基于乳腺X线摄片的计算机辅助检测肿块方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是50岁以上妇女的主要死因之一,它是一种严重危害女性身心健康的常见恶性肿瘤。在乳腺癌早期诊断的多种方法中,乳腺X线摄片被认为是最可靠和最有效的方法。基于乳腺X线摄片的计算机辅助检测乳腺癌方法,可以有效地辅助放射科医师提高乳腺癌检测的精准度、一致性和效率。然而目前的计算机辅助检测乳腺癌肿块病灶方法的性能没有被放射科医师认可和信赖,这严重影响了该类型系统在实际临床中的应用。
     课题研究以提高基于单幅乳腺X线摄片的计算机辅助检测肿块方法的性能,和得到放射科医师容易接受且有信心的计算机辅助检测结果为目标,对基于乳腺X线摄片的计算机辅助检测肿块方法进行了深入研究。主要研究内容包括:基于单幅乳腺X线摄片的计算机辅助检测肿块方法中可疑肿块病灶的准确分割和相关特征的有效量化;基于多幅乳腺X线摄片的计算机辅助检测肿块方法中同侧乳腺的轴位(CC)视图和斜位(MLO)视图中可疑肿块区域的匹配和匹配区域对相关多视图特征的提取;基于内容图像检索的计算机辅助检测肿块方法中相似确诊参考病例图像的准确和有效查找。
     首先,针对基于单幅乳腺X线摄片的计算机辅助检测肿块方法中肿块分割和特征提取两个难点问题,提出了一种基于最大熵原则和活动轮廓模型的自动分割方法,并基于分割的肿块边界,实现了病理学相关毛刺组织的检测与量化。
     其次,根据同一病患同侧乳腺组织拍摄的CC视图和MLO视图中相应肿块病灶区域在中轴线上的投影点与乳头之间的距离基本保持不变的性质,匹配了多视图中相应的可疑病灶区域,并基于匹配区域对提取了视图不变性特征和相似性度量特征。
     分别对单幅乳腺X线摄片中的每个感兴趣区域提取的39个图像学特征和多幅乳腺X线摄片中的每个匹配区域对提取的23个图像学特征形成的初始特征集合,采用了基于逐步判别法的特征选择方法进行优化选择,并基于FISHER线性分类器得到了可疑肿块病灶区域的检测分数,实现了基于单幅乳腺X线摄片的计算机辅助检测肿块方法和基于多幅乳腺X线摄片的计算机辅助检测肿块方法。经过对基于单幅乳腺X线摄片的计算机辅助检测肿块方法和基于多幅乳腺X线摄片的计算机辅助检测肿块方法整体性能的评估和比较分析,显示了基于多幅乳腺X线摄片的计算机辅助检测肿块方法在提高基于单幅乳腺X线摄片的计算机辅助检测肿块方法灵敏度的同时降低了假阳性率,提高了基于单幅乳腺X线摄片的计算机辅助检测肿块方法的性能。
     最后,通过基于最大熵原则和活动轮廓模型的可疑肿块病灶分割、60个可疑肿块病灶相关的特征提取、基于遗传算法的特征优化选择、基于粒子群优化算法的特征权重学习、基于加权特征向量间欧氏距离的相似性度量准则和基于K近邻分类的决策值计算,实现了基于内容图像检索的计算机辅助检测肿块方法。
     基于可疑肿块病灶的分割结果,将参考病例数据库包含的全部感兴趣区域进行划分,分别对每个数据集合包含的可疑病灶相关的特征向量集合进行了优化选择和权重学习,并通过基于特征向量间的加权欧氏距离的相似性度量准则与基于图像像素值分布的Pearson相关性的有效结合,调节了可疑肿块病灶分割质量对感兴趣区域间相似性度量的影响,改进了基于内容图像检索的交互式计算机辅助检测肿块方法的性能,得到了放射科医师容易接受且有信心的计算机辅助检测结果。
     通过对基于单幅乳腺X线摄片计算机辅助检测肿块方法、基于多幅乳腺X线摄片计算机辅助检测肿块方法和基于内容图像检索的计算机辅助检测肿块方法的研究,为实现计算机辅助检测系统在临床中的广泛应用奠定了理论基础。
Breast cancer is one of the leading causes of death in women over the age of 50. For the early detection and diagnosis of breast cancer, mammography is currently considered the most reliable and cost-effective method. Computer-aided detection (CAD) based on mammography could eventually provide a valuable "second opinion" for improving accuracy, efficiency and consistency of detecting breast cancer in the clinical evironment. However, the performance of current CAD in mass detection remains relatively low, and the radiologists could not have confidence in and accept this type of schemes.
