方向性多分辨率图像分析研究:理论和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究方向性多分辨率分析和神经网络PCNN在图像分析中的应用。
     有关方向性多分辨率分析的研究一直是信号处理的重点内容。有许多在多分辨率分析框架下提取信号方向性信息的方法,这些方法都试图提供高维信号的方向性表达,附加地还必须满足理想重构,低冗余度,高计算效率等性质。DTCWT、Contourlets、NSCT、PDTDFB等变换是目前流行的方向性多分辨率分析方法,但它们都有各自结构性的缺陷。
     神经网络PCNN是优异的图像分析工具,是一种具有旋转不变、尺度不变、平移不变等特点的图像变换方法。PCNN可以提供对原图像在不同尺度下的逼近序列,因而具有多分辨率分析的性质。与小波和多尺度分析不同,PCNN直接检测边缘信息,这些边缘信息可用于特征提取、图像分割、目标识别、除噪和增强等应用。
     本论文的主要内容和贡献如下:
     1、基于解析信号复小波变换的思想,提出了基于解析信号的P-Contourlet变换,通过在原始信号的解析信号上实施Contourlet变换,实现了一种平移不变的方向性多分辨率方法,变换具有相信息。根据方向性分辨率的不同,我们将该方法分为单通道方法P-Contourlet-Ⅰ和双通道方法P-Contourlet-Ⅱ。P-Contourlet实现结构简单,冗余度较低。纹理分类实验结果表明,P-Contourlet是一种非常有效的图像分析工具。
     2、基于对偶树复小波的思想,提出对偶树Contourlet变换DTCT。我们研究PDTDFB的结构和实现方法,认知到它在滤波器设计和系统实现上存在一些问题,所以我们提出一种易于实现的结构DTCT。两个级联的DFBs树形结构对拉普拉斯金字塔的高通子带进行方向性分解,单独的每个树形结构构造为正交系统,实树和虚树对应的滤波器之间满足一定的相约束条件,整个变换为紧框架。我们分析了DTCT的系统结构和滤波器特性,并提出了系统所需要的滤波器设计方法。DTCT实现了近似的平移不变性,方向性分辨率和PDTDFB相同,由于是双树结构,变换具有相信息。与PDTDFB相比,具有结构上的简单性和实现的有效性。
     3、提出了一种基于二值傅里叶谱的纹理预分类算法,将纹理库中的图像分为结构纹理和随机纹理。实验表明,对结构纹理,利用方向性分解来分析,可实质性地提高检索率。
     4、基于滤波器组的图像分析方法(小波、Contourlets及基于DFBs的方法等)对图像的旋转和尺度的变换非常敏感,我们提出了一种基于PCNN的图像检索方法,图像特征具有旋转不变、尺度不变和抗噪声的特点。实验表明该方法是有效的。
This thesis is concerned primarily with the research of image analysis based on thedirectional multiresolution transforms and PCNN.
     The research of directional multiresolution transforms has been one of the hottesttopics of signal processing.There are many methods that retrieve the directionalinformation with the multiresolution analysis.These methods are trying to provide thedirectional representation of high dimension signals and satisfy some properties such asperfect reconstruction,low redundancy and high computing performance.DTCWT,Contourlets,NSCT,PDTDFB are the widely used tools for directional multiresolutiontransforms,but they all suffer from problems for their own structures.
     PCNN is an outstanding tool for image analysis,which is rotation-invariant,scale-invariant and shift-invariant.PCNN provides different approximate sequences atdifferent scales; therefore it is a multiresolution transform.PCNN checks the edgeinformation directly,which is different from wavelet and other multiscale methods,andsuch edge information can be used in features extraction,image segmentation,targetsrecognition,denoising,enhancement and other applications.
