HAP/Ni_3A1复合生物材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石生物陶瓷是一种性能优异的人体硬组织修复材料,具有优良的生物
    相容性,植入人体后能逐步与人体骨结合成为一体。但由于其力学性能较差,还不
    能成为理想的承重修复材料,因此有必要进一步深入研究以发挥其生物学性能的优
    势。本文制备了HAP/Ni3Al复合生物材料,并对该材料的原料粉末的制备及特性与
    复合材料的烧结工艺、力学性能、微观结构进行了比较深入的实验研究和理论探讨,
    为下一步的研究打下实验和理论基础。
    首先,本文采用沉淀法制备纳米级HAP粉末,以Ca(NO3) 2·4H2O和(NH4) 2HPO4
    为原料,以NH3·H2O作体系pH调节剂,制备了粒径在100纳米以下,平均粒径在
    60-70纳米,晶粒多为棒状的HAP粉体,并进一步对合成的材料进行TEM、IR、XRD
    分析和光学显微分析,对反应机理进行了初步探讨并对粉体的性能进行了简单的评
    价。用镍粉和铝粉经机械合金化结合热处理工艺制备Ni3Al粉体,应用此粉体作为
    羟基磷灰石基生物材料的增强相,并研究了Ni3Al粉体的性能。
    其次,本文以Ni3Al粒子作为第二相增强HAP,采用烧结法制备了复合生物材
    料,并对制备的材料进行了力学性能测试,利用大白鼠肌肉埋植实验和抑菌实验考
    察了复合生物材料的生物学性能,通过XRD、AFM、光学显微镜等测试手段揭示了复
    合陶瓷材料的矿物组成及微观结构。并据此实验结果分析其增强机理,初步探索出
    一套制备承重骨用HAP基复合生物材料的工艺。研究结果表明:Ni3Al的加入没有
    改变羟基磷灰石的晶体结构,羟基磷灰石材料的生物活性没有降低。力学性能结果
    表明,加入Ni3Al后,材料的力学性能明显提高,同时对Ni3Al增强HAP复合生物材
    料的增强机制进行了探讨,认为Ni3Al对HA材料的增韧机制主要是金属间化合物
    颗粒诱导裂纹偏转增韧和微裂纹增韧。证实HAP/Ni3AL复合生物材料具有良好的力
    学性能、化学稳定性、生物相容性,是一种很有应用前景的复合型生物材料。
    最后,本文还采用凝胶注模法成型工艺制备了金属间化合物/羟基磷灰石医用
    生物复合材料坯体,初步探讨了复合材料凝胶注模法制备人工骨的可行性,为下一
    步实验打下有益的理论与实践基础。
Hydroxyapatite bioceramic is a good type of biomedical material that is used to restore and replace the hard tissue of human bodies. It's biocompatible can form a bond with the neighboring bone. But hydroxyapatite isn't an ideal bearing planting, for it's bad mechanics properties. Therefore, it is necessary to carry out more research on it for giving its advantage of biological characteristics.In this paper, HAP/Ni3Al composite biomaterial has been prepared, and the preparation to the raw materials powder and prosperities of these materials, sintering craft of composite biomaterials and studies of the microstructure have carried on deeper experiment research and theory discussion, in order to obtain the experimental and theoretical foundation next.
    First, in this paper, with Ca(NO3)2 . 4H2O and (NH4) 2HPO4 as raw materials and NH3. H2O as regulating pharmaceutical of pHs, nanometer grains of HAP powder have prepared in precipitating method. HAP powder with grain diameter under 100 nm, average diameter 60-70 nm and bar shape can be obtained. TEM, IR, XRD and optics microscope were carried out to characterize phases and microstructure of specimen. Ni3Al powder was produced in this study by using Ni and Al powder. X-ray diffraction and optics microscope were used to characterize the structure, crystallite size and components.
    Second, Based on powders of HAP and Ni3Al, HAP/Ni3Al composite biomaterials were sintered by different kinds of materials. Mechanical properties of HAP/Ni3Al composite biomaterials were measured. To evaluate the biological properties, the muscular implant test in white rats and methyl benzoate test were carried out. The composition and microstructure of these materials were revealed by the means of testing methods of XRD, AFM, optics microscope, etc. The author introduce a suit of enhance method of preparing a compound biomaterial based hydroxyapatite, which can meet the demand of bearing planting. It was found that the crystal structure of HAP was not changed by the composite making process, thus the bioactivity of the composite biomaterials was not degraded either. Results of mechanical properties of HAP/Ni3Al composite biomaterials show that the mechanical properties of HAP/Ni3Al composite biomaterials had a good improvement after the composite process was carried out. The toughening mechanism of Ni3Al reinforced HAP composite materials was grand of Ni3Al-induced crack deflection toughing and micro-crack toughing. The study showed composite materials had good mechanical properties, chemical stability, and biocompatibility. The composites were new composite biomaterials with good prospects.