     To improve the performance in the computer-aided detection of mass based on single mammography, as well as to increase radiologists' confidence in and reliance on CAD-prompted mass detection results, computer-aided detection methods of breast mass based on mammography are studied in detailed in this dissertation. The main contents are as follows: accurate mass segmentation and related characteristic quantification in CAD based on single mammography, matched regions identification and related feature extraction in CAD based on multiple mammographies (ipsilateral views), accurate and efficient search of similar reference images in CAD based on content-based image retrieval (CBIR).
     First, due to the two challenging problems, mass segmentation and related feature extraction, an automated segmentation method based on maximum entropy principle and active contour model is proposed in this dissertation. With the segmented mass contour, spiculated tissues surrounding the mass are detected, and a quantitative spiculation index is computed to assess the degree of spiculation.
     Second, based on the projected distance to the nipple along the centerline, matched regions identification and related feature extraction are carried out on both ipsilateral views (cranio-caudal view and mediolateral oblique view).
     With the 39 features extracted from single mammography and the 23 features extracted from multiple mammographies, stepwise feature selection method and linear discriminant analysis (Fisher) are sequentially used to obtain the detection scores of the suspicious regions. The performances in mass detection of CAD based on single mammography and CAD based on multiple mammographies are evaluated and compared. The experimental results show that CAD based on multiple mammographies could improve the sensitivities, while reducing false-positive detection rates in the CAD based on single mammography. CAD based on multiple mammographies could improve the performance of CAD based on single mammography.
     Third, with the mass segmentation based on maximum entropy principle and active contour model, 60 related feature extraction, GA-based (Genetic Algorithm) feature selection, PSO-based (Particle Swarm Optimization) feature weights study, similarity measure based on weighted Euclidean distance and KNN-based (K Nearest Neighbor) decision index computation, CAD based on CBIR is implemented in this dissertation.
     Based on the mass segmentation, the reference databased is divided. Feature selection and weight study are respectively applied to each dataset. With the combination of weighted multi-image feature-based similary measure and pixel value-based Pearson's correlation, the effect of the segmentation qualify on the similariy measure is adjusted. This method improves the performance of ICAD (Interactive CAD) based on CBIR, and obtains CAD-prompted mass detection results which will increase the radiologists' confidence and reliance.
     The researches on CAD method based on single mammography, CAD method based on multiple mammographies and CAD method based on content-based image retrieval in this dissertation establish theoretical basis for widely use of CAD systems in clinics.
引文
[1] J. Rennie, R. Rusting. Making headway against cancer. Scientific American, 1996,275: 56-59
    [2] A. Jemal, R. Siegel, E. Ward, et al. Cancer statistics. CA: A Cancer Journal for Clinicians, 2008, 58:71-96
    [3] I. Jatoi, A. B. Miller. Why is breast-cancer mortality declining? Lancet Oncology,2003,4:251-254
    [4] D. B. Kopans. The most recent breast cancer screening controversy about whether mammographic screening benefits women at any age: nonsense and nonscience.American Journal of Roentgenology, 2003, 180: 21-26
    [5] C. D. Maggio. State of the art of current modalities for the diagnosis of breast lesions. European Journal of Nuclear Medicine and Molecular Imaging, 2004,31:S56-S69
    [6] D. A. Berry, K. A. Cronin, S. K. Plevritis. Effect of screening and adjuvant therapy on mortality from breast cancer. The New England Journal of Medicine, 2005,353(17): 1784-1792
    [7] B. Cady, M. Chung. Mammographic screening: no longer controversial. American Journal of Clinical Oncology, 2005, 28 (1): 1-4.