     The main contents and contributions of the thesis are as follows:
     Firstly,we present P-Contourlet transform which performs the Contourlettransform on the analytic signals of the original signals and is like the idea of complexwavelet on analytic signal.P-Contourlet is a kind of shift-invariant,high directionalselectivity transform with phase information.Based on the directional selectivity,weclassify P-Contourlet into two categories:P-Contourlet-Ⅰwhich has one channel andperforms Contourlet transform only once and P-Contourlet-Ⅱwhich has two channelsand performs Contourlet transform on each channel once.P-Contourlet has simpleimplementation structure and lower redundancy.The experiments on textureclassification show that P-Contourlet transform is an efficient tool for image analysis.
     Secondly,we propose a dual tree Contourlet transform which is motivated by theDTCWT.We study the structure and implementation of PDTDFB and realize that it hassome problems both on filter design and whole system implementation,so we propose a structure named as DTCT which is easy to implementation.The high pass subbandsof Laplacian pyramid are filtered by two parallel trees which are both cascade DFBs toobtain high directional selectivity.Each tree is constructed to be an orthogonal systemand filters of the prime tree and the corresponding filters of dual tree satisfy certainphase constraint conditions,and the whole system is a tight frame.We analyze thespecial structure of DTCT and the properties of the filters and propose a solution fordesigning filters that the system required.DTCT is near shift-invariant and has thesame high directional selectivity as PDTDFB,and has phase information from the dualtree scheme.DTCT has a simple structure and effective implementation compared toPDTDFB.
     Thirdly,we present an algorithm to pre-classify the texture images based onbinary Fourier spectrum.This algorithm classifies the whole texture images intostructure texture and random texture.The experiments show that the retrieval rate canbe substantially improved in analyzing of structure texture images by using directionalmultiresolution analysis.
     Lastly,the image analysis methods based on filter banks (such as wavelet,Contourlet,DFBs,etc.) are sensitive to the changes caused by rotation,scale and shift,so we propose an image retrieval algorithm based on PCNN.The features extractedfrom the output of PCNN are invariant to rotation,scale and noise interfering.Theexperiments show the efficiency of our algorithm.
引文
[1] G Strang, T. Q. Nguyen, Wavelets and filter banks. Cambridge, U.K.: Wellesley Cambridge, 1996.
    [2] S. Mallat, A Wavelet tour of signal processing, 2nd. ed., New York: Academic,1999.
    [3] G Strang, "Wavelets and dilation equations: A brief introduction," SIAM Rev., Vol.31, No. 4, pp. 614-627, Dec. 1989.
    [4] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, D. J. Heeger, "Shiftable multiscale transform," IEEE Trans. Information Theory, Vol. 38, No. 2, pp. 587-607,Mar. 1992.
    [5] N. G Kingsbury, "Complex wavelets for shift invariant analysis and filtering of signals," Appl. Computat. Harmonic Anal., Vol. 10, No. 3, pp. 234-253, May 2001.
    [6] F. C. A. Fernandes, R. L. C. van Spaendonck, C. S. Burrus, "A new framework for complex wavelet transforms," IEEE Trans. Signal Process., Vol. 51, No. 7, pp.1825-1837, Jul. 2003.
    [7] D. L. Donoho, M. Vetterli, R. A. DeVore, I. Daubechies, "Data compression and harmonic analysis," IEEE Trans. Information Theory., Vol. 44, No. 6, pp. 2435-2476,Oct. 1998.
    [8] D. L. Donoho, I. Johnstone, "Ideal spatial adaptation via wavelet shrinkage,"Biometrika, pp. 425-455, Dec. 1994.
    [9] E. J. Candes, Ridgelets: theory and applications, Ph.D. thesis, Department of Statistics, Stanford University, 1998.
    [10] E. J. Candes, D. L. Donoho, "Ridgelets: a key to higher-dimensional intermittency?" Phil. Trans. R.Soc. Lond. A., pp. 2495-2509, 1999.
    [11] S. R. Deans, The Radon transform and some of its applications, John Wiley & Sons, 1983.
