傅里叶变换近红外漫反射光谱法结合多元分析技术判别麻黄植物的方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻黄植物(Ephedra plants)广泛分布于世界很多地区,我国拥有丰富的麻黄植物资源,是麻黄植物及其制品的主要生产国。麻黄是一种古老的植物,对植物学研究极具意义。麻黄植物还是医药工业及其他工业不可替代的原料来源,因为其次生代谢产物包括生物碱、挥发油、鞣质、黄酮、多糖和有机酸等。在我国,麻黄具有悠久的药用历史,是重要的药用植物。此外,麻黄植物是沙地生态系统的重要组成部分,对维护和改善沙地生态系统具有重要意义。研究麻黄植物次生代谢产物的影响因素,建立准确、易用的麻黄植物判别方法,不仅有助于麻黄植物生态学的研究和麻黄资源的科学利用,还能为其他植物的研究与利用提供参考。
     本论文采用傅里叶变换近红外漫反射光谱法(diffuse reflectance Fourier transform near infrared spectroscopy, diffuse reflectance FT-NIRS),结合多元分析技术(multivariate analysis),较为系统地研究了受遗传因素(hereditary factors)、生态因子(ecological factors)及代谢节律(metabolic rhythms)影响的不同种类(species)、不同产地(habitats)和不同采摘时间(picking times)的麻黄植物理化性质的差异,建立了麻黄植物的近红外漫反射光谱判别方法(discrimination methods)。
     主要研究内容和结果:
     1.不同种类麻黄植物的漫反射FT-NIRS判别方法学研究
     采用傅里叶变换近红外漫反射光谱法,结合多元分析技术,对草麻黄、中麻黄和木贼麻黄进行的判别研究显示,受遗传因素影响的不同种类麻黄植物,其理化性质存在显著性差异;漫反射FT-NIRS分别结合判别分析(discriminant analysis, DA)、自组织映射神经网络(self-organizing map, SOM)和反向传播人工神经网络(back-propagation artificial neural network, BP-ANN)均能有效地判别不同种类的麻黄植物。
     ①三种麻黄植物近红外漫反射光谱(near infrared diffuse reflectance spectra, NIRDRS)的测量方法:取经形态学鉴别且水分低于8.0%的草麻黄、中麻黄和木贼麻黄的草质茎,经粉碎、过筛,在10 000~4000 cm-1的范围内,以4 cm-1的分辨率,扫描64次,获得NIRDRS。
     ②三种麻黄植物NIRDRS的预处理方法:首先进行平滑处理,当用DA法建模时采用五点Norris平滑,当用ANN法(包括SOM法和BP-ANN法)建模时采用七点Savitzky-Golay平滑;其次,进行一阶导数基线校正;最后,进行多元散射校正。
     ③三种麻黄植物NIRDRS的波长范围选择:采用全光谱(full spectrum)能更好地表征不同种类麻黄植物的特性差异,获得更好的模式识别结果。
     ④三种麻黄植物NIRDRS的数据预处理方法:采用主成分分析技术(principal component analysis, PCA)对数据进行降维处理。当用DA法建模时,光谱数据的维数被降为9 PCs,累计贡献率为98.7%;当用ANN法(包括SOM法和BP-ANN法)建模时,光谱数据的维数被降为10 PCs,累计贡献率为99.9%。
     ⑤三种麻黄植物NIRDRS的数据分析方法:分别运用DA、SOM和BP-ANN三种多元分析技术研究草麻黄、中麻黄和木贼麻黄的近红外漫反射光谱与麻黄种类之间的关系,建立并验证了不同种类麻黄植物的判别模型。其中,DA判别模型正确区分三种麻黄植物的性能指标为84.2%;SOM法和BP-ANN法所建判别模型对三种麻黄植物的预测准确性均为95.0%。DA判别模型和SOM判别模型具有良好的可视化功能(visualization functions)。
     2.不同产地麻黄植物的漫反射FT-NIRS判别方法学研究
     采用傅里叶变换近红外漫反射光谱法,结合多元分析技术,对山西草麻黄与内蒙古草麻黄进行的判别研究显示,受生态因子影响的不同产地麻黄植物,其理化性质存在显著性差异;漫反射FT-NIRS分别结合DA法、SOM法和BP-ANN法均能有效地判别不同产地的麻黄植物。
     ①两个产地草麻黄NIRDRS的测量方法:取经形态学鉴别且水分低于8.0%的山西草麻黄与内蒙古草麻黄的草质茎,经粉碎、过筛,在10 000~4000 cm-1的范围内,以4 cm-1的分辨率,扫描64次,获得NIRDRS。
     ②两个产地草麻黄NIRDRS的预处理方法:当用DA法、SOM法和BP-ANN法建模时,均采用相同的综合方法进行光谱的预处理。首先,进行五点Savitzky-Golay平滑;然后,进行多元散射校正。
     ③两个产地草麻黄NIRDRS的波长范围选择:采用全光谱能更好地表征不同产地麻黄植物的特性差异,获得更好的模式识别结果。
     ④两个产地草麻黄NIRDRS的数据预处理方法:采用PCA技术对数据进行降维处理。对于DA、SOM和BP-ANN三种建模方法,光谱数据的维数均被降为10 PCs,累计贡献率为99.8%。
     ⑤两个产地草麻黄NIRDRS的数据分析方法:分别采用DA法、SOM法和BP-ANN法研究山西草麻黄和内蒙古草麻黄的近红外漫反射光谱与草麻黄产地之间的关系,建立并验证了不同产地草麻黄的判别模型。其中,DA法所建判别模型正确区分两个产地草麻黄的性能指标为91.9%;SOM法和BP-ANN法所建判别模型对两个产地草麻黄的预测准确性均为100.0%。DA判别模型和SOM判别模型具有良好的可视化功能。
     3.不同采摘时间麻黄植物的漫反射FT-NIRS判别方法学研究