    [8] T. Byers, E. Barrera, E. T. Fontham. Amidpoint assessment of the American Cancer Society challenge goal to halve the U.S. cancer mortality rates between the years 1990 and 2015. Cancer, 2006, 107: 396-405
    [9] R. E. Burd, T. W. Wallace, B. C. Yankaskas. Analysis of cancers missed at screening mammography. Radiology, 1992, 184: 613-617
    [10] L. J. Warren Burhenne, S. A. Wood, C. J. D'Orsi. Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology,2000,215:554-562
    [11] E. D. Pisano, C. Gatsonis, E. Hendrick. Diagnostic performance of digital versus film mammography for breast-cancer screening. The New England Journal of Medicine, 2005, 353(17): 1773-1783
    [12] E. L. Thurfjell, K. A. Lernevall, A. S. Taube. Benefit of independent double reading in a population-based mammography screening program. Radiology, 1994, 191:241-244
    [13] C. J. Vyborny, M. L. Giger. Computer vision and artificial intelligence in mammography. American Journal of Roentgenology, 1994, 162: 699-708
    [14] K. R. Hoffman. For the proposition, at point/counterpoint of in the next decade automated computer analysis will be an accepted sole method to separate "normal" from "abnormal" radiological images. 1999, Medical Physics, 26:1-2
    [15] J. Elmore, M. Wells, M. Carol, et al. Variability in radiologists' interpretation of mammograms. The New England Journal of Medicine, 1994, 331: 1493-1499
    [16] M. L. Giger, H.-P. Chan, J. Boone. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM. Medical Physics, 2008,35(12):5799-5820
    [17] R.F. Brem, J. Baum, M. Lechner, et al. Improvement in sensitivity of screening mammography with computer-aided detection: a multi-institutional trial. American Journal of Roentgenology, 2003, 181:687-693
    [18] R. F. Brem, J. W. Hoffmeister, G. Zisman, et al. A computer-aided detection system for the evaluation of breast cancer by mammographic appearance and lesion size.American Journal of Roentgenology, 2005, 184: 893-896
    [19] D. Gur, J. S. Stalder, L. A. Hardesty, et al. Computer-aided detection performance in mammographic examination of masses: assessment. Radiology, 2004, 223:418-423
    [20] T. M. Freer, M. J. Ulissey, Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology, 2001,220:781-786
    [21] J. M. Ko, M. J. Nicholas, J. B. Mendel, et al. Prospective assessment of computer-aided detection in interpretation of screening mammograms. American Journal of Roentgenology, 2006, 187:1483-1491
    [22] E. Alberdi, A. Povyakaio, L. Strigini, et al. Effects of incorrect computer-aided detection (CAD) output on human decisionmaking in mammography. Academic Radiology, 2004, 11:909-918
    [23] S. van Engeland, C. Varela, S. Timp, et al. Using context for mass detection and classification in mammograms. in M. P. Eckstein, Y. Jiang. Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment. Bellingham, Washington: SPIE, 2005. 5749:94-102
    [24] R. Nishikawa, A. Edwards, R. Schmidt, et al. Can radiologists recognize that a computer has identified cancers that they have overlooked? in Y. Jiang, M. P.Eckstein. Medical Imaging 2006: Image Perception, Observer Performance, and Technology Assessment. Bellingham, Washington: SPIE, 2006. 6146:1-8
    [25] B. Zheng, G. Abrams, C. A. Britton, et al. Evaluation of an Interactive Computer-Aided Diagnosis (ICAD) System for Mammography: A Pilot Study, in Y.Jiang, B. Sahiner. Medical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment. Bellingham, Washington: SPIE, 2007. 6515: 65151M
    [26] H. D. Cheng, X. P. Cai, X. W. Chen, et al. Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognition,2003, 36: 2967-2991