    Finally, HAP/Ni3Al composite biomaterials were prepared with HAP and Ni3Al
    
    
    
    powders by novel gelcasting process. The mechanical properties of the biomaterials were investigated. The feasibility of preparing composite biomaterials by gelcasting process was studied laying the helpful theory and practice foundation for the further experiment.
引文
[1] 何天白,胡汉杰,主编.功能高分子与新技术.北京:化学工业出版社, 2001,95
    [2] L. G. Griffith. polymeric biomaterials [J].Acta mater. 48(2000) 263-277
    [3] M. J. A. van Luyn, R. A. Tio, X. J. Gallego y van Seijen, J. A. Plantinga, L. F. M. H. de Leij, M. J. L DeJongste, P. B. van wachem, Cardiac tissue engineering: characteristics of in unison contracting two-and three-dimensional neonatal rat ventricle cell (co)-cultures [J]. Biomaterials 23 (2002) 4793-4801
    [4] P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang . Plasma-surface modification of biomaterials [J]. Materials Science and Engineering R 36 (2002) 143-206
    [5] Koji Hattori , Naohide Tomita , Takafumi Yoshikawa , Yoshinori Takakura. Prospects for bone fixation-development of new cerclage fixation techniques [J] Materials Science and Engineering C 17 2001 27-32
    [6] M. Amaral, M. A. Costa, M. A. Lopes, R. F. Silva, J. D. Santos, M. H. Fernandes. Si3N4-bioglass composites stimulate the proliferationof MG63 osteoblast-like celis and support the osteogenic differentiation of humanbone marrow celis [J]. Biomaterials 23 (2002) 4897-4906
    [7] F.H. Lin, Y.H. Lee, C. H. Jian, Jau-Min Wong, Ming-Jium Shieh, Cheng-Yi Wang. A study of puri. ed montmorillonite intercalated with 5-. uorouracil as drug carrier[J]. Biomaterials 23 (2002) 1981-1987
    [8] Rita Cortesi, Elisabetta Esposito, Giovanni Luca, Claudio Nastruzzi. Production of lipospheres as carriers for bioactive compounds [J] Biomaterials 23 (2002) 2283-2294
    [9] Masayuki Ishihara, Kuniaki Nakanishi, Katsuaki Ono, Masato Sato, Makoto Kikuchi, Yoshio Saito, Hirofumi Yura, Takemi Matsui, Hidemi Hattori, Maki Uenoyama, Akira Kurita. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process [J]. Biomaterials 23 (2002) 833-840
    [10] Chien-Chung Chen, Ju-Yu Chueh, How Tseng, Haw-Ming Huang, Sheng-Yang Lee . Preparation and characterization of biodegradable PLApolymeric blends [J] Biomaterials 24 (2003) 1167-1173
    [11] Neeraj Kumar , Robert S. Langer , Abraham J. Domb. P olyanhydrides: an overview [J]. Advanced Drug Delivery Reviews 54 (2002) 889-910
    [12] Yoon Jeong Park, Jue Yeon Lee, Young Soo Chang, Jae Min Jeong, Jun Key Chung, Myung Chul Lee, Kyoung Bae Park, Seung Jin Lee. Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging [J]. Biomaterials 23
    
    (2002) 873-879
    [13] ChristophH. Lohmann, David D. Dean, Georg K. oster, David Casasola, Gottfried H. Buchhorn, UlrichFink , Zvi Schwartz, Barbara D. Boyan, Ceramie and PMMA particles differentially affect osteoblast phenotype [J]. Biomaterials 23 (2002) 1855-1863
    [14] S.H.Teoh. Fatigue of biomaterials: a review [J]. International Journal of Fatigue 22 (2000) 825-837
