静电纺PVA/PEO/MWNTs复合纤维的制备及形态和结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压静电纺丝法是一种制备纳米纤维的简单方法,具有方便直接无污染的特点。与普通纤维相比,由高压静电纺丝制备的纳米纤维具有较大的比表面积和较高的吸附性,近年来引起了国内外研究者的极大关注。
     本文选用聚乙烯醇(PVA)、聚氧化乙烯(PEO)两种水溶性的高分子材料为原料,以水为溶剂制备静电纺丝纤维。采用正交实验法分析研究了静电纺丝的工艺参数对PVA/PEO共混纳米纤维形态的影响。将具有独特的力学、电学等理化性质的碳纳米管(MWNTs)添加到PVA/PEO共混体系中,以制备PVA/PEO/MWNTs复合纳米纤维。为了能使碳纳米管在聚合物体系中有良好的分散,本文还对碳纳米管进行了纯化及分散处理,并研究了碳纳米管的添加量、添加方式及长径比对复合纤维形态及结构的影响,以期获得综合性能优异的导电聚合物复合纤维材料。
     采用PVA和PEO物理共混溶液为静电纺丝溶液,进行单因素纺丝实验和综合三因素三水平(3 x 3)的正交试验。通过正交分析,得到制备超细纤维的最优条件为:电压90 kV(-);接收距离30 cm;针头直径5.5 mm。制得了平均直径最细达到590 nm纤维。
     将经过纯化和分散的多壁碳纳米管(MWNTs)添加到PVA/PEO共混水溶液中,利用静电纺丝技术制备PVA/PEO/MWNTs复合超细纤维。结果表明:十二烷基硫酸钠(SDS)可使纯化后的MWNTs在水溶液中具有较好的分散稳定性。得到的复合超细纤维的平均直径随MWNTs添加量的增加而减小。未添加MWNTs时,纤维平均直径为857 nm;当MWNTs的添加量为1.5 wt %时,纤维平均直径达700 nm,且表面光滑,分布均匀。
     用PVA分散的碳纳米管悬浮溶液以溶剂的形式加入到聚合物溶液中可使碳纳米管的分散性更好,进而有利于纺丝的进行。随着碳纳米管的含量从0.27%增加到0.53%,纤维直径下降,最细可达368 nm。当碳纳米管的含量增加到一定量时,溶液的导电性下降,使纤维的直径又有所增加。添加大长径比碳纳米管(large aspect ratio MWNTs即L-MWNTs)的聚合物溶液纺丝得到的纤维直径比添加小长径比碳纳米管(small aspect ratio MWNTs即S-MWNTs)的纤维直径更细。
Electrospinning is a convenience, direct and simple method for nano-fiber preparation. Compares with the ordinary fiber, nano-fibers prepared by electrospinning has larger surface area and the high adsorbability,which in recent years attracted great attention at home and abroad.
     In this study, two kinds of water-soluble high polymer material, the polyvinyl alcohol (PVA) and the polyoxyethylene (PEO), were selected as raw materials, and water was taken as solvent to prepare electrospinning fibers. Orthogonal experiment was used to analysis the influence of electrospinning process parameters on PVA/PEO compound nanofibers morphology. MWNTs which has unique physics and chemistry character were added into PVA/PEO blending system to prepare the PVA/PEO/MWNTs compound nano-fiber. In order to have the good dispersion in the polymer blending system, MWNTs was purified and dispersed .The influences of the addition content , the addition method and the aspect ratio of carbon nanotubes on morphology and structure of composite fibers were also studied. The composite fibers has potential applications in electric conduction.
     PVA/PEO physics blending solution was used as electrospinning solution, electrospinning of single factor, orthogonal experiments with three factor and three levels (3 x 3) were carried. The results showed that optimal conditions is voltage 90 kV(-), receiving distance 30 cm , needle diameter 5.5 mm . The thinnest fiber diameter was 590nm .