    [12] D. L. Donoho, M. R. Duncan, "Digital curvelet transform: strategy,implementation and experiments," in Proc. Aerosense 2000, Wavelet Applications Ⅶ. SPIE, 2000, Vol. 4056, pp. 12-29, 2000.
    [13] J. L. Starck, E. J. Candes, D.L. Donoho, "The curvelet transform for image denoising," IEEE Trans. Image Processing, Vol. 11, pp. 670-684, 2002.
    [14] E. Le Pennec, S. Mallat, "Sparse geometric image representations with Bandelets", IEEE Trans. Image Processing, Vol. 14, No. 4, pp. 423-438, Apr. 2005
    [15] E. Le Pennec, S. Mallat, "Bandelet image approximation and compression,"SIAM Journ. Multiscale Modeling and Simulation, Vol.4, No.3, pp.992-1039, 2005.
    [16] G. Peyre, S. Mallat, "Surface compression with geometric Bandelets", ACM Trans. Graphics (SIGGRAPH'05), Vol. 14, No. 3, pp.601-608, Jul. 2005.
    [17] G. Peyre, S. Mallat, "Discrete bandelets with geometric orthogonal filters", in Proc. ICIP, 2005, pp. 65-68, Sep. 2005.
    [18] E. J. Candes, L. Demanet, D. L. Donoho, L. Ying, "Fast discrete curvelet transforms," SIAMMult. Model. Sim. Vol.5, No.3, pp. 861-899, 2006.
    [19] L. Demanet, L. Ying, "Wave atoms and sparsity of oscillatory patterns", Appl.Computat. Harmonic Anal., Vol. 23, No.3, pp. 368-387, 2007.
    [20] L. Demanet, Curvelets, Wave atoms, and wave equations, Ph.D. thesis, California Institute of Technology Pasadena, California, 2006.
    [21] N. G. Kingsbury, "Shift invariant properties of the dual-tree complex wavelet transform," in Proc. ICASSP'99, Vol. 3, pp. 1221-1224, 1999.
    [22] M. J. Shensa, "The discrete wavelet transform: wedding the "a trous" and Mallat algorithms", IEEE Trans. Signal Processing, Vol.40, No.10, pp. 2464-2482, Oct. 1992.
    [23] J.L. Starck, F. Murtagh, A. Bijaoui, Image processing and data analysis: the multiscale approach, Cambridge University Press, 1998.
    [24] N. G. Kingsbury, "Image processing with complex wavelets," Phil. Trans. Royal Society London A, Vol. 357, No. 1760, pp. 2543-2560, Sep. 1999.
    [25] I. W. Selesnick, R. G Baraniuk, N. C. Kingsbury, "The dual-tree complex wavelet transform," IEEE Trans. Signal Processing, Vol. 22, No. 6, pp. 123-151, Nov.2005.
    [26] F. C. A. Fernandes, Michael B. Wakin, Richard G. Baraniukr, "Non-redundant,linear-phase, semi-orthogonal, directional complex wavelets", in Proc. ICASSP 2004, PP. 953-956, 2004.
    [27] R. H. Bamberger, M. J. T. Smith, "A filter bank for the directional decomposition of images: theory and design," IEEE Trans. Signal Processing, Vol. 40, No. 7, pp.882-893, Apr. 1992.
    [28] Minh N Do, M. Vetterli, "The contourlet transform: an efficient directional multiresolution image representation". IEEE Trans. Image Processing, Vol. 14, No. 12,pp. 2091-2106, 2005.
    [29]Arthur L. da Cunha, Jianping Zhou, Minh N. Do, "The nonsubsampled contourlet transform: theory, design, and applications", IEEE Trans. Image Processing, Vol. 15,No. 10, pp. 3089-3101, Oct. 2006.
    [30]Truong T. Nguyen, Soontorn Oraintara, "The shiftable complex directional pyramid-part Ⅰ: theoretical aspects," IEEE Trans. Signal Processing, Vol. 56, No. 10,pp. 4651-4660, Oct. 2008.