    [27] Y. Jiang, R. M. Nishikawa, R. A. Schmidt, et al. The potential of computer-aided diagnosis (CAD) to reduce variability in radiologists' interpretation of mammograms containing microcalcifications. Radiology, 2001, 220: 787-794
    [28] J. Y. Lo, M. Gavrielides, M. K. Markey, et al. Computer-Aided Classification of Breast Microcalcification Clusters: Merging of Features From Image Processing and Radiologists, in M. Sonka, J. M. Fitzpatrick. Medical Imaging 2003: Image Processing. Bellingham, Washington: SPIE, 2003. 5032: 882-889
    [29] A. Papadopoulos, D. I. Fotiadis, A. Likas. Characterization of Clustered Microcalcifications in Digitized Mammograms Using Neural Networks and Support Vector Machine.Artificial Intelligence in Medicine,2005,34:141-150
    [30]R.N.Strickland,H.I.Hahn.Wavelet transforms for detecting microcalcifications in mammograms.IEEE Transactions on Medical Imaging,1996,15 (2):218-229
    [31]A.Bazzani,A.Bevilacqua,D.Bollini.Automatic Detection of Clustered Micro-calcifications in Digital Mammograms Using an SVM Classifier.in M.Verleysen.ESANN' 2000 proceedings-European Symposium on Artificial Neural Networks.Brussels:D-Facto,2000.195-200
    [32]S.K.Lee,C.S.Lo,C.M.Wang,et al.A computer-aided design mammography screening system for detection and classification of microcalcifications.International Journal of Medical Informatics,2000,60:29-57
    [33]W.Xu,S.Xia,H.Duan.A Novel Computer Aided Diagnosis System of the Mammogram.in D.S.Huang,G.W.Irwin,K.Li.Intelligent Computing in Signal Processing and Pattern Recognition.Berlin/ Heidelberg:Springer-Verlag,2006.639-644
    [34]T.Arodz,M.Kurdziel,T.J.Popiela,et al.Detection of Clustered Microcalcifications in Small Field Digital Mammography.Computer Methods and Programs in Biomedicine,2006,81:56-65
    [35]P.Delogu,M.E.Fantacci,A.P.Martinez,et al.A Scalable System for Microcalcification Cluster Automated Detection in a Distributed Mammographic Database.in B.Yu.IEEE Nuclear Science Symposium Conference Record.Piscataway:IEEE,2005,1530-1534
    [36]万柏坤,王瑞平,朱欣,等.SVM算法及其在乳腺X片微钙化点自动检测中的应用.电子学报,2004,4:587-590
    [37]董妍,高新波,王颖.一种基于Top2hat的乳腺图像中钙化点的检测方法.中国图象图形学报,2006,12:1839-1843
    [38]高洁,宋立新.基于微钙化点检测的乳腺X光片计算机辅助诊断系统.哈尔滨理工大学学报,2006,11(14):18-21
    [39]文浩,马金盛,王玉慧,等.基于形态学灰度重构的乳腺微钙化点提取.CT理 论与应用研究,2006,15(2):33-37
    [40]龚浩,王玉慧.基于小波变换和图论方法识别乳腺微钙化点簇.光学技术,2007,33(5):769-771
    [41]吴燕,王颖,宋丽亚.基于增量SVM的可继续学习微钙化点检测算法.计算机与信息技术,2007,10:9-10
    [42]N.M.Yusof,N.A.Mat,I.H.A.M.Sakim.Computer-Aided Detection and Diagnosis for Microcalcifications in Mammogram:A Review.International Journal of Computer Science and Network Security,2006,7:202-209
    [43]E.Regentova,L.Zhang,J.Zheng,et al.Microcalcification detection based on wavelet domain hidden Markov tree model:Study for inclusion to computer aided diagnostic prompting system.Medical Physics,2007,34(6):2206-2219
    [44]G.M.te Brake,M.J.Stoutjesdijk,N.Karssemeijer.A discrete dynamic contour model for mass segmentation in digital mammograms.in K.M.Hanson.Medical Imaging 1999:Image Processing.Bellingham,Washington:SPIE,1999.3661:911-919
    [45]H.-P.Chan,B.Sahiner,M.A.Helvie,et al.Improvement of radiologists characterization of mammographic masses by using computer-aided diagnosis:an ROC study.Radiology,1999,212:817-827
    [46]C.E.Floyd,J.Y.Lo,G.D.Tourassi.Breast Biopsy:Case-Based Reasoning Computer-Aid Using Mammography Findings for the Breast Biopsy Decisions.American Journal of Roentgenology,2000,175:1347-1352
    [47]W.Qian,X.J.Sun,D.S.Song,et al.Digital mammography:Wavelet transform and Kalman-filtering neural network in mass segmentation and detection.Academic Radiology,2001,8:1074-1082
    [48]N.Karssemeijer.Detection of masses in mammograms.in R.N.Strickland.Image Processing Techniques in Tumor Detection.New York,NY:Marcel Dekker Inc.,2002,187-212.