     After being purified and dispersed , MWNTs were added into PVA/PEO blending aqueous solutions to prepare PVA/PEO/MWNTs composite ultra-fine fiber. The results showed that MWNTs have good dispersion stability in aqueous solutions after dispersed by SDS . The avenage diameter of composite ultra-fine fiber increases with decreasing addition content . When there is no MWNTs in blending aqueous solutions , the fiber average diameter is 857 nm ; when the addition content of MWNTs is 1.5 wt % , the fiber average diameter is 700 nm, and surface of fibers is smooth , distribution is uniform .
     When MWNTs dispersed by PVA were added as solvent to prepare polymer solution, the dispersion of MWNTs aqueous solutions becomes better . After electrospun, With increasing MWNTs content , the fiber diameter decreases ; when the MWNTs content increases from 0.27% to 0.53% , the fiber diameter decreases to 368nm . When the MWNTs content increases to a certain value , the conductivity of the solution decreases, the fiber diameter increases . The diameter of the fiber electrospun by the polymer solution added with L-MWNTs is smaller than that added with S-MWNTs .
引文
[1]录华.高分子基纳米复合材料制备、表征方法及应用[J].化工职业技术教育, 2006,3:30-33.
    [2]孙彦洁.国内外纳米材料与技术水平的比较分析[J].中国粉体工业,2007,5: 42-44.
    [3]柳艳,陈军,宋磊,钱玉山.纳米材料的表面修饰和表征技术[J].能源环境保护,2008,22(5):14-17.
    [4]代淑芬.纳米材料的特性和发展[J].无锡南洋学院学报,2008,7(4):49-53.
    [5]黄晓锋.纳米材料的难回收性及其负面影响[J].化工职业技术教育, 2006,3: 34-36.
    [6]王永芝,杨清彪,李耀先.纳米纤维的性质及应用进展[J].化工新型材料,2004,32(12):9-12.
    [7]林金友,丁彬,俞建勇.静电纺丝制备高比表面积纳米多孔纤维的研究进展[J].产业用纺织品,2009,11:1-5.
    [8]罗益锋.纳米纤维及其对未来世界的影响[J].高科技纤维与应用,2004,29(2):1-6.
    [9]芦长椿.纳米纤维技术新进展[J].纤维技术,2008,5:60-64.
    [10]Seungsin Lee, S Kay Obendorf. Develop ing Protective Textile Materials as Barriers to L iquid Penetration UsingMelt-Electrosp inning. J Appl Polym Sci, 2006, 102 (4) : 3430 - 3437.
    [11]Jen - Taut Yeh, Chin - Lai Chen, K S Huang, et al. Synthesis, Characterization, and App lication of PVP /Chitosan Blended Polymers.J Appl Polym Sci, 2006, 101 (2) : 885 - 891.
    [12]王艳春,逯春民.静电纺丝纳米纤维在特殊领域的研究现状和应用.高科技纤维与应用,2006,31(1):45 - 48.
    [13]Tae Su Kang, SoongWook Lee, J insoo Joo, et al. Electrically Conducting Polypyrrole Fibers Spun by Electrosp inning. SynthMet, 2005, 153 (1 - 3) : 61 - 64.
    [14]Shao Ping Zhong, Wee Eong Teo, Xiao Zhu, et al. Development of a Novel Collagen - GAG Nanofibrous Scaffold via Electrosp inning. Mat Sci Eng C, 2007, 27 (2) : 262 -266.
    [15]Sun B, Duan B, Yuan X. Preparation of Core /Shell PVP /PLA Ultrafine Fibers by Coaxial Electrosp inning. J Appl Polym Sci, 2006, 102 (1) : 39 - 45.
    [16]董晓英,董鑫.静电纺丝纳米纤维的制备工艺及其应用[J].合成纤维工业, 2009, 32 (4) : 48-51.
    [17] D Li,Y N Xia. Electrospinning of nanofibers: Reinventing the wheel[J]. Advanced Materials,2004,16:1151- 1170.
    [18]王璐璐,佘希林,袁芳.静电纺丝制备复合纳米纤维研究进展.纳米材料与结构,2008:392-396.
