coated Ru-V oxide electrodes for electrochemical capacitors[J]. J Electrochem Soc, 1997,144(8): 2601-2606P
    [63] Kameyama K, Shohji S, Onoue S, Nishimura K, Yahikozawa K, Takasu Y.Preparation of ultra fine RuO_2-TiO_2 binary oxide particles by a sol-gel process[J]. J Electrochem Soc, 1993,140(4): 1034-1037P
    [64] Chang K H, Hu C C. Hydrothermal synthesis of Ru-Ti oxides with excellent performances for supercapacitors[J]. Electrochim Acta, 2006,52: 1749-1757P
    [65] Hu C C, Tsou T W. The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies[J]. J Power Sources, 2003,115: 179-186P
    [66] Subramanian V,Zhu H W,Vajtai R,Ajayan P M,Wei B Q.Hydrothermal synthesis and pseudocapacitance properties of MnO_2 nanostructures[J].J Phys Chem,B,2005,109:20207-20214P
    [67] Subramanian V,Zhu H W,Wei B Q.Nanostructured MnO_2:Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J].J Power Sources,2006,159:361-364P
    [68] Wu M Q,Snook G A,Chen G Z,Fray D J,Redox deposition of manganese oxide on graphite for supercapacitors[J].Electrochem Commun,2004,6:499-504P
    [69] Huang Q H,Wang X Y,Li J.Characterization and performance of hydrous manganese oxide prepared by electrochemical method and its application for supercapacitors[J].Electrochim Acta,2006,52:1758-1762P
    [70] Djurfors B,Broughton J N,Brett M J,Ivey D G Production of capacitive films from Mn thin films: effects of current density and film thickness[J].J Power Sources,2006 156: 741-747P
    [71] Prasad K R,Miura N.Electrochemically synthesis MnO_2-based mixed oxides for high performance redox supercapacitors.Electrochem Commun,2004,6:104-108P
    [72] Chou S,Cheng F Y,Chen J.Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO_2 films[J].J Power Sources,2006,162: 727-734P
    [73] Nagarajan N,Humadi H,Zhitomirsky I.Cathodic electrodeposition of MnO_x films for electrochemical supercapacitors[J].Electrochim Acta,2006,51:3039-3045P
    [74] 闪星,董国君,景晓燕,张密林.新型超大容量电容器电极材料-纳米 水合MnO_2的研究[J].无机化学学报,2001,17(5):669-67页
    [75] Toupin M,Brousse T,Belanger D.Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide[J].Chem Mater,2002,14:3946-3952P
    [76] Pang S C,Anderson M A.Chapman T W.Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J].J Electmchem Soc,2000,147: 444-450P
    [77] Chang J K,Tsai W T.Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors[J].J Electrochem Soc,2003,150:A1333-A1338P
    [78] Srinivasan V,Weidner J W.An electrochemical route for making porous nickel oxide electrochemical capacitors[J].J Electrochem Soc,1997,144:L210-L213P
    [79] Liu K C,Anderson M A.Porous nickel oxide/nickel films for electrochemical capacitors[J].J Electrochem Soc,1996,143:124-130P
    [80] 闪星,张密林.纳米氧化镍在超大容量电容器中的应用[J].功能材料与器件学报.2002,8(1):35-39页
    [81] Nam K W,Yoon W S,Kim K B.X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors[J].Electrochim Acta,2002,47:3201-3209P
    [82] Zhang F B,Zhou Y K,Li H L.Nanocrystalline NiO as an electrode material for electrochemical capacitor[J].Mater Chem.p Phys,2004,83:260-264P
    [83] Cheng J,Cao G P,Yang Y S.Characterization of sol-gel-derived NiO_x xerogels as supercapacitors[J].J Power Sources,2006,159:734-741P