    [31]Truong T. Nguyen, Soontorn Oraintara, "The shiftable complex directional pyramid-part Ⅱ: implementation and applications," IEEE Trans. Signal Processing,Vol. 56, No. 10, pp. 4661-4672, Oct. 2008.
    [32] Mark A. Pinsky, Introduction to Fourier analysis and wavelets,机械工业出版社, 2003
    [33] Andrew B. Watson, "Image compression using the discrete cosine transform",Mathematica Journal, Vol. 4, No.1, pp. 81-88, 1994.[34] K. R. Rao, P. Yip, Discrete cosine transform: algorithms, advantages,applications, Boston, MA: Academic Press, 1990.
    [35] Y. H. Chan, L. P. Chau, W. C. Siu, "Efficient implementation of discrete cosine transform using recursive filter structure," IEEE Trans. Circuits System. Video Technol., Vol. 4, pp. 550-552, Dec. 1994.
    [36] D. Gabor, "Theory of communication," IEEE Trans. Information Theory, Vol.9,No.3, pp.76-87, 1946.
    [37] Mohammad A. Tinati, Behzad Mozaffary, "Comparison of the wavelet and short time Fourier transforms for spectral analysis of speech signals", in Proc. the 5th WSEAS, pp. 31-35, 2005.
    [38]W.T.Kuang,A.S.Morris,“Using short-time Fourier transform and wavelet packet filter banks for improved frequency measurement in a Doppler robot tracking system”,IEEE Trans.Instrumentation and Measurement,Vol.51,No.3,pp.440-444,Jun.2002.
    [39]A.Grossman,J.Morlet,“Decomposition of hardy functions to square integrable wavelets of constant shape,” SIAM J.Math.Anal,Vol.5,No.4,pp.723-736,1984.
    [40]杨福生.小波变换的工程分析与应用.北京:中国科学出版社,1999.
    [41]S.Mallat,“Multiresolution approximations and wavelet orthonormal bases of L2(R),” Trans.Amer.Math.Soc.,Vol.9,pp.69-87,1989.
    [42]S.Mallat,“A compact multiresolution representation:the wavelet model,” in Proc.IEEE Comput.Soc.Workshop Computer Vision,pp.2-7,1987.
    [43]L.Daubechies “Orthonormal bases of compactly supported wavelets,” Pure Appl.Math.,Vol.4,No.1,pp.909-996,1988.
    [44]S.Mallat,“A theory for multiresolution signal decomposition,” IEEE Trans.PAMI,Vol.11,No.7,pp.674-693,1989.
    [45]Yue Lu,Mirth N.Do,“The finer directional wavelet transform,” in Proc.IEEE.ICASSP'05,Vol.4,pp.573-576,2005.
    [46]王佳宁.“多尺度多方向滤波器组的研究与应用”.硕士论文.兰州大学,2008.
    [47]张久文,王佳宁.“基于改进的非均匀方向滤波器组的HMT图像除噪”.信号处理,2007,Vol.23.No.4A:194-197.
    [48]Yong Tian,Jianing Wang,Jiuwen Zhang,Yida Ma,“Contextual Hidden Markov Tree Model image denoising using a new nonuniform quincunx directional filter banks,” in Proc.IIHMSP'2007,Vol.1,pp.151-154,2007.
    [49]R.R.Coifman,M.V.Wickerhauser,“Entropy-based algorithms for best basis selection,” IEEE Trans.Information Theory,Vol.38,No.2,pp.713-718,Mar.1992
    [50]A.Laine,J.Fan,“Texture classification by wavelet packet signatures,” 1EEE Trans.Pattern Anal.Mach.Intell.Vol.15,No.11,pp.1186-1190,1993.
    [51]Israel Cohen,Shalom Raz,David Malah,“Orthonormal shift-invariant wavelet packet decomposition and representation,” Signal Processing,Vol.57,No.3,pp.251-270,Mar.1997.