    [15] 李佐臣.生物材料的研究现状[J].钛工业进展.2000. 5
    [16] Xun Zhu, Lichun Lu, Bradford L. Currier, Anthony J. Windebank, Michael J. Yaszemski . Controlled release of NFkB decoy oligonucleotides from biodegradable polymer micropartieies [J]. Biomaterials 23 (2002) 2683-2692
    [17] J. Heller , J. Barr, S. Y. Ng, H.-R. Shen, K. Schwach-Abdellaoui, R. Gurny, N. Vivien-Castioni, P. J. Loup, P. Baehni, A. Mombelli . Development and applications of injectable poly(ortho esters) for pain control and periodontal treatment [J]. Biomaterials 23 (2002) 4397-4404
    [18] Paraskevi Kallinteri, Sophia G. Antimisiaris, Dimitris Karnabatidis, Christina Kalogeropoulou, Irene Tsota, Dimitris Siablis. Dexamethasone incorporating liposomes: an in vitro study of their applicability as a slow releasing delivery system of dexamethasone from coveredmetallic stents [J]. Biomaterials 23 (2002) 4819-4826
    [19] Cheryl Wong Po Foo, David L. Kaplan. G enetic engineering of fibrous proteins: spider dragline silk and collagen [J]. Advanced Drug Delivery Reviews 54 (2002) 1131-1143
    [20] Chao Yin, Ser Mien Chia, Chai Hoon Quek, Hanry Yu, Ren-Xi Zhuo, Kam W. Leong, Hai-Quan Mao. Microcapsules with improved mechanical stability for hepatocyte culture [J]. Biomaterials 24 (2003) 1771-1780
    [21] Traian V. Chirila, Piroska E. Rakoczy, Kerryn L. Garrett, Xia Lou, Ian J. Constable. The use of synthetic polymers for delivery of therapeutic antisense oligodeoxynucleotides [J]. Biomaterials 23 (2002) 321-342
    [22] Wolfgang Friess. Collagen-biomaterial for drug delivery [J]. European Journal of Pharmaceutics and Biopharmaceutics 45 (1998) 113-136
    [23] 冯凌云,陈晓明.生物陶瓷材料的生物学性能评价[J].武汉工业大学学 报武汉 1998. 18
    [24] C. Piconi, G. Maccauro. Zirconia as a ceramie biomaterial [J]. Biomaterials 20 (1999) 1-25
    [25] L. D. Timmie Topoleski, Paul Ducheyne, John M. Cuckler. Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement [J]. Biomaterials 19 (1998)
    
    1569-1577
    [26] Y. Shikinami, M. Okuno. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part L Basic characteristics[J]. Biomaterials 20 (1999) 859-877
    [27] E. J. Blom,J. Klein-Nulend, J.G.C. Wolke, K. Kurashina, M.A. J. van Waas, E. H. Burger. Transforming growth factor-b1 incorporation in an a-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and physicochemical properties [J]. Biomaterials 23 (2002) 1261-1268
    [28] 李爱民,孙康宁,尹衍升,等.生物材料的发展应用评价与展望.山东 大学学报 2002. 6
    [29] 顾汉卿.生物材料的现状及发展[J].中国医疗器械 2001. 7
    [30] Thomas Freier, Carmen Kunze, Claudia Nischan, Sven Kramer, Katrin Sternberg, Marko Sa, UllrichT. Hopt, Klaus-Peter Schmitz. In vitro and in vivo degradation studies for development of a biodegradable patchbased on poly(3-hydroxybutyrate) [J]. Biomaterials 23 (2002) 2649-2657
    [31] 康振黄.实用生物医学工程:上海科技出版社 1990. 119-138
    [32] Kawamura M, Iwata H, Sato K, et al. Chondrosteogenetic re-spone to crude bone matrix proteins bound to hydroxylapatite [J]. Clin Orthop, 1987, 217:281-292.