    [84] Liu X M,Zhang X G,Fu S Y.Preparation of unchinlike NiO nanostructures and their electrochemical capacitive behaviors[J].Materials Research Bulletin,2006,41:620-627P
    [85] Wang Y G,Xia Y Y.Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15[J].Electrochim Acta,2006,51:3223-3227P
    [86] 邢伟,李丽,阎子峰,Lu G Q.介孔氧化镍的合成、表征和在电化学电容器中的应用[J].化学学报,2005,63(19):1775-1781页
    [87] 王晓峰,孔祥华.新型氧化镍超电容器电极材料的研究[J].无机材料学报,2001,16(5):815-820页
    [88] Kandalkar S G,Lokhande C D,Mane R S,Han S H.A non-thermal chemical synthesis of hydrophilic and amorphous cobalt oxide films for supercapacitor application[J].Applied Surface Science,2007,253:3952-3956P
    [89] Kim H K,Seong T Y,Lim J H,Cho W L,Yoon Y S.Electrochemical and structure properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors[J].J Power Sources,2002,102: 167-171P
    [90] Srinivasan V,Weidner J W.Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J].J Power Sources,2002,108:15-20P
    [91] Lin C,Ritter J A,Popov B N.Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors[J].J Electrochem Soc,1998,145: 4097-4103P
    [92] Wang Y,Yang W S,Zhang S C,Evans D G,Duan X.Synthesis and Electrochemical Characterization of Co-Al Layered Double Hydroxides[J].J Electrochem Soc.2005,152(11):A2130-A2137P
    [93] Lee H Y,Goodenough J B.Ideal supercapacitor behavior of amorphous V_2O_5·nH_2O in potassium chloride (KCl) aqueous solution[J].J Solid StateChemistry,1999,148:81-84P
    [94] Kim I H,Kim J H,Cho B W,Kim K B.Pseudocapacitive properties of electrochemically prepared vanadium oxide on carbon nanotube film substrate[J].J Electrochem Soc,2006,153(8):A1451-A1458P
    [95] Kim I H,Kim J H,Cho B W,Lee Y H,Kim K B.Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications[J].J Electrochem Soc,2006,153(6):A989-A996P
    [96] Kudo T,Ikeda Y,Watanabe T,Hibino M,Miyayama M,Abe H,Kajita K.Amorphous V_2O_5/carbon composites as electrochemical supercapacitor electrodes[J].Solid State Ionics,2002,152-153:833-841P
    [97] 于维平,张世超,张弛.复合氧化钼电极的制备和电容特性研究[J].材料热处理学报,2004,25(3):22-24页
    [98] Chen C L,Zhao D L,Xu D,Wang.X K.γ-Mo_2N/Co_3Mo_3N composite material for electrochemical supercapacitor electrode[J].Mater Chem Phys,2006,95:84-88P
    [99] Prasad K R,Miura N.Electrochemical synthesis and characteriazation of nanostructured tin oxide for electrochemical redox supercapacitors[J].Electrochem Commun,2004,6:849-852P
    [100] Jayalakshmi M,Venugopal N,Raja K P,Rao M M.nano SnO_2-Al_2O_3 mixed oxide and SnO_2-Al_2O3-carbon composite oxide as new and novel electrodes for supercapacitor applications[J].J Power Sources,2006,158:1538-1543P
    [101] Jayalakshmi M,Rao M M,Choudary B M.Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solution[J].Electrochem Commun,2004,6:1119-1122P
    [102] Gujar T P, Shinde V R, Lokhande C D, Han S H. Electrosynthesis of Bi_2O_3 thin films and their use in electrochemical supercapacitors[J]. J Power Sources, 2006, 161: 1479-1485P
    [103] Barsckov V, Chivikov S. The capacitor concept of the current-producing process mechanism in polyaniline-type conducting polymers[J].Electrochim Acta, 1996,41: 1773-1779P
    [104] Laforgue A, Simon P, Sarrazin C, Oliveira J D. Polythiophene-based supercapacitors[J]. J Power Sources, 1999, 80: 142-148P