    [19] Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nano fibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblast in vitro. Biomaterials 2004,25:1289–97.
    [20] Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer 2005,46:5094–102.
    [21] Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 2000,87:4531–47.
    [22]Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibres. J Appl Phys 2001,89:3018–26.
    [23]朱云波,钟智丽,冯文召,张鹏.静电法纺制羊毛角蛋白/PVA纳米纤维.毛纺科技,2008,3:33-37.
    [24]Jie Bai, Qingbiao Yang, Meiye Li, ShugangWang, Chaoqun Zhang, Yaoxian Li. Preparation of composite nanofibers containing gold nanoparticles by using poly(N-vinylpyrrolidone) andβ- cyclodextrin. Materials Chemistry and Physics,2008:205-208.
    [25]纪杰,戴礼兴.静电纺丝技术研究进展及其应用[J].科技咨询,2009,13:118.
    [26]李山山,何素文,胡祖明等.静电纺丝的研究进展[J].合成纤维工业,2009,32 (4): 44-47.
    [27]孟庆杰,张兴祥.静电法超细纤维的性能与应用研究.高分子材料科学与工程.2004,20(6):15-19.
    [28]张琳琳,邵丽,崔园园等.PVA复合材料的研究进展[J].化工新型材料,2010, 38(1):8-10.
    [29]迟蕾,姚永毅,李瑞霞,高绪珊,吴大诚.静电纺丝方法制备纳米纤维的最新进展[J].纺织科技进展,2004,5:1-6.
    [30]夏鑫,魏取福,李静.高分子量壳聚糖/聚氧乙烯复合纳米纤维的制备[J].纺织学报,2010,31(3):11-14.
    [31]施越冬,郭银玲,徐剑炜.可注射性软骨细胞支架材料的研究进展[J].中国临床医学,2009,16(6):975-978.
    [32]王鸿博,王银利,陈艳等.静电纺工艺参数对含银PA6纳米纤维直径的影响[J].材料导报,2009,23(12):77-80.
    [33]肖婉红,曾泳春.静电纺丝工艺参数对纤维直径影响的研究:实验及数值模拟[J].东华大学学报,2009,35(6):632-638.
    [34]朱晶心,邵慧丽,胡学超.仿生制备的再生丝素蛋白水溶液的静电纺丝(Ⅰ)—工艺参数及结构特性[J].功能材料,2008,1(39):115-119.
    [35]覃小红,王新威,胡祖明.静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究[J].东华大学学报(自然科学版),2005,31(6):16-22.
    [36]邵东锋.静电纺丝工艺参数对制备聚丙烯腈纳米纤维的影响[J].山东纺织科技,2007,5:53-56.
    [37] C.J. Thompson,G.G. Chase,A.L. Yarin et al. Effects of parameters on nanofiber diameter determined from electrospinning model[J].Polymer,2007,48: 6913-6922.
    [38] Vince Beachley,Xuejun Wen. Effect of electrospinning parameters on the nanofiber diameter and length[J]. Materials Science and Engineering,2009,29: 663–668.
    [39] Tamer Uyar,Flemming Besenbacher. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity[J]. Polymer,2008,49: 5336–5343.
    [40]李梅,高珊霍,晓艳.复合同轴生物碳纳米管纤维制备方法[J].高分子材料科学与工程,2009,25(3):134-138.
    [41]王曙东,尹桂波,张幼珠.静电纺PLA管状支架的结构及其生物力学性能[J].材料工程,2008,10:316-320.
    [42]夏苏,王政,杨荆泉等.利用静电纺丝技术制备新型生物防护材料[J].合成纤维,2008,1:1-5.
    [43]Travis J. Sill, Horst A. von Recum. Electrospinning: Applications in drug delivery andtissue engineering[J]. Biomaterials,2008,29:1989-2006.
    [44]Kuen Yong Lee,Lim Jeong,Yun Ok Kang et al. Electrospinning of polysaccharides for regenerative medicine[J]. Advanced Drug Delivery Reviews,2009,61: 1020–1032
    [45] Seema Agarwal,Joachim H. Wendorff,Andreas Greiner. Use of electrospinning technique for biomedical applications[J].Polymer, 2008,49:5603–5621.