     采用傅里叶变换近红外漫反射光谱法,结合多元分析技术,对同一天上午10:00~11:30与下午4:30~5:00采摘的山西草麻黄进行的判别研究显示,受代谢节律影响的不同采摘时间麻黄植物,其理化性质存在显著性差异。可以认为,山西草麻黄的次生代谢受到一天内代谢节律的调控,受调控的组分可能具有挥发性。该现象的发现,为麻黄植物挥发油的利用及其他植物挥发油的研究提供了一种新的思路。
     漫反射FT-NIRS分别结合DA法、SOM法和BP-ANN法均能有效地判别不同采摘时间的麻黄植物。
     ①两个采摘时间山西草麻黄NIRDRS的测量方法:取经形态学鉴别且水分低于8.0%的、同一天上午10:00~11:30与下午4:30~5:00采摘的山西草麻黄的草质茎,经粉碎、过筛,在10 000~4000 cm-1的范围内,以4 cm-1的分辨率,扫描64次,获得NIRDRS。
     ②两个采摘时间山西草麻黄NIRDRS的预处理方法:当用DA法、SOM法和BP-ANN法建模时,均采用相同的综合方法进行光谱的预处理。首先,进行五点Savitzky-Golay平滑;然后,进行多元散射校正。
     ③两个采摘时间山西草麻黄NIRDRS的波长范围选择:采用全光谱能更好地表征不同采摘时间麻黄植物的特性差异,获得更好的模式识别结果。
     ④两个采摘时间山西草麻黄NIRDRS的数据预处理方法:采用PCA技术对数据进行降维处理。对于DA、SOM和BP-ANN三种建模方法,光谱数据的维数均被降为10 PCs,累计贡献率为99.7%。
     ⑤两个采摘时间山西草麻黄NIRDRS的数据分析方法:分别采用DA法、SOM法和BP-ANN法研究不同采摘时间山西草麻黄的近红外漫反射光谱与山西草麻黄采摘时间之间的关系,建立并验证了不同采摘时间山西草麻黄的判别模型。其中,DA法所建判别模型正确区分两个采摘时间山西草麻黄的性能指标为88.1%;SOM法和BP-ANN法所建判别模型对两个采摘时间山西草麻黄的预测准确性均为93.3%。DA判别模型和SOM判别模型具有良好的可视化功能。
     主要结论:
     1.采用漫反射FT-NIRS结合多元分析技术,对不同种类、不同产地和不同采摘时间麻黄植物理化性质的差异进行了研究。实验证明,受遗传因素的影响,不同种类麻黄植物的理化性质存在明显的差异;受生态因子的影响,不同产地麻黄植物的理化性质存在明显的差异,与发表的其他方法的研究结果相吻合。实验发现,受代谢节律的影响,同一天上午10:00~11:30与下午4:30~5:00采摘的山西草麻黄,它们的理化性质存在明显的差异,可以认为山西草麻黄的挥发性次生代谢产物受到一天内代谢节律的调控。该现象的发现,将促进麻黄植物生态学的研究及麻黄资源的利用,并将为其他植物的研究与利用(尤其是挥发油的研究与利用)提供一种新的思路。
     2.建立了漫反射FT-NIRS结合多元分析技术判别麻黄植物的方法。尽管随遗传因素、生态因子及代谢节律对麻黄植物次生代谢的影响强度依次减弱,不同种类、不同产地和不同采摘时间麻黄植物的差异按顺序减小,实验证明,漫反射FT-NIRS分别结合DA、SOM、BP-ANN,能够以基本稳定的优良预测性能对它们进行判别,而且DA判别模型和SOM判别模型还具有良好的可视化功能。所建漫反射FT-NIRS判别方法,判断客观、准确,容易使用,分析速度快,不必进行特殊的样品处理,也不需要使用化学试剂。该方法的建立,为麻黄植物的研究及麻黄资源的利用提供了一种可靠、便利的优良工具,为准确评价麻黄植物的品质、规范麻黄中药材市场提供了技术支持,为其他植物的判别研究提供了参考。
Ephedra plants (Ephedraceae) are widely distributed in the world. Among them, Ephedra sinica (E. sinica), Ephedra intermedia (E. intermedia) and Ephedra equisetina (E. equisetina) are dominant and economically important species in China and their main habitats are in Inner Mongolia, Xinjiang, Shanxi, Gansu and so on. The secondary metabolites contained in Ephedra plants mainly include alkaloids, essential oils, tannins, flavonoids and organic acids. They are very important for the plants’survivals. On the other hand, plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and other industrial materials. Hence, the identification of Ephedra plants of different species, habitats and picking times could help the research of phytoecology of Ephedra and the utilization of Ephedra plants.
     In this thesis, the feasibility of the discrimination of Ephedra plants of different species, habitats and picking times is evaluated with diffuse reflectance FT-NIRS. The optimization of the spectral measurement conditions, spectra processing approaches, data pre-processing methods, and data analysis techniques is also discussed.
     The main research contents and results are as follows.