    [105] Arbizzani C, Mastragostino M, Meneghello L. Polymer-based redox supercapacitors: a comparative study[J]. Electrochim Acta, 1996, 41:21-26P
    [106] Mastragostion M, Aevizzani C, Soavi F. Conducting polymers as electrode materials in supercapacitors[J]. Solid State Ionics, 2002, 148:493-498P
    [107] Arbizzani C, Mastragostino M, Meneghello L. Characterization by impedance spectroscopy of a polymer-based supercapacitor[J].Electrochim Acta, 1995,40: 2223-2228P
    [108] Mondal S K, Barai K, Munichandraiah N. High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate[J].Electrochim Acta, 2007, 52: 3258-3264P
    [109] Yu G Y, Chen W X, Zheng Y F, Zhao J, Li X, Xu Z D. Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes[J]. Materials Letters, 2006, 60: 2453-2456P
    
    [110] Hong J I, Yeo I H, Paik W K. Conducting Polymer with metal oxide for electrochemical capacitor poly (3, 4-ethyenedioxythiophere) RuO_x electrode[J]. J Electrochem Soc, 2001, 148(2): A156-A163P
    [111] Lee J Y, Liang K, An K H, Lee Y H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synthetic Metals,2005,150: 153-157P
    [112] Subramanian V, Zhu H W, Wei B Q. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials[J].Electrochem Commun, 2006, 8: 827-832P
    [113] Jang J H, Kato A, Machida K, Naoi K. Supercapacitor performance of hydrous ruthenium oxide electrodes prepared by electrophoretic deposition[J]. J Electrochem Soc, 2006, 153(8): A321-A328P
    [114] Liu T C, Pell W G, Conway B E. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO_2 supercapacitor electrodes[J]. Electrochim Acta, 1997,42: 3541-3552P
    [115] Hu C C, Huang Y H. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors[J]. J Electrochem Soc,1999,146: 2465-2471P
    [116] He K X, Wu Q F, Zhang X G, Wang X L. Electrodeposition of nickel and cobalt mixed oxide/carbon nanotube thin films and their charge storage[J]. J Electrochem Soc, 2006,153(8): A1568-A1574P
    [117] Zhang G Q, Zhao Y Q, Tao F, Li H L. Electrochemical characteristics and impedance spectroscopy studies of nano-cobalt silicate hydroxide for supercapacitor[J]. J Power Source, 2006, 161: 723-729P
    [118] Kalpana D, Omkumar K S, Kumar S S, Renganathan N G. A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor[J]. Electrochim Acta, 2006, 52:1309-1315P
    [119] Yuan A B, Zhang Q L. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte[J]. Electrochem Commun, 2006, 8: 1173-1178P
    [120] Chen R J, Wu F, Liang H Y, Li L, Xu B. Novel binary room-temperature complex electrolytes based on LiTFSI and organic compounds with acylamino group[J]. J Electrochem Soc, 2005, 152(10): A1979-A1984P
    [121] Morimoto T, Hiratsuka K, Sanada Y, Kurihara K. Electric double-layer capacitor using organic electrolyte[J]. J Power Sources, 1996, 60:239-247P
    [122] Bonnefoi L, Simon P, Fauvarque J F, Sarrazin C, Dugast A. Electrode optimistation for carbon power supercapacitors[J]. J Power Sources, 1999,79:37-42P
    [123] Ishikawa M, Ihara M, Morita M, Matsuda Y. Electric double layer capacitors with new gel electrolytes[J]. Electrochim Acta, 1995, 40:2217-2222P
    [124] Ingram M D, Pappin A J, Delalande F, Poupard D, Terzulli G.Development of electrochemical capacitors incorporating processable polymer gel electrolytes[J]. Electrochim Acta, 1998, 43: 1601-1605P