    [52] N.G. Kingsbury, "The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement," in Proc. European Signal Processing Conf.,1998, pp. 319-322, 1998.
    [53] H. Choi, J. Romberg, R. G. Baraniuk, N. Kingsbury, "Hidden Markov tree modeling of complex wavelet transforms," in Proc. ICASSP, 2000, Vol. 1, pp.133-136,2000.
    [54] P. F. C. de Rivaz, N.G. Kingsbury, "Complex wavelet features for fast texture image retrieval," in Proc. IEEE Int. Conf. Image Processing, Kobe, 1999, Vol. 1, pp.109-113, Oct. 1999.
    [55] P. F. C. de Rivaz, N.G. Kingsbury, "Bayesian image deconvolution and denoising using complex wavelets," in Proc. IEEE Int. Conf. Image Processing, Thessaloniki,2001, Vol. 2, pp. 273-276,2001.
    [56] N. G. Kingsbury, "A dual-tree complex wavelet transform with improved orthogonality and symmetry properties," in Proc. IEEE Int. Conf. Image Processing,2000, Vol. 2, pp. 375-378, 2000.
    [57] N.G. Kingsbury, "Design of q-shift complex wavelets for image processing using frequency domain energy minimization," in Proc. IEEE Int. Conf. Image Processing,2003, Vol. 1, pp. 1013-1016, 2003.
    [58] P. Loo, N. G Kingsbury, "Digital watermarking using complex wavelets," in Proc. IEEE Int. Conf. Image Processing, 2000, Vol.3, pp. 29-32, 2000.
    [59] M. Miller, N. Kingsbury, R. Hobbs, "Seismic imaging using complex wavelets,"in Proc. ICASSP, 2005, Vol. 2, pp. 557-560, 2005.
    [60] F.C.A. Fernandes, R.L.C. van Spaendonck, C.S. Burrus, "Multidimensional,mapping-based complex wavelet transforms," IEEE Trans. Image Processing, Vol.14, No. 1, pp. 110-124, Jan. 2005.
    [61] F.C.A. Fernandes, R.L.C.van Spaendonck, C.S. Burrus, "Directional complex wavelet processing," in Proc. SPIE, 2000, Vol. 4119, No. 536, 2000.
    [62] F.C.A. Fernandes, Complex wavelet transforms with controllable redundancy,Ph.D. thesis, Rice University, 2002.
    [63] Felix C. A. Fernandes, Ivan W. Selesnick, Rutger L. C. van Spaendonck, C. Sidney Burrus, "Complex wavelet transforms with allpass filters," Signal Processing,Vol. 83, No. 8, pp. 1689-1706, Aug. 2003.
    [64] E.J.Cand(?)s, D. L. Donoho, Curvelets-a surprisingly effective nonadaptive representation for objects with edges, in Curve and Surface Fitting, A. Cohen, C.Rabut, and L. L. Schumaker, Eds. Saint-Malo: Vanderbilt University Press, 1999.
    [65] P. J. Burt, E. H. Adelson, "The Laplacian pyramid as a compact image code,"IEEE Trans. Commun., Vol. 31, No. 4, pp. 532-540, Apr.1983.
    [66] M. N. Do, M. Vetterli, "Framing pyramids," IEEE Trans. Signal Processing, Vol.51 No. 9, pp. 2329-2342, 2003.
    [67] M. N. Do, Directional multiresolution image representations, Ph.D. thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, Dec. 2001.
    [68] Sang-Il Park; M. J.T. Smith, R.M. Mersereau, "A new directional filter bank for image analysis and classification," in Proc. ICASSP, 1999, Vol. 3, pp.1417-1420, Mar.1999.
    [69] Sang-Il Park, M. J. T. Smith, R.M. Mersereau, "Improved structures of maximally decimated directional filter banks for spatial image analysis," IEEE Trans.Image Processing, Vol. 13, No. 11, pp. 1424-1431, Nov. 2004.