     1. Discrimination of Ephedra plants of different species with diffuse reflectance FT-NIRS: The samples of E. sinica, E. intermedia and E. equisetina were discriminated with reference to morphological characters. The herbaceous stems (moisture contents < 8.0%) were pulverized and sieved. The Fourier transform near infrared diffuse reflectance spectra (NIRDRS) were acquired from pulverized samples put in glass vials in the near infrared (NIR) region between 10 000 and 4000cm?1, averaging 64 scans per spectrum at a resolution of 4 cm?1. The NIRDRS were processed first with smoothing techniques. The five-point Norris smoothing was used in the discriminant analysis (DA). The seven-point Savitzky–Golay smoothing was used in the self-organizing map (SOM) and back-propagation artificial neural network (BP-ANN). The methods for subsequent processing were first derivative and multiplicative signal correction (MSC). The dimensions of the spectral data were reduced to 9 principle components (PCs) for the DA and to 10 PCs for the artificial neural network (SOM and BP-ANN). The cumulative contribution rates of 9 and 10 PCs were 98.7% and 99.9% in sequence. Ephedra plants of different species could be discriminated respectively with the DA, SOM and BP-ANN. The performance index of the DA model was 84.2%. The prediction accuracies of both the SOM and the BP-ANN models were 95.0%. The visualization functions were achieved with the DA and the SOM.
     2. Discrimination of E. sinica from different habitats with diffuse reflectance FT-NIRS: The NIRDRS of the samples of E. sinica from Shanxi and Inner Mongolia were measured using the method used in Section 1. The NIRDRS were processed by the five-point Savitzky–Golay smoothing technique and MSC. The dimensions of the spectral data were reduced to 10 PCs and the cumulative contribution rate was 99.8% for the DA, SOM and BP-ANN. E. sinica from different habitats could be identified respectively with the three data analysis methods. The performance index of the DA model was 91.9%. The prediction accuracies of both the SOM and the BP-ANN models were 100.0%. The visualization functions were achieved with the DA and the SOM.
     3. Discrimination of E. sinica from Shanxi picked at different times of day with diffuse reflectance FT-NIRS: The NIRDRS of the samples of E. sinica from Shanxi picked between 10:00 and 11:30 am and between 4:30 and 5:00 pm were measured using the method used in Section 1. The techniques of spectra processing and data pre-processing for this task were the same as those used in Section 2. Nevertheless, the cumulative contribution rate of 10 PCs was 99.7% for the three data analysis methods. E. sinica from Shanxi picked at different times of day could be distinguished respectively with the DA, SOM and BP-ANN. The performance index of the DA model was 88.1%. The prediction accuracies of both the SOM and the BP-ANN models were 93.3%. The visualization functions were achieved with the DA and the SOM.
     The main conclusions are as follows.
     1. The results obtained in this task suggest that there is significant difference between E. sinica picked in the morning and afternoon. This fact implies that the secondary metabolites of E. sinica are modulated by time of day.
     2. The experiment has proved that diffuse reflectance FT-NIRS with multivariate analysis techniques could distinguish not only the Ephedra plants of different species and different habitats but also the plants picked at different times of day without special sample treatment and the use of chemical reagents. The approach established is objective, easy-to-use, rapid and pollution-free. It is a useful tool for the research of phytoecology of Ephedra and the utilization of Ephedra plants.
引文
[1] Gurib-Fakim A. Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow [J]. Mol. Aspects Med., 2006, 27(1): 1–93.
    [2] Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O'Neal JM, Cornwell T, Pastor I, Fridlender B. Plants and Human Health in the Twenty-First Century [J]. Trends Biotechnol., 2002, 20(12): 522–531.
    [3] Wink M. Evolution of Secondary Metabolites from an Ecological and Molecular Phylogenetic Perspective [J]. Phytochemistry, 2003, 64(1): 3–19.
    [4] Huang JL, Giannasi DE, Price RA. Phylogenetic Relationships in Ephedra (Ephedraceae) Inferred from Chloroplast and Nuclear DNA Sequences [J]. Mol. Phylogenet. Evol., 2005, 35: 48–59.
    [5] Foley WJ, Moore BD. Plant Secondary Metabolites and Vertebrate Herbivores– from Physiological Regulation to Ecosystem Function [J]. Curr. Opin. Plant Biol., 2005, 8(4): 430–435.
    [6] Mithen R, Raybould AF, Giamoustaris A. Divergent Selection for Secondary Metabolites between Wild Populations of Brassica Oleracea and Its Implications for Plant-Herbivore Interactions [J]. Heredity, 1995, 75: 472–484.
    [7] Zhao J, Davis LC, Verpoorte R. Elicitor Signal Transduction Leading to Production of Plant Secondary Metabolites [J]. Biotechnol. Adv., 2005, 23(4): 283–333.
    [8] Poll L, Petersen MB, Nielsen GS. Influence of Harvest Year and Harvest Time on Soluble Solids, Titrateable Acid, Anthocyanin Content and Aroma Components in Sour Cherry (Prunus Cerasus L. cv.“Stevnsbar”) [J]. Eur. Food Res. Technol., 2003, 216: 212–216.
    [9]常兆丰,赵明,韩福贵,仲生年,李发明.民勤沙区主要植物的物候特征[J].林业科学,2008, 44(5): 58–64.
    [10]黄璐琦,郭兰萍,胡娟,邵爱娟.道地药材形成的分子机制及其遗传基础[J].中国中药杂志,2008, 33(20): 2303–2308.
    [11]黄璐琦,郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J].中国中药杂志,2007, 32(4): 277–280.
    [12]杨生超,赵昶灵,文国松,萧凤回.植物药材道地性的分子机制研究与应用[J].中草药,2007, 38(11): 1738–1741.