    [33] Robert langer. Joseph P Vacanti Tissue Engineering. Science, 1993. 260: 920-926
    [34] Karen J. L. Burg, Scott Porter, James F. Kellam. Biomaterial developments for bone tissue engineering [J]. Biomaterials 21 (2000) 2347}2359
    [35] 张宏泉,严玉华,李世普,生物医用复合材料的研究进展及趋势,[J]. 北京生物医学工程,2000,3
    [361] 郝建原,邓先模,复合生物材料的研究进展,[J].高分子通报,2002,5
    [37] Johnna S. Temeno, Antonios G. Mikos. Review: tissue engineering for regeneration of articular cartilage [J]. Biomaterials 21 (2000) 431}440
    [38] J. L. Tipper, A. Hatton, J.E. Nevelos, E. Ingham, C. Doyle, R. Streicher, A. B. Nevelos, J. Fisher, Alumina-alumina artificial hip joints. Part Ⅱ: Characterisation of the wear debris from in vitro hip joint simulations [J]. Biomaterials 23 (2002) 3441-3448
    [39] Toshiki Miyazaki, Hyun-Min Kim, Tadashi Kokubo, Chikara Ohtsuki, Hirofumi Kato, Takashi Nakamura. Mechanism of bonelike apatite formation on bioactive tantalum metai in a simulated body fluid [J]. Biomaterials 23 (2002) 827-832
    [40] Yasuo Niki, Hideo Matsumoto, Yasunori Suda, Toshiro Otani, Kyosuke Fujikawa, Yoshiaki Toyama, Noriyuki Hisamori, Akira Nozue. Metai
    
    ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages [J]. Biomaterials 24 (2003) 1447-1457
    [41] D. Martini , M. Fini , M.Franchi , V. De Pasquale, B. Bacchelli , M. Gamberini , A.Tinti , P. Taddei , G. Giavaresi , V. Ottani, M. Raspanti , S.Guizzardi , A. Ruggeri . Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants [J]. Biomaterials 24 (2003) 1309-1316
    [42] A. Hatton, J. E. Nevelos, J. B. Matthews, J. Fisher, E. Ingham. Effects of clinically relevant alumina ceramie wear particles on TNF-a production by human peripheral blood mononuclear phagocytes [J]. Biomaterials 24 (2003) 1193-1204
    [43] L. Trentani, F. Pelillo, F.C. Pavesi, L. Ceciliani, G. Cetta, A. Forlino. Evaluation of the TiMo12Zr6Fe2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblasts and osteoblasts [J]. Biomaterials 23 (2002) 2863-2869
    [44] Zhuo Caia, Ty Shafera, Ikuya Watanabe, Martha E. Nunn, Toru Okabe . Electrochemical characterization of cast titanium alloys [J]. Biomaterials 24 (2003) 213-218
    [45] Marc Long, H. J. Rack. Titanium alloys in total joint replacement-a materials science perspective [J]. Biomaterials 19 (1998) 1621-1639
    [46] Sauli Kujala, Jorma Ryh. anen, Timo J. ams. a, Anatoli Danilov, Juha Saaranen, Antti Pramila, Juha Tuukkanen. Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail[J]. Biomaterials 23 (2002) 2535-2543
    [47] Anita Kapanen, Anne Kinnunen, Jorma Ryh. anen, Juha Tuukkanen. TGF-b1 secretion of ROS-17/2. 8 cultures on NiTi implant material [J]. Biomaterials 23 (2002) 3341-3346
    [48] 卢世壁.镍钛形状记忆合金在外科领域的应用前景.中华外科杂 志,1993,31:259
    [49] D. E. MacDonald, N. Deoa, B. Markovic, M. Stranick, P. Somasundaran. Adsorption and dissolution behavior of human plasma . bronectin on thermally and chemically modified titanium dioxide particles [J]. Biomaterials 23 (2002) 1269-1279
    [50] Feng Zhang , Xianghuai Liu , Yingjun Mao , Nan Huang , Yu Chen , Zhihong Zheng a, Zuyao Zhou , Anqing Chen , Zhenbin Jiang. Artificial heart valves: improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition [J]. Surface and Coatings Technology 103-104 (1998) 146-150
    [51] F. Z. Cui , Z.S. Luo. Biomaterials modification by ion-beam processing[J]. Surface and Coatings Technology 112 (1999) 278-285
    [52] M. A. Germain, A. Hatton, S. Williams, J. B. Matthews, M. H. Stone, J. Fisher, E. Ingham . Comparison of the cytotoxicity of clinically
    
    relevant cobalt-chromium and alumina ceramie wear particles in vitro [J]. Biomaterials 24 (2003) 469-479