    [49]A.O.Bilska-Wolak,C.E.Floyd.Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with BI-RADSTM lexicon. Medical Physics, 2002,29: 2090-2100
    [50] A. H. Baydush, D. M. Catarious, C. K. Abbey, et al. Computer aided detection of masses in mammography using subregion Hotelling observers. Medical Physics,2003,30:1781-1787
    [51] H. D. Cheng, M. Cui. Mass lesion detection with a fuzzy neural network. Pattern Recognition, 2004, 37: 1189-1200
    [52] D. M. Catarious, A. H. Baydush, C. E. Floyd. Characterization of difference of Gaussian filters in the detection of mammographic regions. Medical Physics, 2006,33 (11): 4104-4114
    [53] Y. D. Yuan, M. L. Giger, H. Li, et al. A dual-stage method for lesion segmentation on digital mammograms. Medical Physics, 2007, 34 (11): 4180-4193
    [54] N. Petrick, H.-P. Chan. Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms. Medical Physics, 1999,26: 1642-1653
    [55] B. Zheng, Y. H. Chang, D. Gur. Computerized detection of masses in digitized mammograms using single-image segmentation and a multilayer topographic feature analysis. Academic Radiology, 1995, 2: 959-966
    [56] S. Timp, N. Karssemeijer. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography. Medical Physics, 2004, 31(5): 958-971
    [57] A. R. Dominguez, A. K. Nandi. Improved dynamic-programming-based algorithms for segmentation of masses in mammograms. Medical Physics, 2007, 34(11):4256-4269
    [58] D. M. Catarious, A. H. Baydush, C. E. Floyd. Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system. Medical Physics,2004,31: 1510-1520
    [59] G. M. te Brake, N. Karssemeijer. Segmentation of suspicious densities in digital mammograms. Medical Physics, 2001, 28(2): 259-266
    [60] R. J. Ferrari, R. M. Rangayyan, J. E. L. Desautels, et al. Identification of the breast boundary in mammograms using active contour models. Medical & Biological Engineering & Computing, 2004, 42: 201-208
    [61] W. P. Kegelmeyer. Evaluation of stellate lesion detection in a standard mammogram data set. International Journal of Pattern Recognition and Artificial Intelligence,1993,7: 1477-1493
    [62] N. Karssemeijer, G. M. te Brake. Detection of stellate distortion in mammograms. IEEE Transactions on Medical Imaging, 1996, 15: 611-619
    [63] B. Sahiner, H.-P. Chan, N. Petrick, et al. Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis.Medical Physics, 1998, 25(4): 516-526
    [64] B. Sahiner, H.-P. Chan, N. Petrick. Improvement of mammographic mass characterization using spiculation measures and morphological features. Medical Physics, 2001, 28(7): 1455-1465
    [65] J. Z. Shi, B. Sahiner, H.-P. Chan, et al. Characterization of mammographic masses based on level set segmentation with new image features and patient information. Medical Physics, 2008, 35(1): 280-290
    [66] H.-P. Chan, D. Wei, M. A. Helvie, et al. Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Physics in Medicine and Biology, 1995, 40: 857-876
    [67] N. R. Mudigonda, R. M. Rangayyan, J. E. Desautels. Gradient and texture analysis for the classification of mammographic masses. IEEE Transactions on Medical Imaging, 2000, 19: 1032-1043
    [68] L. Li, Y. Zheng, L. Zhang, et al. False-positive reduction in CAD mass detection using a competitive classification strategy. Medical Physics, 2001, 28: 250-258
    [69] A. Jain and D. Zongker. Feature Selection: Evaluation, Application, and Small Sample Performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153-158
    [70] H.-P. Chan, B. Sahiner, K. L. Lam, et al. Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Medical Physics, 1998, 25(10): 2007-2019
    [71] Z. Huo, M. L. Giger, D. E. Wolverton, et al. Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: Feature selection. Medical Physics, 2000, 27(1):4-12
    [72] B. Sahiner, H.-P. Chan, D. Wei, et al. Image feature selection by a genetic algorithm: Application to classification of mass and normal breast tissue. Medical Physics, 1996,23(10): 1671-1684
    [73] B. Zheng, Y. H. Chang, X.-H. Wang, et al. Feature selection for computerized mass detection in digitized mammograms by using a genetic algorithm. Academic Radiology, 1999, 6:327-332