    [70] Lu Y, Minh N.Do, "Crisp-contourlets: A critically sampled directional multiresolution image representation," in Proc. SPIE Conf. Wavelet Applications Signal Image Processing, pp. 655-665, Aug. 2003,
    [71] T. T. Nguyen, S. Oraintara, "A directional decomposition: Theory, design and implementation," IEEE, ISCAS, 2004, Vol.3, pp.281-284, May 2004.
    [72] T. T. Nguyen, S. Oraintara, "A class of directional filter banks," in International Symposium on Circuits and Systems, 2005, pp.1110-1113, May 2005.
    [73] T. T. Nguyen, S. Oraintara, "A class of multiresolution directional filter banks,"IEEE Trans. Signal Processing, Nol. 55, No. 3, pp. 949-961, 2007.
    [74] T. T. Nguyen, S. Oraintara, "Multiresolution direction filter banks: theory, design and application,", IEEE Trans. Signal Process, Vol. 53, No.10, pp. 3895-3905, 2005.
    [75] T. T. Nguyen, S. Oraintara, "Embedded image coding using quincunx directional filter bank," in International Symposium on Circuits and Systems, 2006, pp.1165-1168, 2006,
    [76] Ramin Eslami, Hayder Radha, "The Contourlet transform for image de-noising using cycle spinning," in Proc. of Asilomar Conference on Signals, Systems, and Computers, pp. 1982-1986, Nov. 2003.
    [77] Xin Pan, Qiuqi Ruan, Yanxia Wang, "Palmprint recognition using contourlets based local fractal dimensions," in Proc. ICSP 2008, pp. 2108-2111, Oct. 2008.
    [78] V. Chappelier, C. Guillemot, S. Marinkovic, "Image coding with iterated contourlet and wavelet transforms," in Proc. ICIP2004, Vol. 5, No. 24-27, pp. 3157 -3160, Oct. 2004.
    [79] S. Raghavendrab, Bhat P. Subbanna, "Contourlet based multiresolution texture segmentation using contextual hidden Markov models," in Proc. Intelligent information technology, 2004, Vol. 3356, No. 7, pp. 336-343, Dec. 2004.
    [80] R. Romdhane, H. Mahersia, K. Hamrouni, "A novel content image retrieval method based on contourlet," in Proc. ICTTA 2008, pp. 1-5, Apr. 2008.
    [81] Tai Sing Lee, "Image representation using 2D Gabor wavelets," IEEE Trans.Pattern Analysis and Machine Intelligence, Vol. 18, No. 10, pp. 959-971, Oct. 1996
    [82] R. M. Haralick, "Statistical and structural approaches to texture," in Proc. IEEE,Vol. 67, pp. 786-804, May 1979.
    [83] H.Tamura, S. Mori, T. Yamawaki, "Textural features corresponding to visual perception," IEEE Trans. on System, Man, Cybern., Vol. 8, No. 6, pp. 460-473, Jun.1978.
    [84] F. Liu, R. W. Picard, "Periodicity, directionality and randomness: Wold features for image modeling and retrieval," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, pp. 722-733, Jul. 1996.
    [85] J-W Zhang, X-J Li, Y-D Ma, "Discriminating structure and random texture images with binary Fourier spectrum for invariant texture retrieval," APCIP, 2009,accepted.
    [86] B. Julez, "Visual pattern discrimination," IEEE Trans. Information Theory, Vol.232, pp. 84-92, Feb. 1962.
    [87] B. Julez, "Experiments in the visual perception of texture," Sci. Amer., pp. 34-43, Apr. 1975.
    [88] M. L. Comer, E. J. Delp, "Segmentation of textured images using a multiresolution gaussian autoregressive model," IEEE Trans. Image Processing, Vol. 8,pp. 408-420, Mar. 1999.