    [13]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1978, 7: 467–489.
    [14]顾观光.神农本草经[M].北京:学苑出版社,2007.
    [15] Liu Y, Wang S. Market Research on the Ephedra Resource in Xinjiang and Its Development Trend [J]. Mod. Appl. Sci., 2008, 2(3): 81–85.
    [16]张彩枝,王成伟.阿鲁科尔沁旗天然麻黄资源调查[J].内蒙古草业,2001, 13(4): 39–45.
    [17]王志,彭茹燕,王蕾,刘连友.毛乌素沙地南缘改良与利用风沙土性质研究[J].水土保持学报,2006, 20(2): 14–16,21.
    [18]刘小鹏,李同升.西北干旱半干旱区沙产业建设综合绩效与农业可持续发展——以宁夏中北部为例[J].水土保持通报,2001, 21(3): 63–66.
    [19]曹瑞,马虹,朱宗元.内蒙古麻黄资源的利用现状及其保护[J].中草药,2004, 35(4): 461–463.
    [20]刘蕾,刘建军,黄韶华,王军.新疆麻黄资源的开发利用与保护[J].干旱环境监测,2004, 18(3): 146–147,185.
    [21]曹连民.麻黄与麻黄根不能混用[J].中国中药杂志,1992, 17(9): 573.
    [22] Australian New Crops Web. Popularity of Ephedra Sinica over Time [EB/OL]. http://www.newcrops.uq.edu.au/listing/species_pages_E/Ephedra_sinica.htm, 2008-01-31/2009-08-22.
    [23]中国药典委员会.中华人民共和国药典[M].北京:人民卫生出版社,2005, I: 223–224.
    [24] The Society of Japanese Pharmacopoeia. Japanese Pharmacopoeia, 14th ed. [M]. Tokyo: Labour and Welfare of Japan, 2001, II: 914.
    [25]张国中,满多清,王继和,杨自辉.河西中麻黄地理分布与环境因子的关系[J].甘肃林业科技,2008, 33(4): 6–11,66.
    [26]内蒙古植物志编辑委员会.内蒙古植物志[EB/OL].http://www.cvh.org.cn/difangzhi/all/List.asp, 1983-12-01/2009-08-22.
    [27]新疆植物志编辑委员会.新疆植物志[M].乌鲁木齐:新疆科技卫生出版社,1993, 1: 87–109.
    [28]张连茹,邹国林,杨天鸣.麻黄的化学研究进展[J].中南民族学院学报(自然科学版),2000, 19(3): 87–90.
    [29] Caveney S, Charlet DA, Freitag H, Maier-Stolte M, Starratt AN. New Observations on the Secondary Chemistry of World Ephedra (Ephedraceae) [J]. Am. J. Bot., 2001, 88: 1199–1208.
    [30]周玲,吴德康,唐于平,范欣生.麻黄中化学成分研究进展[J].南京中医药大学学报,2008, 24(1): 71–72.
    [31]张建生,田珍,楼之岑.十二种国产麻黄的品质评价[J].药学学报,1989, 24(11): 865–871.
    [32] Cui J.F, Zhou T.H, Zhang J.S, Lou Z.C. Analysis of Alkaloids in Chinese Ephedra Species by Gas Chromatographic Methods [J]. Phytochem. Analysis, 1991, 2(3): 116–119.
    [33] Pellati F, Benvenutia S. Determination of Ephedrine Alkaloids in Ephedra Natural ProductsUsing HPLC on A Pentafluorophenylpropyl Stationary Phase [J]. J. Pharmaceut. Biomed., 2008, 48(2): 254–263.
    [34]林凯,范琦,杨成钢,邓开英.RP-HPLC法测定麻黄中麻黄碱、伪麻黄碱和甲基麻黄碱.中草药,2006, 37(2): 282–284.
    [35] Wang Q, Yang Y, Zhao X, Zhu B, Nan P, Zhao J, Wang L, Chen F, Liu Z, Zhong Y. Chemical Variation in the Essential Oil of Ephedra Sinica from Northeastern China [J]. Food Chem., 2006, 98(1): 52–58.
    [36] Tellez MR, Khan IA, Schaneberg BT, Crockett SL, Rimando AM, Kobaisy M. Steam Distillation-Solid-Phase Microextraction for the Detection of Ephedra Sinica in Herbal Preparations [J]. J. Chromatogr. A, 2004, 1025(1): 51–56.
    [37]吉力,徐植灵,潘炯光,杨健.草麻黄中麻黄和木贼麻黄挥发油化学成分的GC-MS分析[J].中国中药杂志,1997, 22(8): 489–492.
    [38] Kondo N, Mikage M, Idaka K. Medico-Botanical Studies of Ephedra Plants from the Himalayan Region, Part IV. Tannin and Flavonoid Contents in Herbal Stems [J]. Nat. Med., 2000, 54(5): 241–246.
    [39] Chumbalov TK, Chekmeneva LN. Flavonoids of Ephedra Equisetina. I [J]. Chem. Nat. Compd., 1976, 12(4): 486.
    [40]薛梅,王自军,代斌.麻黄中总黄酮和多糖的超声提取与含量测定[J].时珍国医国药,2005, 16(12): 1223–1224.
    [41] Chumbalov TK, Chekmeneva LN, Polyakov VV. Phenolic Acids of Ephedra Equisetina [J]. Chem. Nat. Compd., 1977, 13(2): 238–239.