    [74] F. Winsberg, M. Elkin, J. Macy, et al. Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis. Radiology, 1967,89:211-215
    [75] R2 Technology website. http://www.r2tech.eom/S, accessed on March 6, 2005
    [76] U. S. Food and Drug Administration. Summary and Safety and Effectiveness Data:R2 Technologies. P970058, 1998
    [77] U. S. Food and Drug Administration. Summary and Safety and Effectiveness Data:CADx Medical Systems. P010034, 2002
    [78] U. S. Food and Drug Administration. Summary and Safety and Effectiveness Data:ISSI. P010038, 2002
    [79] R. E. Hendrick, G R. Cutter, E. A. Berns, et al. Community-based mammography practice: services, charges, and interpretation methods. American Journal of Roentgenology, 2005, 184(2): 433-438
    [80] E.S. Burnside, E.A. Sickles, R.E. Sohlich, et al. Differential value of comparison with previous examinations in diagnostic versus screening mammography. American Journal of Roentgenology, 2002, 179: 1173-1177
    [81] L. Hadjiiski, B. Sahiner, H.-P. Chan, et al. Analysis of temporal changes of mammographic features: Computer-aided classification of malignant and benign breast masses. Medical Physics, 2001, 28(11): 2309-2317
    [82] L. Hadjiiski, B. Sahiner, M. A. Helvie, et ak. Breast masses: computer-aided diagnosis with serial mammograms. Radiology, 2006, 240:343-356
    [83] L. Hadjiiski, H.-P. Chan, B. Sahiner, et al. Automated registration of breast lesions in temporal pairs of mammograms for interval change analysis - local affine transformation for improved localization. Medical Physics, 2001, 28:1070-1079
    [84] J. Wei, H.-P. Chan, B. Sahiner, et al. Dual system approach to computer-aided detection of breast masses on mammograms. Medical Physics, 2006, 33:4157-4168
    [85] B. Zheng, W. F. Good, D. R. Armfield, et al. Performance change of mammographic CAD schemes optimized with most-recent and prior image databases. Academic Radiology, 2003, 10: 283-288
    [86] S. Timp, S. Engeland, N. Karssemeijer. A regional registration method to find corresponding mass lesions in temporal mammogram pairs. Medical Physics, 2005,32:2629-2638
    [87] D. Scutt, G. A. Lancaster, J. T. Manning. Breast asymmetry and predisposition to breast cancer. Breast Cancer Research, 2006, 8(2): R14
    [88] F. F. Yin, M. L. Giger, K. Doi, et al. Computerized detection of masses in digital mammograms: automated alignment of breast images and its effect on bilateral-subtraction technique. Medical Physics, 1994, 21:445-452
    [89] T.-K. Lau, W. F. Bischof. Automated detection of breast tumors using the asymmetry approach. Computers and Biomedical Research, 1991, 24: 273-295
    [90] P. Miller, S. Astley. Detection of breast asymmetry using anatomical features, in: R. S. Acharya, C. B. Goldgof. Biomedical Image Processing and Biomedical Visualization. Bellingham, Washington: SPIE, 1993. 1905: 433-442
    [91] P. Miller, S. Astley. Automated detection of breast asymmetry using anatomical features,in: K. W. Bowyer, S. Astley. State of the Art in Digital Mammographic Image Analysis. Singapore: World Scientific, 1994,247-261
    [92] R. J. Ferrari, R. M. Rangayyan, J. E. L. Desautels, et al. Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets. IEEE Transactions on Medical Imaging, 2001, 20 (9): 953-964
    [93] R. M. Rangayyan, R. J. Ferrari, A. F. Fre're. Detection of asymmetry between left and right mammograms. in E. Pisano. Proceedings of the Seventh International Workshop on Digital Mammography. Springer, 2004, 651-658
    [94] Y.-T. Wu, J. Wei, L. M. Hadjiiski, et al. Bilateral analysis based false positive reduction for computer-aided mass detection. Medical Physics, 2007,34(8):3334-3344
    [95] S. Paquerault, N. Petrick, H.-P. Chan, et al. Improvement of computerized mass detection on mammograms: Fusion of two-view information. Medical Physics, 2002,29(2):238-247
    [96] S. van Engeland, S. Timp, N. Karssemeijer. Finding corresponding regions of interest in mediolateral oblique and craniocaudal mammographic views. Medical Physics, 2006, 33(9):3203-3212