    [46]金许翔,张全超,牛鹏飞.取向静电纺丝纳米纤维的制备及应用研究进展[J].高分子通报,2009,2:42-47.
    [47]高锋,隋刚,于运花等.PAN/MWCNT纳米平行纤维的制备以及结构表征[J].材料导报,2007,21(Ⅸ):156-160.
    [48]Eugene D. Boland,Branch D. Coleman,Catherine P. Barnes et al. Electrospinning polydioxanone for biomedical applications[J]. Acta Biomaterialia, 2005,1: 115–123.
    [49]Ken-ichi Mimura, Makoto Moriya, Wataru Sakamoto.Synthesis of BaTiO3 nanoparticle/poly(2-hydroxyethyl methacrylate) hybrid nanofibers via electrospinning[J]. Composites Science and Technology ,2010,70:492–497.
    [50]张慧云,刘利君.聚合物/无机半导体复合纳米纤维性能研究[J].化学世界,2008,7:392-395.
    [51]于建香,刘太奇.PVP负载钯纳米丝状催化剂的制备及催化加氢性能[J].高分子材料科学与工程,2008,24(12):191-194.
    [52]房乾,陈登龙,姚清华.静电纺丝在组织工程支架材料制备中的应用[J].福建师范大学学报(自然科学版),2008,24(1):103-108.
    [53] Eduard Zhmayev,Daehwan Cho,Yong Lak Joo.Modeling of melt electrospinning for semi-crystalline polymers[J]. Polymer, 2010,51:274–290.
    [54]Sherif Soliman a,1, Stefania Pagliari b,1, Antonio Rinaldi et al. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning[J]. Acta Biomaterialia, 2010,6:1227–1237.
    [55]IIJ IMA S. Helical Microtubules of Graphitic Carbon [J].Nature, 1991, 354(11) : 56-58.
    [56]鲁江,简义辉,张慧慧,邵惠丽,胡学超.碳纳米管的表面改性及其在N M M O水溶液中的分散稳定性[J].东华大学学报(自然科学版),2008,34(1):1-5.
    [57]欧育湘,许冬梅,赵毅.聚合物理想的增强剂和改性剂—碳纳米管[J].塑料助剂,2010,1:1-4.
    [58]Moncy V. Jose , Brian W. Steinert , Vinoy Thomas, Derrick R. Dean, Mohamed A. Abdalla, Gary Price, Gregg M. Janowski. Morphology and mechanical properties of Nylon 6/MWNT nanofibers[J].Polymer 2007,48:1096-1104.
    [59]张诚,祝军,马淳安.聚合物/碳纳米管导电复合材料研究进展[J].浙江工业大学学报,2010,38(1):1-6.
    [60]万谦,肖国光,杨平华.基于碳纳米管修饰电极的酶生物传感器研究进展[J].化工中间体,2009,12:1-5.
    [61]陈传盛,刘天贵,陈小华,叶昌,夏靑.碳纳米管的表面修饰及其应用[J].机械工程材料,2007,31(11):1-6.
    [62]Hun-Sik Kim, Won-Il Park, Minsung Kang, Hyoung-Joon Jin. Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions[J].Journal of Physics and Chemistry of Solids 2008,69:1209–1212.
    [63]赵听,张清华.碳纳米管聚合物纳米复合纤维静电纺丝研究进展[J].合成纤维工业,2008,31(5):35-39.
    [64]钱伯章.碳纳米管的应用进展[J].化工新型材料,2010,38(12):9-12.
    [65]王永杰,李艳,芦艾等.聚苯硫醚/多壁碳纳米管复合材料的电磁性能[J].2009,23(12) :16-19.
    [66]赵国刚.纳米碳管化学复合镀层组织、沉积机理及性能[J].黑龙江科技学院学报2010,20(1):1-6.
    [1]孙静,马玉琴,康学军.聚苯乙烯电纺纳米纤维对水中苯系物的吸附性能[J].环境化学,2010,29(1):105-108.