    [125] Vassal N, Salmon E, Fauvarque J F. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-Eo)[J].Electrochim Acta, 2000,45: 1527-1532P
    [126] Yoon Y S, Cho W I, Lim J H, Choi D J. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films[J]. J Power Sources, 2001,101: 126-129P
    [127] Yuan C Z, Zhang X G, Wu Q F, Gao B. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon within alkaline polymer gel electrolyte[J]. Solid State Ionics, 2006,177: 1237-1342P
    [128] Ishikawa M, Morita M, Ihara M, Matsuda Y. Electric double-layer capacitor composed of activated carbon fiber cloth electrodes and solid polyer electrolytes containing alkyammonium salts[J].J Electrochem Soc,1994,141(7): 1730-1734P
    [129] Osaka E,Liu X,Nojima M.An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder[J].J Electrochem Soc,1999,146:1724-1729P
    [130] Xu K,Ding M S,Jow T R.A better quantification of electrochemical stability limits for electrolytes in double layer capacitors[J].Electrochim Acta,2001,46:1823-1827P
    [131] Fendler J H.Photochemical solar energy conversion: An assessment of scientific accomplishments[J].J Phys Chem,B,1985,89: 2730-2735P
    [132] 薛群基,徐康.纳米化学[J].化学进展,2000,12:431-444页
    [133] 石士考.纳米材料的特性及其应用[M].大学化学,2002,16(2):39-42页
    [134] 张立德,牟季美.纳米材料学[M],辽宁科学技术出版社,1994,1-9页
    [135] 周盈科.博士学位论文,新能源材料-锂离子电池与电化学电容器纳米结构电极材料的制备及性质研究[D].兰州大学,2003
    [136] 曹林.博士学位论文,新能源材料研究-锂离子电池与电化学电容器电极材料的制备及性能[D].兰州大学,2004
    [137] 倪永红,葛学武,徐相凌,陈家富,张志成.纳米材料制备研究的若干新进展[J].无机材料学报,2000,15:9-15页
    [138] 夏熙,纳米微粒作为电池活性材料的前景[J].电池,1998,28(6):251-254页
    [139] 李清文,李娟,夏熙,曹雅丽.纳米Bi_2O_3微粒的固相合成及其电化学性能的研究[J].化学学报,1999,57(5):491-495页
    [140] 张燕红,邱向东,赵谢群,胡初潜.超细颗粒材料的制备(一)[J].稀有金属,1997,21(6):451-457页
    [141] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003,3页
    [142] 严东生,纳米材料的合成与制备[J].无机材料学报,1995,10(1):1-6页
    [143] 刘献明.硕士学位论文,金属氧化物超级电容器电极材料的研究[D].新疆大学,2002
    [144] Jeong Y U,Manthiram A.Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes[J].J Electrochem Soc,2002,149:1419-1422P
    [145] Wu N L.Nanocrystalline oxide supercapacitors[J].Mater Chem Phys,2002,75:6-11P
    [146] 阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].北京:化学工业出版社,2005,166-167,256页
    [147] 李荻.电化学原理[M].北京:航空航天大学出版社,1999,141-150页
    [148] 查全性.电极过程动力学导论[M].北京:科学出版社,2002,236-238页
    [149] 杨绮琴,方北龙,童叶翔.应用电化学[M].广州:中山大学出版社,2005,49-50页
    [150] Conway B E著,陈艾,吴孟强,张绪礼,高能武译.电化学超级电容器-科学原理及技术应用[M].北京:化学工业出版社,2005,551,353-385页
    [151] Conway B E,Pell W G Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices[J].J Solid State Electrochem,2003,7: 637-644P
    [152] 周克定,张文灿.电工理论基础[M].北京:高等教育出版社,1994,48-49页
    [153] Conway B E,Pell W G.Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices[J].J Power Sources,2002,105(2): 169-181P
    [154] Pell W C, Conway B E.Voltammetry at a de Levie Brush electrode as a model for electrochemical supercapacitor behaviour[J].J Electroanaltyical Chemistry, 2001, 500: 121-133P
    [155] Brousse T, Toupin M, Belanger D.A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte[J].J Electrochem Soc,2004,151:A614-A622P
    [156] 王晓峰,王大志,梁吉.碳纳米管表面沉积氧化镍及其超电容器的电化学行为[J].无机材料学报,2003,18(2):331-336页
    [157] Chang K H, Hu C C, Oxidative synthesis of RuO_x·nH_2O with ideal capacitive characteristics for supercapacitors[J].J Electrochem Soc, 2004,151:A958-A964P