    [53] G. L. Darimont, R. Cloots, E. Heinen, L. Seidel, R. Legrand. In vivo behaviour of hydroxyapatite coatings on titanium implants:a quantitative study in the rabbit [J]. Biomaterials 23 (2002) 2569-2575
    [54] Hench L L. Direct chemical bone of bioactive glass-ceramic material tobone an muscle. J Biomed mater Res, 1973, 4 (1) : 25-29
    [55] K De Groot, Geesink R G T, Klein C P A et al. Plasm a sprayed coating of hydroxyapatite. [J] Biomed Mater Res, 1987, 21 (11) : 1375-1379
    [56] 严玉华,李志刚,等.钛合金牙根种植体表面烧结复合涂层.硅酸盐学报, 1997,25(5) 598-602
    [57] Hans P. Merkle, Elke Walter. Evaluation of cationic solid lipid microparticles as synthetic carriers for the targeted delivery of macromolecules to phagocytic antigen-presenting celis [J]. Biomaterials 23 (2002) 4667-4676
    [58] Yasuhiko Tabata. Recent progress in tissue engineering [J]. Drug Discovery Today Vol. 6, No.1 January 2001
    [59] J. K. Francis Suh, Howard W. T. Matthew. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review[J]. Biomaterials 21 (2000) 2589-2598
    [60] N. Roveri, G. Falini, M. C. Sidoti, A. Tampieri, E. Landi, M. Sandri, B. Parma. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers [J]. Materials Science and Engineering: C, 2003,23:441-446
    [61] 顾汉卿.生物材料的现状及发展[J].中国医疗器械,2001. 7
    [62] Thomas Freier, Carmen Kunze, Claudia Nischan, Sven Kramer, Katrin Sternberg, Marko Sa, UllrichT. Hopt, Klaus-Peter Schmitz. In vitro and in vivo degradation studies for development of a biodegradable patchbased on poly(3-hydroxybutyrate) [J]. Biomaterials 23 (2002) 2649-2657
    [63] Rose, Oreffo. Bone Tissue Engineering: Hope vs. Hype [J]. Biochemical and Biophysical Research Communications, 2002, 292: 1-7
    [64] Langer R, Vacanti JP. Tissue engineering [J]. Science, 1993, 260:920-926.
    [65] Cao YL, Vacanti JP, Paige KT, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilag in the shape of a human ear[J]. Plast Reconstr Surg, 1997, 100(2) : 297-302.
    [66] Yasuhiko Tabata. Recent progress in tissue engineering [J]. Drug Discovery Today Vol. 6, No.1 January 2001
    [67] Johnson Gs, Mucalo MR, Lorier MA. The progressing and characerization of animal-derived bone to yield material with biomaterials with biomedical application[J]. J Mater Sci: Mater in
    
     Med.2000,11(7) :427-441
    [68] 邬鸿彦,HAP的结构及物理性能,[J].四川师范大学学报,1996,5
    [69] Tadashi Kokubo, Hyun-Min Kim, Masakazu Kawashita. Novel bioactive materials with different mechanical properties[J]. Biomaterials, 2003,24: 2161-2175
    [70] 邬鸿彦,朱明刚,孔令宜,黄立枝,纳米级羟基磷灰石生物陶瓷粉末的 制备新方法,[J].河北师范大学学报,1997,3
    [71] 黄志良,王大伟,刘羽,等,羟基磷灰石的制备方法及其研究进展,[J]. 武汉化工学院学报,2001,3
    [72] Bauer TW, Muschler GF. Bone graft materials [J]. clin Orthop and Rel Res, 2000, 371:10-27.
    [73] Thomas Freier, Carmen Kunze, Claudia Nischan, Sven Kramer, Katrin Sternberg, Marko Sa, UllrichT. Hopt, Klaus-Peter Schmitz. In vitro and in vivo degradation studies for development of a biodegradable patchbased on poly(3-hydroxybutyrate) [J]. Biomaterials 23 (2002) 2649-2657
    [74] Peter SJ, LuL, Kim DJ. Effect to ftransforming growth factor betalreleased from biodegradable polymermi-cropartieies on marrow stromal osteoblasts cultured on polysubstrates, [J]. J Biomed Mater Res, 2000, 50(3) :452-462
    [75] C. H. Turner. Three Rules for Bone Adaptation to Mechanical Stimuli [J]. Bone, 1998,23: 399-407
    [76] 王丹,胡蕴玉,钟昌琼,等.可降解多孔B-TCP/rhBMP-2人工骨的骨诱 导活性研究[J].中华骨科杂志,1998,18(11) :689-691.
    [77] Hamanish C, kitamoto k, ohura k, et al. Self-setting, bioactive and bildegradable TTCP-DCPP apatite cement [J].J Biomde mater Res, 1996, 32(3) :383-389.