    [2]孙丽娟,赵晓军.氨基酸序列和时间对短肽纳米纤维形成的影响[J].生物医学工程学杂志,2009,26(6):1276-1280.
    [3]沈静.高活性纳米抗菌腈纶纤维的研发[J].中国纤检,2010,1(上):82-86.
    [4]李文望,孙道恒.静电纺丝纳米纤维在传感器与MEMS中的应用[J].泉州师范学院学报(自然科学),2009,27(6):22-26.
    [5]吴宁,魏取福,陶丹等. TiO2纳米纤维的制备、表征及其抗紫外性能[J].东华大学学报(自然科学版),2009,35(5):500-505.
    [6]王冬梅,王亮,董怀等.含铕配合物荧光纳米纤维的制备及光学性质的研究[J].光谱学与光谱分析,2009,29(10):2777-2781.
    [7] JingWang,Seong Chan Kim,DavidY.H. Pui. Investigation of the figure of merit for filters with a single nanofiber layer on a substrate[J]. Aerosol Science,2008,39: 323-334.
    [8] Sung-Seen Choi,Young Soo Lee,Chang Whan Joo etc. Electrospun PVDF nanofiber web as polymer electrolyte or separator[J]. Electrochimica Acta,2004,50: 339–343.
    [9] Kh.Ghanbaria , S.Z. Bathaieb , M.F. Mousavi . Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor[J]. Biosensors and Bioelectronics, 2008,23: 1825-1831.
    [10]刘晓锋,莫秀梅,何创龙.聚酯酰胺静电纺纳米纤维膜的制备及其生物相容性[J].2009,13(51):10045-10048.
    [11]张旺玺,彭素云.静电纺丝制备聚丙烯腈纳米纤维及其预氧化[J].合成技术及应用,2008,23(2):11-13.
    [12]山下義裕.静电纺丝法制造纳米纤维的工业化[J].合成纤维,2010,1:44-47.
    [13]Audrey Frenot, IoannisS. Chronakis. Polymer nanofibers assembled by electrospinning[J]. Current Opinion in Colloid and Interface Science,2003,8:64-75.
    [14]Saowakon Wongsasulak,Manashuen Patapeejumruswong, Jochen Weiss. Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends[J]. Journal of Food Engineering,2010,98:370-376.
    [15] G.Pitarresi , F.S. Palumbo , C. Fiorica et al . Electrospinning ofα,β-poly(N-2-hydroxyethyl)-dl-aspartamide-graft-polylactic acid to produce a fibrillar scaffold[J]. European Polymer Journal,2010,46: 181-184.
    [16]夏苏,王政,杨荆泉.静电纺丝抗菌聚氨醋纳米纤维的结构与性能[J].合成纤维工业,2009,32(6):28-30.
    [17]张锋.溶剂对静电纺丝素纳米纤维结构特征的影响[J].国外丝绸,2008,4:6-8.
    [18]汪洋,万隆,刘小磐.静电纺丝参数对聚乳酸超细纤维支架形貌的影响[J].湖南大学学报(自然科学版),2009,36(7):52-55.
    [19]张贺,王进贤,董相廷.静电纺丝技术制备Al2O3/SiO2同轴超微电缆[J].硅酸盐学报,2009,37(10):1712-1717.
    [20]Artphop Neamnark, Ratana Rujiravanit, Pitt Supaphol. Electrospinning of hexanoyl chitosan[J]. Carbohydrate Polymers,2006,66:298-305.
    [21]方乃照,冯惠,戴礼兴.冷冻处理对a-PVA/s-PVA共混溶液静电纺丝的影响[J].合成纤维工业,2009,32(5):30-35.
    [22]诸乃彤,张毅.静电纺丝技术在生物组织工程上的应用[J].天津纺织科技,187:16-18.
    [23]何铁石,周正发,任凤梅.聚合物静电纺丝技术在催化材料制备中的应用研究进展[J].高分子材料科学与工程,2009,25(6):150-153.