    [158] Takasu Y, Murakami Y.Design of oxide electrodes with large surface area[J].Electrochim Acta,2000,45:4135-4141P
    [159] Hu C C, Liu M J, Chang K H, Anodic deposition of hydrous ruthenium oxide for supercapacitors[J].J Power Sources, 2007,163:1126-1131P
    [160] Yan X P, Liu H F, Liew K Y.Size control of polymer-stablilized ruthenium nanoparticles by polyol reduction.J Mater Chem,2001,11:3387-3391P
    [161] Hu C C, Tsou T W, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition[J].Electrochem Commun, 2002, 4:105-109P
    [162] Taberna P L, Simon P, Fauvarque J F.Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors[J].J Electrochem Soc, 2003, 150:A292-A300P
    [163] Reddy M V, Rao G V, Chowdari B V R.Synthesis by molten salt and cathodic properties of Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2.J Power Sources, 160,159:263-267P
    [164] Wang X,Gao L S,Zhou F,Zhang Z D,Ji M R,Tang C M,Shen T,Zheng H G. Large-scale synthesis of α-LiFeO_2 nanorods by low-temperature molten salt synthesis method[J]. J Crystal Growth,2004,265(1-2):220-223P
    [165] Kim J H,Myung S T,Sun Y K. Molten salt synthesis of LiNi_(0.5)Mn_(1.5)O_4 spinel for 5V class cathode material of Li-ion secondary battery[J].Electrochemical Acta,2004,49(2): 219-227P
    [166]张克从,乐惠.晶体化学[M].北京:科学出版社,1981,25-30页
    [167] Tang W P,Kanoh H,Ooi K. Preparation of Lithium Cobalt Oxide by LiCl-Flux Method for Lithium Rechargeable Batteries[J]. Electrochem Solid-State Lett,1998,1: 145-146P
    [168] Yang X Y,Tang W P,Kanoh H,Ooi K. Synthesis of lithium manganese oxide in different lithium-containing fluxes[J]. J Mater Chem,1999,9:2683-2690P
    [169] Tang WP,Yang X Y,Liu Z H,Kasaishi S,Ooi K. Preparation of Fine Single Crystals of Spinel-type Lithium Manganese Oxide by LiCl Fiux Method for Rechargeable Lithium Batteries. Part 1.LiMn_2O_4[J].J Mater Chem,2002,12:2991-2997P
    [170] 杜柯,齐鲁,胡国荣,彭忠东.KCl熔盐法制备LiMn_2O_4[J].无机化学学报,2006,22:867-871页
    [171] Liang H Y,Qiu X P,Zhang S C,He Z Q,Zhu W T,Chen L Q. High performance lithium cobalt oxides prepared in molten KC1 for rechargeable lithium-ion batteries[J]. Electrochem Commun 2004,6:505-509P
    [172] Byrappa K,Y,oshimura M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing[M],William Andrew Publishing,LLC Norwich,New York,2001,1P
    [173] 徐如人,无机合成与制备化学[M].北京:高等教育出版社,2001,128-163页
    [174] Yao T. Synthesis of functional ceramic materials from aqueous solutions[J]. J Mater Res,1998,13(5): 1091-1098P
    [175] 王秀峰,王永兰,金志浩.水热法制备纳米陶瓷粉体[J].稀有金属材料与工程,1995,24(4):1-6页
    [176] 李凤生,杨毅等著,纳米微米复合技术及应用[M].北京:国防工业出版社,2002,97页
    [177] 徐光宪.稀土(上册)[M].北京:冶金工业出版社,1978,235-238页
    [178] 和川二郎.稀土的最新应用技术[M].北京:化学工业出版社,1985,108页
    [179] 王晓峰,孔祥华,刘庆国,解晶莹.氧化镍超电容器的研究[J].电子元件与材料,2000,19(5):26-30P
    [180] Ma R Z,Liang J,Wei B Q,Zhang B,Xu C L,Wu D H. Study of electrochemical capacitors utilizing carbon nanotube electrodes[J]. J Power Sources,1999,84(1): 126-129P
    [181] Cao L,Lu M,Li H L.Preparation of mesoporous nanocrystalline Co_3O_4 and its applicability of porosity to the formation of electrochemical capacitance[J]. J Electrochem Soc,2005,152: A871-A875P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700