    [42] Cottiglia F, Bonsignore L, Casu L, Deidda D, Pompei R, Casu M, Floris C. Phenolic Constituents from Ephedra Nebrodensis [J]. Nat. Prod. Res., 2005, 19(2): 117–123.
    [43]中国药典委员会.中华人民共和国药典[M].北京:人民卫生出版社,2005, II: 568–569.
    [44] The Society of Japanese Pharmacopoeia. Japanese Pharmacopoeia, 14th ed. [M]. Tokyo: Labour and Welfare of Japan, 2001, I: 444–447.
    [45] The United States Pharmacopeial Convention. The United States Pharmacopeia-National Formulary, USP30-NF25 [M]. Rockville: United States Pharmacopeial, 2007, 2036.
    [46] European Pharmacopoeia Commission. European Pharmacopoeia, Vol 5.4 [M]. Champaign: Balogh Scientific Books, 2006, 3935–3936.
    [47] Chen KK, Schmidt CF. The Action of Ephedrine, the Active Principle of the Chinese Drug Ma Huang [J]. J. Pharmacol. Exp. Ther., 1924, 24(5): 339–357.
    [48] Chen KK, Wu CK, Henriksen E. Relationship between the Pharmacological Action and the Chemical Constitution and Configuration of the Optical Isomers of Ephedrine and RelatedCompounds [J]. J. Pharmacol. Exp. Ther., 1929, 36(3): 363–400.
    [49] Frewin DB, Whelan RF. The Action of Ephedrine on Forearm Blood Vessels in Man [J]. J. Exp. Biol., 1968, 46: 425–434.
    [50] Waldeck B, Widmark E. The Interaction of Ephedrine withβ-Adrenoceptors in Tracheal, Cardiac and Skeletal Muscles [J]. Clin. Exp. Pharmacol. P., 1985, 12: 439–442.
    [51] Rostoff P, Gackowski A, Konduracka E, Latacz P, Piwowarska W. Cardiovascular Effects of Ephedrine during Cardiopulmonary Resuscitation [J]. Resuscitation, 2008, 76(1): 151–152.
    [52] Zarrindast MR. Dopamine-Like Properties of Ephedrine in Rat Brain [J]. Brit. J. Pharmacol., 1981, 74(1): 119–122.
    [53]李琴,李宝华.比较麻黄碱和阿朴吗啡的中枢兴奋作用[J].中国药理学报,1991, 12(5): 468–471.
    [54] Grandy JL, Hodgson DS, Dunlop CI, Chapman PL, Heath RB. Cardiopulmonary Effects of Ephedrine in Halothane-Anesthetized Horses [J]. J. Vet Pharmacol. Ther., 1989, 12(4): 389–396.
    [55] Madsen J, Bulow J, Larsen OG, Hartkopp A, Nielsen NE, Astrup A, Christensen NJ. Localization of Thermogenesis Induced by Single Infusion of Ephedrine in Dog [J]. Pharmacol. Toxicol., 1993, 73(4): 219–223.
    [56] Morishita H, Furnkawa T. The Vascular Changes after Ephedrine Tachyphylaxis [J]. J. Pharm. Pharmacol., 1975, 27(8): 574–579.
    [57]李西林,徐莲英.麻黄碱在体透皮给药对豚鼠平喘作用的实验研究[J].中成药,2005, 27(8): 883–885.
    [58]束怀德,张丽华,钟志端,沈德莉,杨藻宸.麻黄碱对神经肌肉传递的作用[J].中国药理学报,1987, 8(4): 313–317.
    [59] Sieb JP, Engel AG. Ephedrine: Effects on Neuromuscular Transmission [J]. Brain Res., 1993, 623(1): 167–171.
    [60] Xiu LM, Miura AB, Yamamoto K, Kobayashi T, Song QH, Kitamura H, Cyong JC. Pancreatic Islet Regeneration by Ephedrine in Mice with Streptozotocin-induced Diabetes [J]. Am. J. Chinese Med., 200l, 29(3-4): 493–500.
    [61]郭鸿宜,陈康.二阶导数光谱法测定不同产地草麻黄中总生物碱的含量[J].中药材,2004, 27(10): 738–739.
    [62]李发美,邱枫,王伟红,郭兴杰,邸欣.高效液相色谱法测定喘静片的3种主要成分[J].色谱,2000, 18(5): 442–444.
    [63] Ichikawa M, Udayama M, Imamura K, Shiraishi S, Matsuura H. HPLC Determination of (+)-Pseudoephedrine and (-)-Ephedrine in Japanese Herbal Medicines Containing EphedraHerb Using Solid-Phase Extraction [J]. Chem. Pharm. Bull, 2003, 51(6): 635–639.
    [64] Shao G, Wu F, Wang DS, Zhu R, Luo X. Quantitative Analysis of (l)-Ephedrine and (d)-Pseudoephedrine in Plasma by High-Performance Liquid Chromatography with Fluorescence Detection [J]. Acta. Pharmacol. Sin., 1995, 30(5): 384–389.
    [65] Imaz C, Navajas R, Carreras D, Rodriguez C, Rodriguez AF. Comparison of Various Reversed-Phase Columns for the Simultaneous Determination of Ephedrines in Urine by High-Performance Liquid Chromatography [J]. J. Chromatogr. A, 2000, 870(1-2): 23–28.
    [66]王晓玲,卢颖,邱乃英.薄层扫描法测定肺炎合剂中盐酸麻黄碱[J].北京中医药大学学报,2000, 23(3): 46–47.