    [89] S. Zhu, Y. Wu, D. Mumford, "Filters, random fields and maximum entropy (frame) - towards a unified theory for texture modeling," International Journal of Computer Vision, Vol. 27, No. 2, pp. 107-126, Mar. 1998.
    [90] J. M. Francos, A. Z. Meiri, B. Porat, "A unified texture model based on a 2-d wold like decomposition," IEEE Trans. Signal Processing, Vol. 41, pp. 2665-2678,Jan. 1993.
    [91] Laws, K. I., "Rapid texture identification," in Proc. SPIE, Vol. 238, pp. 376-380,1980.
    [92]Unser, M., "Local linear transforms for texture measurements," Signal Processing,Vol. 11, pp. 61-79, Jul. 1986.
    [93] T. Chang, C.-C.J. Kuo, "Texture analysis and classification with tree-structured wavelet transform," IEEE Trans. Image Processing, Vol. 2, No. 4, pp. 429-441,Oct.1993.
    [94] G. M. Haley, B. S. Manjunath, "Rotation-invariant texture classification using a complete space-frequency model," IEEE Trans. Image Processing, Vol. 2, pp. 255-269,Feb.1999.
    [95] J. G.Daugman, "Two-dimensional spectral analysis of cortical receptive field profile," Vision Research, Vol. 20, pp. 847-856, 1980.
    [96] M.Unser, "Texture classification and segmentation using wavelet frames," IEEE Trans. Image Processing, Vol. 4, pp. 1549-1560, Nov. 1995.
    [97] A.P.N.Vo, T.T. Nguyen, S. Oraintara, "Texture image retrieval using complex directional filter bank," in Proc. Circuits and Systems, 2006, pp. 5495-5498, 2006.
    [98] Brodatz, P., Textures, A photographic album for artists and designers. New York:Dover Publications, 1966.
    [99] Zhihua He, Texture- and structure-based image representation with applications to image retrieval and compression, PH.D., thesis, College of engineering, Boston University, 2007.
    [100] K.-O. Cheng, N.-F. Law, W.-C. Siu, "Multiscaie directional filter bank with applications to structured and random texture retrieval," Pattern Recognition Vol. 40,pp.1182-1194,2007.
    [101] N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. on Systems, Man and Cybernetics, Vol. 9, pp. 62-66, January 1979.
    [102] T. Bulow, G Sommer, "A novel approach to the 2D analytic signal", in F. Solina and A. Leonardis (Eds.), CAIP'99, Ljubljana, Slovenia, pp. 25-32, 1999.
    [103] S.M. Phoong, C. W. Kim, P. P. Vaidyanathan, R. Ansari, "A new class of two-channel biorthogonal filter banks and wavelet bases," IEEE Trans. Signal Processing, Vol. 43, No. 3, pp. 649-665, Mar. 1995.
    [104] J. H. McClellan, "The design of two-dimensional digital filters by transformation," in Proc. 7th Annual Princeton Conf. Information Sciences and Systems, 1973.
    [105] D. B. H. Tay, N. G Kingsbury, "Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformation of variables," IEEE Trans.Image Processing, Vol. 2, pp. 466-480, Oct. 1993.
    [106] T.Cooklev, T.Yoshida, A. Nishihara, "Maximally flat half-band diamond-shaped FIR filters using the Bernstein polynomial," IEEE Trans. Circuits and Systems Ⅱ:Analog and Digital Signal Processing, Vol. 40, No. 11, pp. 749-751, Nov. 1993.
    [107] C. W. Kok, T. Q. Nguyen, "Two-dimensional diamond-shaped filter banks from one dimensional filters," on http://www.eurasip.di.uoa.gr/eurasip/Proceedings/Eusipco /1996/ paper/mfi_5.pdf.
    [108] R.L.kashyap, A.Khotanzed, "A model-based method for rotation invariant texture classification," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8,pp. 472-481, Jul. 1986.