    [97] S. van Engeland, N. Karssemeijer. Combining two mammographic projections in a computer aided mass detection method. Medical Physics, 2007, 34(3): 898-905
    [98] M. Samulski, N. Karssemeijer. Matching mammographic regions in mediolateral oblique and cranio caudal views: A probabilistic approach,in M. L. Giger, N.Karssemeijer. Medical Imaging 2008: Computer-Aided Diagnosis. Bellingham,Washington: SPIE, 2008. 69151M-1-69151M-10
    [99] B. Zheng, J. K. Leader, G. S. Abrams, et al. Multiview-based computer-aided detection scheme for breast masses. Medical Physics, 2006, 33(9):3135-3143
    [100] Y. H. Chang, W. F. Good, J. H. Sumkin, et al. Computeized location of breast lesions from two views: an experimental comparison of two methods. Investigative Radiology, 1999, 34:585-588
    [101] J. Pu, B. Zheng, J. K. Leader, et al. An ellipse-fitting based method for efficient registration of breast masses on two mammographic views. Medical Physics, 2008,35(2):487-494
    [102] A. J. Mendez, P. G. Tahoces, M. J. Lado, et al. Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms. Medical Physics, 1998,25:957-964
    [103] M. L. Giger, A. Huo, C. J. Vyborny, et al. Intelligent CAD workstation for breast imaging using similarity to known lesions and multiple visual prompt aids, in M.Sonka. M. Fitzpatrick. Medical Imaging 2002: Image Processing. Bellingham,Washington: SPIE, 2002. 4684:768-773
    [104] B. Zheng, G. Abrams, C. A. Britton, et al Evaluation of an interactive computer-aided diagnosis system for mammography: a pilot study. In Y. Jiang. Medical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment. B. Sahiner. Bellingham, Washington: SPIE, 2007. 6515 65151M-1-65151M-8
    [105] M. W. Vannier, R. M. Summers. Sharing Images. Radiology, 2003, 228: 23-25
    [106] I. El-Naqa, Y. Yang, N. P. Galatsanos, et al. A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Transactions on Medical Imaging, 2004, 23: 1233-1244
    [107] H. Mtiller, N. Michoux, D. Bandon, et al. A review of content-based image retrieval systems in medical applications-clinical benefits and future directions. International Journal of Medical Informatics, 2004, 73: 1-23
    [108] B. Zheng, A. Lu, L. A. Hardesty, et al. A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment. Medical Physics, 2006, 33(1):111-117
    [109] B. Zheng, C. Mello-Thoms, X.-H. Wang, et al. Interactive Computer-Aided Diagnosis of Breast Masses: Computerized Selection of Visually Similar Image Sets From a Reference Library. Academic Radiology, 2007. 14(8):917-927
    [110] C. Muramatsu, Q. Li, K. Suzuki, et al. Investigation of psychophysical measures for evaluation of similar images formammographic masses: preliminary results. Medical Physics, 2005, 32: 2295-2304
    [111] C. Muramatsu, Q. Li, R. A. Schmidt, et al. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms:comparison of similarity ranking scores and absolute similarity ratings. Medical Physics, 2007, 34: 2890-2895
    [112] Y. Tao, S.-C. B. Lo, M. T. Freedman, et al. A preliminary study of content-based mammographic mass retrieval, in M. L. Giger. N. Karssemeijer. Medical Imaging 2007: Computer-Aided Diagnosis. Bellingham, Washington: SPIE, 2007. 6514:65141Z-1-65141Z-12.
    [113]G. D. Tourassi, R. Vargas-Voracek, D. M. Catarious, et al. Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information. Medical Physics, 2003, 30(8):2123-2130
    [114]G. D. Tourassi, B. Harrawood, S. Singh, et al. Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms. Medical Physics, 2007, 34(1):140-150
    [115] G. D. Tourassi, B. Harrawood, S. Singh, et al. Information-theoretic CAD system in mammography: Entropy-based indexing for computational efficiency and robust performance. Medical Physics, 2007, 34(8):3193-3204
    [116] S. C. Park, R. Sukthankar, L. Mummert, et al. Optimization of reference library used in content-based medical image retrieval scheme. Medical Physics, 2007, 34(11):4331-4339
    [117] K. R. Castleman. Digital Image Processing. Englewood: Prentice-Hall, 1979.