    [67]温爱平,杨树平,李红英,敖登高娃.双波长薄层扫描法测定异麻匹林片中咖啡因和盐酸伪麻黄碱含量[J].中国医院药学杂志,2000, 20(5): 262–264.
    [68]刘贵中.鼻炎滴剂中盐酸麻黄碱的含量测定[J].中药材,1998, 21(4): 205–206.
    [69]姜华,邢惠芝.气相色谱法测定小儿益肺胶囊中的麻黄碱含量[J].甘肃中医学院学报,1996, 3(1): 20–21.
    [70] Miyatake N, Miyake H, Nagashima M, Takahashi M, Yasuda K, Yasuda I. Enantiomeric Determination of Ephedrine Derivatives in Unregulated Drugs Using Capillary Electrophoresis [J]. Yakugaku Zasshi, 2004, 124(6): 333–339.
    [71]武向锋,柴逸峰,刘荔荔,娄子洋,李捷玮,张国庆,王彬.以羟丙基-β-环糊精为手性选择剂的毛细管电泳法分离测定日夜百服宁片剂中的伪麻黄碱[J].色谱,2001, 19(6): 552–554.
    [72]陈恒武,方肇伦.流动注射在线固相萃取预富集毛细管区带电泳测定血浆中的伪麻黄碱[J].高等学校化学学报,1999, 20(11): 1688–1691.
    [73]黄建楷.氧麻滴鼻液的导数分光光度法测定[J].中国医院药学杂志,1998, 18(6): 267–268.
    [74]卜国平,袁心慧.酸性染料法测定盐酸麻黄素的含量[J].苏州医学院学报,1996, 16(2): 394–395.
    [75]金钊,于华,姚素娟,李伟华,王艳华.旋光法测定盐酸麻黄碱滴鼻剂的含量[J].哈尔滨医科大学学报,2000, 34(3): 222.
    [76]李先文,黄西潮,黄强.药物敏感场效应晶体管的研究——III磷钨酸-麻黄碱敏感场效应晶体管的研制与应用[J].分析科学学报,1998, 14(4): 322–325.
    [77]黄超伦,修荣,任聚杰,徐玲,王抚英.全固态麻黄碱电极的研制及应用[J].河北医科大学学报,1998, 19(1): 5–7.
    [78]鲁传华,姚先梅,施蕾,李兵,葛慧.乳液电导法对麻黄中麻黄碱和伪麻黄碱的分步检测[J].分析化学,2000, 28(8): 1002–1005.
    [79]袁文学.麻黄挥发油的药理研究[J].药学通报,1986, 21(4): 235.
    [80]陈康,林文津,林励,林煌权.不同产地草麻黄挥发油化学成分分析[EB/OL].http://journal.shouxi.net/html/qikan/yykxzh/zhyyzz/2005252/lz/20080901061509974_65783.html, 2005-03-20/2009-08-22.
    [81]木尼热·阿布都克热木,木合塔尔·吐尔洪,王楠楠,唐玉海.新疆戈壁野生木贼麻黄挥发油的成分分析[J].中成药,2007, 29(9): 1338–1341.
    [82]李晓如,梁逸曾,李晓宁.气相色谱-质谱和化学计量学解析法分析药对麻黄-桂枝挥发油成分[J].药学学报,2007, 42(2): 187–191.
    [83]阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007, 27(6): 2554–2562.
    [84]鲁守平,隋新霞,孙群,孙宝启.药用植物次生代谢的生物学作用及生态环境因子的影响[J].天然产物研究与开发,2006, 18(6): 1027–1032.
    [85]王荣,张强,贾正平,樊俊杰,徐丽婷,谢华,王晓平.甘肃道地药材麻黄指纹图谱的研究[J].中药材,2003, 26(4): 254–255.
    [86]吴海,易伦朝,高敬铭,刘向前,梁逸曾.野生与人工栽培麻黄不同部位成分的比较研究[J].中草药,2007, 38(9): 1298–1301.
    [87]刘俊,周有寿,陈叶.再生中麻黄优质、高产的栽培管理技术[J].中国中药杂志,1999, 24(1): 20–21.
    [88]李俐,陈坚.麻黄及其有效成分的研究进展[J].新疆医科大学学报,2003, 26(6): 606–608.
    [89]冯立涛,闰凯.新疆麻黄资源的合理开发[J].草食家畜,2003, 2: 63.
    [90]高湘,许爱霞,宋平顺,张建新,葛斌.甘肃不同采摘期人工种植及野生麻黄中麻黄碱与伪麻黄碱含量分析[J].兰州大学学报(医学版),2006, 32(2): 43–45,49.
    [91]程大敦,郭平,赵俊.内蒙草麻黄中生物碱的动态研究[J].中国药科大学学报,1992, 23(2): 82–87.
    [92]冯全民,成树春,徐永厚,蔺福生,耿志君,阿迪亚.草麻黄的麻黄碱与伪麻黄碱积累动态[J].中药材,1997, 20(8): 379–380.
    [93]国家863“智能化农业信息处理系统—宁夏示范区”课题组.国家“863”智能化农业信息处理系统麻黄知识篇[EB/OL] . http://www.nxinfo.gov.cn/info/863xm/kpxc/mh.htm, 2003-06-01/2009-08-22.
    [94]刘珊,邵东青.栽培麻黄再生特性及采摘制度研究[J].中药材, 1999, 22(6): 273–275.
    [95]金文辉.草麻黄的合理采摘时间探析[J].辽宁中医药大学学报,2006, 8(3): 92.