    [109] M.leung, A.M.peterson, "Scale and rotation invariant texture classification", in Proc. ofthe Int. conf. on Acoustics. Speech and signal processing, pp.461-165.1991.
    [110] G. M. hayley, B. M. manjunath, "Rotation invariant texture classification using modified Gabor filters," in Proc. IEEE ICIP95, pp 265-265, 1995.
    [111] S. R. Fountain, T. N. Tan, "Extraction of noise robust invariant texture features via multichannel filtering," in Proc. of ICIP97, Vol. 3, pp. 197-200, 1997.
    [112] R. Porter, Canagrajah N. Robust, "Rotation invariant texture classification:wavelet, Gabor filter and GMRF based schemes," in IEE Proc, Vision, Image and Signal Process, 1997, Vol. 144, pp. 180-188, 1997.
    [113] J-L Chen, A. Kundu, "Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model," IEEE Trans.Pattern Analysis and Machine Intelligence, Vol. 16, pp. 208-214, 1994.
    [114] W, R. wu, S. C. wei, "Rotation and gray-scale transform invariant texture classification using spiral resampling subband decomposition and Hidden Markov model," IEEE Trans. Image Processing. Vol. 5, pp. 1423-1434, Oct 1996.
    [115] M. N. Do, M. Vetterli, "Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models," IEEE Trans. on Multimedia,Vol. 4, No.4, pp.517-527, 2002.
    [116] M. N. Do, "Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models," IEEE Signal Processing Letters, Vol. 10, No. 4, pp.115-118,2003.
    [117] R. Eckhorn, H. J. Reitboeck, M. Arndt, et al, "Feature linking via synchronization among distributed assemblies, Simulation of results from cat cortex,"Neural Comput., Vol. 2, No. 3, pp. 293-307, 1990.
    [118] R. Eckhorn, A. Frien, R.Bauer, et al, "High frequency oscillations in primary visual cortex of awake monkey," Neuro Rep., Vol. 4, No. 3, pp. 243-246, 1993.
    [119] A. Frien, R. Eckhorn, R. Bauer, T. Woelbern, et al., "Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey," Neuro Rep., Vol. 5, No. 17, pp. 2273-2277, 1994.
    [120] M. Stoecker, R. Eckhorn, H.J. Reitboeck, "Size and position invariant visual representation supports retinotopic maps via selective backward paths: A dynamic second order neural network model for a possible functional role of recurrent connections in the visual cortex," Neuron Computing, Vol. 17, No. 2, pp.111-132,1997.
    [121] L. John, Johnson, Mary Lou Padgett, "PCNN models and applications," IEEE Trans. Neural Networks, Vol. 10, No.3, pp.480-498, 1999.
    [122] Lzhikevich, M. Eugene, "Class 1 neural excitability, conventional synapses,weakly connected networks, and mathematical foundations of pulse-coupled models,"IEEE Trans. Neural Networks, Vol. 10, No.3, pp. 499-507, 1999.
    [123] H.S. Ranganath, G Kuntimad, J.L. Johnson, "Pulse coupled neural networks for image processing," In Proc. IEEE Southeast Con., Raleigh NC, pp. 37-43,1995.
    [124] J. L. Johnson, "Pulse-coupled neural nets: translation, rotation, scale, distortion and intensity signal invariance for images," Applied Optics, Vol. 33, No. 26, pp.6239-6253, 1994.
    [125] T. Lindblad, J. Kinser., Image processing using pulse-coupled neural networks,Springer-Verlag, London, 1998.
    [126] J. Kinser, "Image signature: ontology and classification," in Proc. The Fourth IASTED International Conference on Computer Graphics and Imaging (CGIM).2001.
    [127] Yide Ma, Rolan Dai, Lian Li, "Image segmentation of embryonic plant cell using pulse-coupled neural networks," Chinese Science Bulletin, Vol.47, No.2,pp.167-172, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700