    [118] B. Sahiner, H.-P. Chan, N. Petrick, et al. Feature selection and classifier performance in computer-aided diagnosis: The effect of finite sample size. Medical Physics, 2000,27(7): 1509-1522
    [119]L. Jiang, E. Song, X. Xu, et al. Automated detection of breast mass spiculation levels and evaluation of scheme performance.Academic Radiology,2008,15(12):1534-1544
    [120]C.E.Shannon.A mathematical theory of communication.Bell System Technical Journal,1948,27:379-423,623-656
    [121]T.Pun.A new method for gray level picture thresholding using the entropy of the histogram.Signal Processing,1980,2:233-237
    [122]罗希平,田捷.用最大熵原则作多阈值选择的条件迭代算法.软件学报,2000,11(3):379-385
    [123]E.Song,L.Jiang,R.Jin,et al.Breast mass segmentation in mammography using plane fitting and dynamic programming.Academic Radiology,2009,accepted
    [124]M.Kass,A.Witkin,D.Terzopoulos.Snake:Active Contour Models.International Journal of Computer Vision,1987,1:321-331
    [125]C.Xu,J.L.Prince.Snakes,Shapes,and Gradient Vector Flow.IEEE Transactions on Image Processing,1998,7:359-369
    [126]B.Zheng,G.Abrams,J.K.Leader,et al.Mass margins spiculations:agreement between ratings by observers and a computer scheme.in M.L.Giger,N.Karssemeijer.Medical Imaging 2007:Computer-Aided Diagnosis.Bellingham,Washington:SPIE,2007.6514:65141P
    [127]Z.Huo,M.L.Giger,C.J.Vyborny.Analysis of spiculation in the computerized classification of mammographic masses.Medical Physics,1995,22:1569-1579
    [128]M.P.Sampat,A.C.Bovik,G.J.Whitman,et al.A model-based framework for the detection of spiculated masses on mammography.Medical Physics,2008,35(5):2110-2123
    [129]N.Petrick,H.-P.Chan,D.Wei,et al.Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification.Medical Physics,1996,23(10):1685-1695
    [130]边肇祺,张学工等.模式识别.第二版.北京:清华大学出版社,2000年1月.87-90
    [131] M. Heath, K. Bowyer, D. Kopans, et al. The Digital Database for Screening Mammography. in M.J. Yaffe. Proceedings of the Fifth International Workshop on Digital Mammography. Berlin, Heidelberg: Springer-Verlag, 2001. 212-218
    [132] S. van Engeland, N. Karssemeijer. Matching breast lesions in multiple mammographic views, in: W. Niessen, M. Viergever. Lecture Notes in Computer Science: Medical Image Computing and Computer-Assisted intervention. London:Springer-Verlag, 2001. 2208: 1172-1173
    [133] Y.-H. Chang, W. F. Good, J. K. Leader, et al. Integrated density of a lesion: A quantitative, mammographically derived, invariable measure. Medical Physics, 2003,30(7): 1805-1811
    [134] T. Ojala, M. Pietikainen, T. Maenpaa. A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification, in Lecture Notes in Computer Science : Proceedings of the Second International Conference on Advances in Pattern Recognition London: Springer-Verlag, 2001.2013: 397-406
    [135] P. Filev, L. Hadjiiski, B. Sahiner, et al. Comparison of similarity measures for the task of template matching of masses on serial mammograms. Medical Physics, 2005,32(2):515-529
    [136] American College of Radiology Breast Imaging Reporting and Data System Atlas (BI-RADS Atlas). 4th ed. Reston, VA: American College of Radiology, 2003.
    [137] A. Wald. Statistical Decision Functions. New York: Wiley, 1950
    [138] C. E. Metz. ROCFIT 0.9B beta version. Available at:http://www.radiology.uchicago.edu/krl/. Accessed December 3, 2005.
    [139] C. E. Metz. ROC methodology in radiologic imaging. Investigative Radiology, 1986,21 (9): 720-733
    [140] Q. Li, K. Doi. Comparison of typical evaluation methods for computer-aided diagnostic schemes: Monte Carlo simulation study. Medical Physics, 2007, 34(3):871-876
    [141]任江涛,卓晓岚,许盛灿,等.基于PSO面向K近邻分类的特征权重学习算法.计算机科学,2007,34:187-189
    [142]J.Kennedy,R.C.Eberhart.Particle swarm optimization.in IEEE International Conference on Neural Networks.Piscataway:IEEE Service Center,1995,4:1942-1948
    [143]X.-H.Wang,S.C.Park,B.Zheng.Improving performance of content-based image retrieval schemes in searching for similar breast mass regions:an assessment.Physics in Medicine and Biology,2009,54:949-961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700