    [96]周有寿,孟有儒,刘俊,等.不同采摘期麻黄中麻黄碱含量的变化[J].中国中药杂志,1998, 23(12): 720–721.
    [97]贾元印,赵翠云,谢宏霞.麻黄不同部位生物碱的比较[J].中成药,1986, (7): 16.
    [98]顾关云.麻黄节间和节共用、茎和根分用的依据—麻黄的成分和药理作用[J].中成药,1985, (10): 20–21.
    [99]查丽杭,苏志国,张国政,欧阳藩.麻黄资源的利用与研究开发进展[J].植物学通报,2002, 19(4): 396–405.
    [100]谭日健.麻黄不同炮制品生物碱的含量测定[J].广西中医学院学报,2002, 5(3): 82–83.
    [101]张建生,李胜华,楼之岑.国产麻黄的形态组织学研究:I.北方主产的七种麻黄[J].药学学报,1989, 24(12): 937–948.
    [102]张建生,李胜华,楼之岑.国产麻黄的形态组织学研究:II.西南主产种及其它种[J].药学学报,1990, 25(1): 45–65.
    [103]刘运东,王绍明.麻黄及其常见伪品性状鉴别[J].时珍国医国药,2008, 19(1): 181.
    [104] Techen N, Khan IA, Pan Z, Scheffler BE. The Use of Polymerase Chain Reaction (PCR) for the Identification of Ephedra DNA in Dietary Supplements [J]. Planta. Med., 2006, 72(3): 241–247.
    [105]可维,马春辉,季宇彬.不同产地川黄柏HPLC指纹图谱的研究[J].上海中医药大学学报,2008, 22(1): 62–65.
    [106]董海娟,张尊建,余静.不同产地穿心莲药材色谱指纹图谱的比较研究[J].中成药,2006, 28(3): 321–324.
    [107]林蔚兰,曾令杰,梁惠瑜,陈松光.不同产地穿心莲药材HPLC指纹图谱初步研究[J].中成药,2007, 29(5): 730–733.
    [108]杨琳,张振秋.不同产地穿心莲药材高效液相指纹图谱的比较研究[J].中药材,2008, 31(1): 32–35.
    [109]王振月,左月明,康毅华,李端明,崔红花.不同产地毛脉酸模药材HPLC指纹图谱研究[J].中草药,2005, 36(9): 1385–1388.
    [110]肖蓉,袁志芳,王春英,张兰桐,王彩红.不同产地黄芩药材HPLC指纹图谱的研究[J].中草药,2005, 36(5): 743–747.
    [111]陈晓颖,严寒静,傅军.薄层色谱法评价不同产地何首乌的品质[J].时珍国医国药,2007, 18(8): 1934–1935.
    [112]袁旭江,霍务贞,李苑新,朱盛山,姜红宇,涂瑶生.不同产地广藿香药材薄层色谱指纹图谱研究[J].广州中医药大学学报,2005, 22(6): 466–467.
    [113] Li YM, Sun SQ, Zhou Q, Qin Z, Tao JX, Wang J, Fang X. Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy [J]. Vib. Spectrosc., 2004, 36: 227–232.
    [114]刘沭华,张学工,周群,孙素琴.模式识别和红外光谱法相结合鉴别中药材产地[J].光谱学与光谱分析,2005, 25(6): 878–881.
    [115]刘沭华,张学工,孙素琴.中药材产地的近红外光谱自动鉴别和特征谱段选择[J].科学通报,2005, 50(4): 393–398.
    [116]王少坤,燕兰英.中药指纹图谱应用于中药质量控制的局限性[J].药学进展,2001, 25(6): 352–353.
    [117]邹纯才,方洪壮,刘娟,鄢海燕.指纹图谱在中药质量控制上的局限性[J].黑龙江医药科学,2005, 28(4): 93–94.
    [118]陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2007.
    [119]刘建学.实用近红外光谱分析技术[M].北京:科学出版社,2008.
    [120] M.奥托.化学计量学[M].北京:科学出版社,2003.
    [121]杜一平,潘铁英,张玉兰.化学计量学应用[M].北京:化学工业出版社,2008.
    [122]朱尔一,杨芃原.化学计量学技术及应用[M].北京:科学出版社,2001.
    [123]约翰·加斯泰格尔,托马斯·恩格尔.化学信息学教程[M].北京:化学工业出版社,2005.
    [124]邵学广,蔡文生.化学信息学[M].北京:科学出版社,2005.
    [125]刘雪松,程翼宇.用于中药药品质量快速检测的近红外光谱模糊神经元分类方法[J].化学学报,2005, 63(24): 2216–2220.
    [126]杨南林,程翼宇,瞿海斌.用人工神经网络-近红外光谱法测定冬虫夏草中的甘露醇[J].分析化学,2003, 31(6): 664–668.
    [127]杨南林,程翼宇,吴永江.中药材三七中皂苷类成分的近红外光谱快速无损分析新方法[J].化学学报,2003, 61(3): 393–398.
    [128] Wu YW, Sun SQ, Zhou Q, Leung HW. Fourier transform mid-infrared (MIR) and near-infrared (NIR) spectroscopy for rapid quality assessment of Chinese medicine preparation Honghua Oil [J]. J. Pharmaceut. Biomed., 2008, 46: 498–504.
    [129] Rosa SS, Barata PA, Martins JM, Menezes JC. Development and Validation of a Method for Active Drug Identification and Content Determination of Ranitidine in Pharmaceutical Products Using Near-Infrared Reflectance Spectroscopy: A Parametric Release Approach [J]. Talanta, 2008, 75(3): 725–733.