    [78] 陈中中,早热木,等.利用快速成型技术制造人工生物活性骨[J] 西安 交通大学学报,2003,37(3)
    [79] Miyanloto Y, IshLkawa K, Takechi M, et al. Soft tissue response ofcalcium Phosphate cements[J]. Bioceramics, 1996,59: 263-266
    [80] D. GREEN, D. WALSH, S. MANN, and R. O. C. OREFFO . The Potential of Biomimesis in Bone Tissue Engineering: Lessons From the Design and Synthesis of Invertebrate Skeletons [J]. Bone, 30, 2002: 810-815
    [81] Takechi M, Miyamoto Y, Ishikawa K, et al. Initial histo]ogical evaluation of anti-washout type fast-sctting calcium Phosphate cement following subcutaneous implantation [J]. Biomaterials. 1998, 19: 2057-2063
    [82] Koji Hattori , Naohide Tomita , Takafumi Yoshikawa , Yoshinori Takakura. Prospects for bone fixation-development of new cerclage fixation technigues [J] Materials Science and Engineering C 17 2001 27-32
    [83] Kurashina K, Kurita H, Kotani A,et al. Experimental cranioplasty and skeletal augmentation monoxidecement: a preliminary
    
    short-term experiment in rabbits[J]. Biomaterials. 1998, 19(70) : 701-706
    [84] 杨志明.从临床观点探讨人工骨材料研究[J].材料导报,2000,3,
    [85] 康振黄.实用生物医学工程[M]上海科技出版社 1990. 119-138
    [86] Kawamura M, Iwata H, Sato K, et al.Chondrosteogenetic re-spone to crude bone matrix proteins bound to hydroxylapatite [J]. Clin Orthop, 1987, 217:281-292.
    [87] Cheryl Wong Po Foo, David L. Kaplan. Genetic engineering of fibrous proteins: spider dragline silk and collagen [J]. Advanced Drug Delivery Reviews 54 (2002) 1131-1143
    [88] 景利,曾仁杰,孙伟张等.氧氟沙星控释人工骨的制备及释药机理的探 讨[J].华西药学杂志.1996,11(3) :138
    [89] 李爱民,孙康宁,尹衍升,等.生物材料的发展应用评价与展望[J].山 东大学学报 2002. 6
    [90] Rovira A, Bareille R, Lopez, et al. Preliminary report on a new composite material made of calcium phosphase, elastin, peptides and collagea[J].J Mater Sci: Mater in Med, 1993,4, 372
    [91] U. Meyer, C. Runte, D. Dirksen, T. Stamm, T. Fillies, U. Joos, H. P. Wiesmann. Image-based biomimetric approach to design and fabrication of tissue engineered bone[J]. International Congress Series , 2003,1256 : 726-732
    [92] S.Imai , K. Higashijima , A. Ishida , Y. Fukuoka , A. Hoshino , H. Minamitani. Determination of the position and orientation of artificial knee implants using markers embedded in a bone: preliminary in vitro experiments [J]. Medical Engineering & Physics , 2003:25 419-424
    [93] N. Rochet, A. Loubat, J.-P. Laugier, P. Hofman,J.M. Bouler,G. Daculsi , G. F. Carle, and B. Rossi. Modification of gene expression induced in human osteogenicand osteosarcoma celis by culture on a biphasic calciumphosphate bone substitute[J]. Bone ,32 (2003) :602-610
    [94] S. TAYYAR, P. S. WEINHOLD, R. A. BUTLER, J. C. WOODARD, L. D. ZARDIACKAS, K. R. ST. JOHN, J. M. BLEDSOE, and J. A. GILBERT. Computer Simulation of Trabecular Remodeling Using a Simplified Structural Model[J]. Bone ,1999,25:733-739
    [95] 冯凌云,陈晓明.生物陶瓷材料的生物学性能评价[J].武汉工业大学学 报,1996,18(2) :134-136.
    [96] M. O. Riehle, M. J. Dalby, H. Johnstone, A. Macintosh, S. Affrossman. Cell behaviour of rat calvaria bone celis on surfaces with random nanometric features[J]. Materials Science and Engineering: C ,2003,23:337-340
    [97] 张玉军,尹衍升,谭训彦,金属间化合物--一种新型的陶瓷增韧材料, [J].现代技术陶瓷(增刊,会议论文集),1998
    [98] 徐颂波,新一代高温结构材料--金属间化合物Ni3Al,[J].上海有色金
    
     属,1997,2
    [99] 沈建兴,张炳荣,刘宏,王介峰,硅酸盐通报,金属间化合物增韧陶瓷 材料的效果与机理,[J].硅酸盐通报,2000,4
    [100] 李谷松,丁炳哲,苗卫方,叶荔蕾,等,用金属合金化方法制备Ni-Al系金属化合物,[J].金属学报,1994,2
    [101] KLUG H P,ALEXANDER L E.X射线衍射技术(多晶和非晶材料),[M]. 盛世雄等译,北京,冶金工业出版社,1974:421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700