    [24]董鑫.静电纺丝纳米纤维的制备及其在生物医药方面的应用[J].中外医疗,2008,32:154.
    [25]房乾,陈登龙,姚清华.静电纺丝在组织工程支架材料制备中的应用[J].福建师范大学学报(自然科学版),2008,24(1):103-108.
    [26]王艳春,逯春民.静电纺丝纳米纤维在特殊领域的研究现状和应用[J].高科技纤维与应用,2006,31(1):45-48.
    [27]左秀琴,李自轩,叶志殷.静电纺丝聚合物加工技术及其应用[J].塑料,2005,34(3):1-7.
    [28]徐明,潘志娟.静电纺丝及其在纳米级丝素纤维制品开发上的应用[J].苏州大学学报(工科版),2004,24(4):38-42.
    [29]师奇松,于建香,顾克壮等.静电纺丝技术及其应用[J].化学世界,2005,5: 313-317.
    [30]邱芯薇,潘志娟.天然高聚物的静电纺丝技术及应用[J].丝绸,2005,11: 39-43.
    [31]贾清秀,付中玉,龙睿芬.静电纺丝工艺参数对PMMA/富勒烯纤维形貌的影响[J].合成纤维,2009,6:25-28.
    [32]肖婉红,曾泳春.静电纺丝工艺参数对纤维直径影响的研究:实验及数值模拟[J].东华大学学报(自然科学版),2009,35(6):632-638.
    [33]宋叶萍,熊杰,谢军军等. zein静电纺丝的过程优化和直径预测模型.纺织学报,2009,30(7):6-14.
    [34]夏艳杰,高晓艳,潘志娟.尼龙6 /66纺丝液的性能与其静电纺效果的关系.苏州大学学报(工科版),2009,29(1):34-38.
    [35]王磊,张立群,田明.静电纺丝聚合物纤维的研究进展.现代化工,2009,29(2):28-33.
    [36]金许翔,张全超,牛鹏飞等.取向静电纺丝纳米纤维的制备及应用研究进展.高分子通报,2009,2:42-47.
    [37]孙垂卿,刘呈坤,洪益明.静电纺聚乙烯醇的纺丝工艺对纤维毡宏观形态的影响.非织造布,2008,16(5):35-37.
    [38]邵东锋.静电纺丝工艺参数对制备聚丙烯腈纳米纤维的影响[J].山东纺织科技,2007,5:53-56.
    [39]亢萍,陆波,孟昭生.制备聚乙烯醇缩甲醛新方法的研究[J].沈阳化工学院学报,2003,17(3):193-196.
    [40]尹君,李秋锦,封亚培等.静电纺工艺参数对聚己内酯纳米纤维直径的影响[J].合成纤维,2009,12:26-30.
    [41]Fong H , Chun I , Reneker D H . Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40(16):4 585-4 592.
    [42]Khil M S,Kim H Y,et al.Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning[J].Polymer,2004,45(1):295-301.
    [1]李宏伟,高绪珊,童俨.含碳纳米管的新型抗静电纤维的制备和性能[J].材料研究学报[J].2003,17(4):444-448.
    [2]杨邦朝,陈金菊,冯哲圣.碳纳米管的物性及应用[J].电子元件与材料,2003, 22(5):44-46.
    [3]吴胜伟,郭金学,李玉兰等.碳纳米管的放射性材料填充[J].核技术,2003,26(9):723-724.
    [4]李权龙,袁东星,林庆梅.多壁碳纳米管的纯化[J].化学学报,2003,61(6): 931-936.
    [5]Moncy V. Jose , Brian W. Steinert , Vinoy Thomas, Derrick R. Dean, Mohamed A. Abdalla, Gary Price, Gregg M. Janowski. Morphology and mechanical properties of Nylon 6/MWNT nanofibers[J].Polymer 2007,48:1096-1104.
    [6]隋坤艳,谢丹,高耸.海藻酸钠/碳纳米管复合凝胶球的制备及其吸附性能[J].功能材料,2010,41(2):268-270.