    [130] Chen Q, Zhao J, Chaitep S, Guo Z. Simultaneous Analysis of Main Catechins Contents in Green Tea (camellia sinensis (L.)) by Fourier Transform Near Infrared Reflectance (FT-NIR) Spectroscopy [J]. Food Chem., 2009, 113(4): 1272–1277.
    [131] Blanco M, Peguero A. An Expeditious Method for Determining Particle Size Distribution by Near Infrared Spectroscopy: Comparison of PLS2 and ANN Models [J]. Talanta, 2008, 77(2): 647–651.
    [132] Sánchez MT, Pérez-Marín D, Flores-Rojas K, Guerrero JE, Garrido-Varo A. Use of Near-Infrared Reflectance Spectroscopy for Shelf-Life Discrimination of Green Asparagus Stored in a Cool Room under Controlled Atmosphere [J]. Talanta, 2009, 78(2): 530–536.
    [133] Shao YN, He Y, Wang YY. A New Approach to Discriminate Varieties of Tobacco Using Vis/Near Infrared Spectra [J]. Eur. Food Res. Technol., 2007, 224: 591–596.
    [134] Luypaert J, Massart DL, Vander Heyden Y. Near-Infrared Spectroscopy Applications in Pharmaceutical Analysis [J]. Talanta, 2007, 72(3): 865–883.
    [135] Baptista P, Felizardo P, Menezes JC, Neiva Correia MJ. Multivariate Near Infrared Spectroscopy Models for Predicting the Iodine Value, CFPP, Kinematic Viscosity at 40°C and Density at 15°C of Biodiesel [J]. Talanta, 2008, 77(1): 144–151.
    [136] Christensen D, Alles? M, Rosenkrands I, Rantanen J, Foged C, Agger EM, Andersen P, Nielsen HM. Nir Transmission Spectroscopy for Rapid Determination of Lipid and Lyoprotector Content in Liposomal Vaccine Adjuvant System CAF01 [J]. Eur. J. Pharm. Biopharm., 2008, 70(3): 914–920.
    [137] Teles Moreira ED, Coelho Pontes MJ, Harrop Galv?o RK, Ugulino Araújo MC. Near Infrared Reflectance Spectrometry Classification of Cigarettes Using the Successive Projections Algorithm for Variable Selection [J]. Talanta, 2009, 79(5): 1260–1264.
    [138] Moros J, Martínez-Sánchez MJ, Pérez-Sirvent C, Garrigues S, Guardia M de la. Testing of the Region of Murcia Soils by Near Infrared Diffuse Reflectance Spectroscopy and Chemometrics [J]. Talanta, 2009, 78(2): 388–398.
    [139] González-Martín I, González-Pérez C, Hernández-Hierro JM, González-Cabrera JM. Use of NIRS Technology with a Remote Reflectance Fibre-Optic Probe for Predicting Major Components in Cheese [J]. Talanta, 2008, 75(2): 351–355.
    [140] Rodrigues LO, Vieira L, Cardoso JP, Menezes JC. The Use of NIR as a Multi-Parametric in Situ Monitoring Technique in Filamentous Fermentation Systems [J]. Talanta, 2008, 75(5): 1356–1361.
    [141]杨辉华,王勇,吴云鸣,史晓浩,胡坪,梁琼麟,王义明,罗国安.丹参多酚酸盐柱层析过程的近红外光谱在线检测及质量控制[J].中成药,2008, 30(3): 409–412.
    [142]吕琳昂,师涛,杨辉华,梁琼麟,王义明,罗国安.NIR在线检测监控安神补脑液水提过程的研究[J].中草药,2009, 40(2): 224–228.
    [143]瞿海斌,刘晓宣,程翼宇.中药材三七提取液近红外光谱的支持向量机回归校正方法[J].高等学校化学学报,2004, 25(1): 39–43.
    [144]刘卓.高维数据分析中的降维方法研究[D].长沙:国防科学技术大学,2002.
    [145]徐志敏,刘希玉.多元回归分析及其在辅助决策中的应用[J].计算机工程,2004, 30(21): 129–131.
    [146] Lachenbruch PA, Goldstein M. Discriminant Analysis [J]. Biometrics, 1979, 35: 69–85.
    [147]徐永群,黄昊,周群,周红涛,胡世林,孙素琴.红外指纹图谱和聚类分析法在赤芍产域分类鉴别中的应用[J].分析化学,2003, 31(1): 5–9.
    [148] Yang H, Irudayaraj J. Comparison of Near-Infrared, Fourier Transform-Infrared, and Fourier Transform-Raman Methods for Determining Olive Pomace Oil Adulteration in Extra Virgin Olive Oil [J]. J. Am. Oil Chem. Soc., 2001, 78(9): 889–895.
    [149]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004, 16(4): 528–542.
    [150] Brown CD, Vega-Montoto L, Wentzell PD. Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration [J]. Appl. Spectrosc., 2000, 54(7): 1055–1068.
    [151] Watari M, Du YP, Ozaki Y. Variations in Predicted Values from Near-Infrared Spectra of Samples in Vials by Using a Calibration Model Developed from Spectra of Samples in Vials: Causes of the Variations and Compensation Methods [J]. Appl. Spectrosc., 2007, 61(4): 397–405.
    [152] Xu L, Zhou YP, Tang LJ, Wu HL, Jiang JH, Shen GL, Yu RQ. Ensemble Preprocessing of Near-Infrared (NIR) Spectra for Multivariate Calibration [J]. Anal. Chim. Acta., 2008, 616: 138–143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700