    [7]张翼,颜红侠,李朋博.热固性树脂/碳纳米管复合材料的研究进展[J].中国塑料,2009,23(10):10-14.
    [8]田继斌,梁胜彪,隋刚.羧基化多壁碳纳米管对碳纤维环氧树脂复合材料性能的影响[J].玻璃钢/复合材料,2010,1:36-40.
    [9]周湘文,熊国平,朱跃峰.碳纳米管/粉末丁苯橡胶复合材料改性聚丙烯[J].清华大学学报(自然科学版),2008,48(12):2096-2099.
    [10]臧杨,郝晓刚,王忠德.碳纳米管/聚苯胺/铁氰化镍复合膜的电化学共聚制备与电容性能[J].物理化学学报,2010, 26(2):291-298.
    [11] Xuefeng Li,Wenchao Guan,Haibiao Yan. Fabrication and atomic force microscopy/friction force microscopy(AFM/FFM) studies of polyacrylamide–carbon nanotubes(PAM–CNTs) copolymer thin films[J].Materials Chemistry and Physics,2004,88:53-58.
    [12]Ying-Ling Liu,Wei-Hong Chen,Yu-Hsun Chang. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs[J]. Carbohydrate Polymers,2009,76:232-238.
    [13]P. Xue, K.H. Park, X.M. Tao et al. Electrically conductive yarns based on PVA/carbon nanotubes[J]. Composite Structures,2007,78:271-277.
    [14]温伟,王彪,王华平.碳纳米管/聚丙烯腈基复合材料的热导率研究[J].材料导报(研究篇)2009,23(11):35-38.
    [15] Jie-Feng Gao, Zhong-Ming Li , Qing-jie Meng et al. CNTs/ UHMWPE composites with a two-dimensional conductive network[J].Materials Letters ,2008,62:3530–3532.
    [16] Ping Liu, Dong Xu, Zijiong Li et al. Fabrication of CNTs/Cu composite thin films for interconnects application [J]. Microelectronic Engineering, 2008, 85: 1984–1987.
    [17] Leonard S. Fifield , Jay W. Grate. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups[J]. CARBON ,2010, 48 : 2085–2088.
    [18] Meining Zhang, Lei Su, Lanqun Mao. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid[J]. Carbon ,2006,44:276–283.
    [19] Young Seok Song, Jae Ryoun Youn. Modeling of effective elastic properties for polymer based carbon nanotube composites[J]. Polymer, 2006, 47: 1741–1748.
    [20] Man-Lung Sham, Jang-Kyo Kim. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments[J]. Carbon, 2006,44:768–777.
    [21]刘宗建,张仁元,毛凌波等.碳纳米管的分散性及其光学性质的研究[J].材料研究与应用,2009,3(4):243-247.
    [22]李卓,隋刚,杨小平.反应性碳纳米管及其复合材料的制备与性能[J].材料工程,2009,(增刊2):323-327.
    [23]郑华,张晨,王兆旭等.聚对苯二甲酸乙二醇酯共价接枝多壁碳纳米管及其表征[J].高分子材料科学与工程,2009,25(8):138-140.
    [24]高锋,隋刚,于运花等.PAN/MWCNT纳米平行纤维的制备以及结构表征[J].材料导报,2007,21(Ⅸ):156-160.
    [25]王栋,田辉,李建伟.超声震荡及化学试剂对碳纳米管分散性能的影响[J].科技情报开发与经济,2009,19(29):141-142.
    [26]Gao Lian(高濂) et al. A Semi-quantitative Method to Measure the Stability of Carbon Nanotubes Suspension[P]. China Patent(中国专利): ZL03116185.5, 2003-10-29
    [27]HOU P X, BAI S, YANGQ H et al. Multi-step Purification of Carbon Nanotubes[J]. Carbon, 2002, 40(1) :81-85
    [28]Xu Jiyong(徐吉勇), Fan Xu(范旭), Dong Wei(董伟), Sun Wei(孙唯). Purification and Polyvinyl Alcohol-Assisted Dispersion of Multiwalled Carbon Nanotubes[J]. Spectroscopy Laboratory(光谱实验室), 2008,25(6):1035-1039
    [29]Jia Shiqiang(贾士强), zhang Lin(张琳), Zhang Limin(张立旻),Hu Lingjin(胡令金). Research on Aligned-MWNTs Purification[J]. Fiber Composites,2007,12(4):40-43
    [30]Dou Wenling(窦文龄), Xin Xia(辛霞),Xu Guiying(徐桂英). Dispersion of Carbon Nanotubes by Amphiphilic Molecules [J]. Acta Phys Chim Sin(物理化学学报), 2009,25(2):382-388
    [31]Wang Jianguo(王国建), Wang Yao(王瑶) et al. Preparation of water-soluble single-walled carbon nanotubes by controlled/ living polymerization [J]. New Carbon Materials(新型炭材料),2008,23(1): 25-29
    [32]Gong Xiaozhong(龚晓钟), Tang Jiaoning(汤皎宁), Gu Kunming(古坤明), Yang Qinpeng(杨钦鹏). Study of Dispersion of Carbon Nanotubes[J].Guangdong Chemicals(广东化工),2005(4):7-9,18.
    [33] Lu Jiang(鲁江), Jian Yihui(简义辉), Zhang Huihui(张慧慧) et al. The Modification of Carbon Nanotubes and Their Dispersion Stability in NMMO Aqueous Solution[J].Journal of Donghua University(东华大学学报), 2008,34(1):1-5
    [34] Wu Xiaoli(吴小利), Yue Tao(岳涛), Lu Rongrong(陆荣荣) et al. Hydrothermo-Assisted Functionalization, FTIR, Raman and XPS Spectra Characterization of Carbon Nanotubes[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(10): 1595-1598
    [35]Xue Huayu(薛华育), Gu Zhuo(顾卓), Dai Lixing(戴礼兴), Bai Lun(白伦). Preparation and Characterizat ion of RSF/PVA Blending Nanofibers[J]. Polymer Materials Science and Engineering,2007,23(6):240-243
    [1]杨邦朝,陈金菊,冯哲圣.碳纳米管的物性及应用[J].电子元件与材料,2003,22(5):44-46.
    [2]姜靖雯,彭峰.碳纳米管应用研究现状与进展[J].材料科学与工程学报,2003, 21(3):464-468.
    [3]万谦,肖国光,杨平华.基于碳纳米管修饰电极的酶生物传感器研究进展[J].广东化工,2010,37(1):112-114.
    [4]张猛,闫国进,路朋献.水热合成碳纳米管的电化学储氢性能研究[J].化工新型材料,2010,38(2):63-65.
    [5]赵国刚.纳米碳管化学复合镀层组织、沉积机理及性能[J].黑龙江科技学院学报,2010,20(1):1-6.
    [6]施益峰,全慧娟,郑国斌.用气相流动催化热解法合成单壁碳纳米管[J].材料研究学报,2003,17(3):321-325.
    [7]程国安,刘华平,彭宜斌.气体催化裂解法制备高纯碳纳米管的研究[J].北京师范大学学报(自然科学版),2003,39(4):467-470.
    [8]吴兰峰,吴德峰,张明.聚苯硫醚/碳纳米管复合材料的导电和力学性能[J].高分子材料科学与工程,2009,25(8):36-39.
    [9]徐吉勇,范旭,董伟等.碳纳米管的纯化及其在聚乙烯醇中的分散[J].光谱实验室,2008,25(6): 1035-1039.
    [10]杨波,陈光顺,李姜.多壁碳纳米管增强炭黑/聚丙烯导电复合材料导电行为[J].复合材料学报,2009,26(4):41-46.
    [11]边成香,徐学诚,余维等.磺化聚苯乙炔/多壁碳纳米管复合材料导电机理研究[J].物理化学学报,2006,22(10):1185-1190.
    [12]王红敏,梁旦,韩菲菲等.聚噻吩/多壁碳纳米管复合材料结构与导电机理的研究[J].化学学报,2008,66(20):2279-2284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700